Electronic vacuum cleaner control system
First Claim
1. A vacuum cleaner comprising:
- a canister having portions that define an intake port and a blow port;
a suction motor within the canister for drawing air into the canister through the intake port and exhausting the air through the blow port;
a hose containing wires and being connected to one of;
(a) the intake port for directing the air into the intake port, and (b) the blow port for directing the air exhausted from the blow port;
a handle separate from the canister and connected to the hose; and
a control unit disposed within the handle, the control unit being electrically connected to one of;
(a) the intake port, and(b) the blow port via the wires in the hose, and the control unit having circuitry for detecting to which of said ports said hose is connected to.
5 Assignments
0 Petitions

Accused Products

Abstract
An electronic control system for a vacuum cleaner is provided that supports two-way communications between a microcontroller in the handle of the vacuum cleaner and a suction motor and various sensors in the canister of the vacuum cleaner. The vacuum cleaner may be placed in one of two user-selectable bag change modes. In a maximum suction bag change mode, the electronic control system of vacuum cleaner will shut off the vacuum cleaner when the vacuum cleaner bag has filled and the suction power of the unit has been degraded as a result. If the maximum fill bag change mode is selected, the electronic control system will shut off the vacuum cleaner only after the bag has filled to the maximum extent allowable. The control system has indicator lights to display to the user whether the maximum suction or the maximum fill mode has been selected. The control system also has an optical dust sensor based on one-piece lens units located in the vacuum cleaner handle for monitoring the frequency with which dust particles flow into the vacuum cleaner. The control system can automatically adjust the power setting of the vacuum cleaner based on the measured frequency.
285 Citations
Integrated central vacuum cleaner suction device and control | ||
Patent #
US 7,900,315 B2
Filed 10/07/2005
|
Current Assignee
Cube Investments Limited
|
Original Assignee
Cube Investments Limited
|
Motor Control for a Vacuum Cleaner | ||
Patent #
US 20110005023A1
Filed 09/22/2010
|
Current Assignee
The Scott Fetzer Company
|
Original Assignee
Terry L. Zahuranec, John A. Lambert
|
Central vacuum cleaner cross-controls | ||
Patent #
US 7,958,594 B2
Filed 10/06/2006
|
Current Assignee
Cube Investments Limited
|
Original Assignee
Cube Investments Limited
|
Vacuum Cleaner Sensor | ||
Patent #
US 20100236013A1
Filed 03/17/2009
|
Current Assignee
Electrolux Home Care Products Incorporated
|
Original Assignee
Electrolux Home Care Products Incorporated
|
Method and system for multi-mode coverage for an autonomous robot | ||
Patent #
US 7,663,333 B2
Filed 06/29/2007
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Celestial navigation system for an autonomous robot | ||
Patent #
US 7,706,917 B1
Filed 07/07/2005
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Debris Sensor for Cleaning Apparatus | ||
Patent #
US 20100115716A1
Filed 01/14/2010
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Autonomous surface cleaning robot for wet and dry cleaning | ||
Patent #
US 7,761,954 B2
Filed 08/07/2007
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Motor control for a vacuum cleaner | ||
Patent #
US 7,823,249 B2
Filed 01/05/2006
|
Current Assignee
The Scott Fetzer Company
|
Original Assignee
The Scott Fetzer Company
|
OBSTACLE FOLLOWING SENSOR SCHEME FOR A MOBILE ROBOT | ||
Patent #
US 20090045766A1
Filed 06/24/2008
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Robot navigation | ||
Patent #
US 7,567,052 B2
Filed 10/30/2007
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Robot confinement | ||
Patent #
US 7,579,803 B2
Filed 10/30/2007
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Autonomous floor-cleaning robot | ||
Patent #
US 7,571,511 B2
Filed 04/05/2004
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Autonomous surface cleaning robot for dry cleaning | ||
Patent #
US 7,620,476 B2
Filed 08/19/2005
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Autonomous floor cleaning robot | ||
Patent #
US 7,636,982 B2
Filed 08/10/2007
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Autonomous Floor Cleaning Robot | ||
Patent #
US 20080000042A1
Filed 08/06/2007
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Autonomous Floor Cleaning Robot | ||
Patent #
US 20080000041A1
Filed 08/06/2007
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Obstacle Following Sensor Scheme for a mobile robot | ||
Patent #
US 20080015738A1
Filed 08/06/2007
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Robot Confinement | ||
Patent #
US 20080039974A1
Filed 03/19/2007
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Autonomous robot auto-docking and energy management systems and methods | ||
Patent #
US 7,332,890 B2
Filed 01/21/2004
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
CLEANING ROBOT ROLLER PROCESSING | ||
Patent #
US 20080052846A1
Filed 05/21/2007
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
NAVIGATING AUTONOMOUS COVERAGE ROBOTS | ||
Patent #
US 20080091304A1
Filed 06/05/2007
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Robot Confinement | ||
Patent #
US 20080084174A1
Filed 10/30/2007
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Debris Sensor for Cleaning Apparatus | ||
Patent #
US 20080150466A1
Filed 09/24/2007
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Method and system for multi-mode coverage for an autonomous robot | ||
Patent #
US 7,388,343 B2
Filed 07/12/2007
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Autonomous surface cleaning robot for wet and dry cleaning | ||
Patent #
US 7,389,156 B2
Filed 08/19/2005
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Central vacuum cleaning system control subsystems | ||
Patent #
US 7,403,360 B2
Filed 09/09/2004
|
Current Assignee
Cube Investments Limited
|
Original Assignee
Cube Investments Limited
|
Central vacuum cleaning system control subsystems | ||
Patent #
US 20080184519A1
Filed 04/03/2008
|
Current Assignee
Cube Investments Limited
|
Original Assignee
Cube Investments Limited
|
Jar opener | ||
Patent #
US 20080229885A1
Filed 03/22/2007
|
Current Assignee
Daka Research Inc.
|
Original Assignee
Daka Research Inc.
|
Obstacle following sensor scheme for a mobile robot | ||
Patent #
US 7,430,455 B2
Filed 08/06/2007
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Method and system for multi-mode coverage for an autonomous robot | ||
Patent #
US 7,429,843 B2
Filed 06/29/2007
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Coverage robot mobility | ||
Patent #
US 7,441,298 B2
Filed 12/04/2006
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Autonomous floor cleaning robot | ||
Patent #
US 7,448,113 B2
Filed 08/06/2007
|
Current Assignee
iRobot Corporation
|
Original Assignee
IROBERT
|
Debris sensor for cleaning apparatus | ||
Patent #
US 7,459,871 B2
Filed 09/24/2007
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Cleaner Handle and Cleaner Handle Housing Sections | ||
Patent #
US 20080301903A1
Filed 09/16/2005
|
Current Assignee
Cube Investments Limited
|
Original Assignee
Cube Investments Limited
|
Autonomous Floor-Cleaning Robot | ||
Patent #
US 20080307590A1
Filed 08/29/2008
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Integrated central vacuum cleaner suction device and control | ||
Patent #
US 20070079469A1
Filed 10/07/2005
|
Current Assignee
Cube Investments Limited
|
Original Assignee
Cube Investments Limited
|
Central vacuum cleaner cross-controls | ||
Patent #
US 20070079467A1
Filed 10/06/2006
|
Current Assignee
Cube Investments Limited
|
Original Assignee
Cube Investments Limited
|
Cleaning apparatus with removable handle | ||
Patent #
US 20070094839A1
Filed 11/03/2005
|
Current Assignee
The Scott Fetzer Company
|
Original Assignee
The Scott Fetzer Company
|
Travel mug | ||
Patent #
US D544,304 S1
Filed 06/06/2005
|
Current Assignee
Robert Gordon Industries Ltd.
|
Original Assignee
Robert Gordon Industries Ltd.
|
Motor control for a vacuum cleaner | ||
Patent #
US 20070151068A1
Filed 01/05/2006
|
Current Assignee
The Scott Fetzer Company
|
Original Assignee
The Scott Fetzer Company
|
Floor care apparatus with multiple agitator speeds and constant suction power | ||
Patent #
US 7,251,858 B2
Filed 01/23/2004
|
Current Assignee
Panasonic Corporation Of North America
|
Original Assignee
Panasonic Corporation Of North America
|
Coverage robot mobility | ||
Patent #
US 20070234492A1
Filed 12/04/2006
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Autonomous coverage robot navigation system | ||
Patent #
US 20070244610A1
Filed 12/04/2006
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Autonomous Floor Cleaning Robot | ||
Patent #
US 20070266508A1
Filed 08/10/2007
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Autonomous surface cleaning robot for wet and dry cleaning | ||
Patent #
US 20060190134A1
Filed 08/19/2005
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Robot obstacle detection system | ||
Patent #
US 7,155,308 B2
Filed 06/03/2003
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
DEBRIS SENSOR FOR CLEANING APPARATUS | ||
Patent #
US 20050162119A1
Filed 01/28/2004
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Floor care apparatus with multiple agitator speeds and constant suction power | ||
Patent #
US 20050160556A1
Filed 01/23/2004
|
Current Assignee
Panasonic Corporation Of North America
|
Original Assignee
Panasonic Corporation Of North America
|
Debris sensor for cleaning apparatus | ||
Patent #
US 6,956,348 B2
Filed 01/28/2004
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Debris sensor for cleaning apparatus | ||
Patent #
US 20050218852A1
Filed 04/19/2005
|
Current Assignee
iRobot Corporation
|
Original Assignee
David A. Cohen, Gregg W. Landry, Daniel Ozick
|
Obstacle following sensor scheme for a mobile robot | ||
Patent #
US 20050251292A1
Filed 06/24/2005
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Central vacuum cleaning system control subsystems | ||
Patent #
US 20050254185A1
Filed 09/09/2004
|
Current Assignee
Cube Investments Limited
|
Original Assignee
Cube Investments Limited
|
Remote control scheduler and method for autonomous robotic device | ||
Patent #
US 20050287038A1
Filed 06/24/2005
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Autonomous floor-cleaning robot | ||
Patent #
US 20040187249A1
Filed 04/05/2004
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Vacuum devices having integrated cord storage and pivotable tool holders | ||
Patent #
US 6,484,348 B1
Filed 09/29/2000
|
Current Assignee
Techtronic Floor Care Technology Limited
|
Original Assignee
Oreck Holdings LLC
|
Cleaning robot roller processing | ||
Patent #
US 8,087,117 B2
Filed 05/21/2007
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Motor control for a vacuum cleaner | ||
Patent #
US 8,099,825 B2
Filed 09/22/2010
|
Current Assignee
The Scott Fetzer Company
|
Original Assignee
The Scott Fetzer Company
|
Central vacuum cleaner control, unit and system with contaminant sensor | ||
Patent #
US 8,096,014 B2
Filed 03/04/2010
|
Current Assignee
Cube Investments Limited
|
Original Assignee
Cube Investments Limited
|
Compact autonomous coverage robot | ||
Patent #
US 8,239,992 B2
Filed 05/09/2008
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Debris sensor for cleaning apparatus | ||
Patent #
US 8,253,368 B2
Filed 01/14/2010
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Robot confinement | ||
Patent #
US 8,368,339 B2
Filed 08/13/2009
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Robot system | ||
Patent #
US 8,374,721 B2
Filed 12/04/2006
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Debris sensor for cleaning apparatus | ||
Patent #
US 8,378,613 B2
Filed 10/21/2008
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Autonomous coverage robot navigation system | ||
Patent #
US 8,380,350 B2
Filed 12/23/2008
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Autonomous surface cleaning robot for wet cleaning | ||
Patent #
US 8,382,906 B2
Filed 08/07/2007
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Navigational control system for a robotic device | ||
Patent #
US 8,386,081 B2
Filed 07/30/2009
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Autonomous surface cleaning robot for wet and dry cleaning | ||
Patent #
US 8,387,193 B2
Filed 08/07/2007
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Autonomous robot auto-docking and energy management systems and methods | ||
Patent #
US 8,390,251 B2
Filed 08/06/2007
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Autonomous surface cleaning robot for wet cleaning | ||
Patent #
US 8,392,021 B2
Filed 08/19/2005
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Method and system for multi-mode coverage for an autonomous robot | ||
Patent #
US 8,396,592 B2
Filed 02/05/2007
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Obstacle following sensor scheme for a mobile robot | ||
Patent #
US 8,412,377 B2
Filed 06/24/2005
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Detecting robot stasis | ||
Patent #
US 8,417,383 B2
Filed 05/31/2007
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Cleaning robot roller processing | ||
Patent #
US 8,418,303 B2
Filed 11/30/2011
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Autonomous coverage robot sensing | ||
Patent #
US 8,438,695 B2
Filed 12/08/2011
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Debris sensor for cleaning apparatus | ||
Patent #
US 8,456,125 B2
Filed 12/15/2011
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Autonomous robot auto-docking and energy management systems and methods | ||
Patent #
US 8,461,803 B2
Filed 12/29/2006
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Method and system for multi-mode coverage for an autonomous robot | ||
Patent #
US 8,463,438 B2
Filed 10/30/2009
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Autonomous floor-cleaning robot | ||
Patent #
US 8,474,090 B2
Filed 08/29/2008
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Obstacle following sensor scheme for a mobile robot | ||
Patent #
US 8,478,442 B2
Filed 05/23/2008
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Navigational control system for a robotic device | ||
Patent #
US 8,515,578 B2
Filed 12/13/2010
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Autonomous floor-cleaning robot | ||
Patent #
US 8,516,651 B2
Filed 12/17/2010
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Cleaner handle and cleaner handle housing sections | ||
Patent #
US 8,516,653 B2
Filed 09/16/2005
|
Current Assignee
Cube Investments Limited
|
Original Assignee
Cube Investments Limited
|
Coverage robots and associated cleaning bins | ||
Patent #
US 8,528,157 B2
Filed 05/21/2007
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Obstacle following sensor scheme for a mobile robot | ||
Patent #
US 8,565,920 B2
Filed 06/18/2009
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Removing debris from cleaning robots | ||
Patent #
US 8,572,799 B2
Filed 05/21/2007
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Modular robot | ||
Patent #
US 8,584,305 B2
Filed 12/04/2006
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Celestial navigation system for an autonomous robot | ||
Patent #
US 8,594,840 B1
Filed 03/31/2009
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Coverage robot mobility | ||
Patent #
US 8,600,553 B2
Filed 06/05/2007
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Autonomous coverage robot navigation system | ||
Patent #
US 8,606,401 B2
Filed 07/01/2010
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Celestial navigation system for an autonomous robot | ||
Patent #
US 8,634,956 B1
Filed 03/31/2009
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Lawn care robot | ||
Patent #
US 8,634,960 B2
Filed 03/19/2007
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Autonomous floor-cleaning robot | ||
Patent #
US 8,656,550 B2
Filed 06/28/2010
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Robot confinement | ||
Patent #
US 8,659,256 B2
Filed 06/30/2010
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Robot confinement | ||
Patent #
US 8,659,255 B2
Filed 06/30/2010
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Coverage robot mobility | ||
Patent #
US 8,661,605 B2
Filed 09/17/2008
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Autonomous surface cleaning robot for wet and dry cleaning | ||
Patent #
US 8,670,866 B2
Filed 02/21/2006
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Autonomous floor-cleaning robot | ||
Patent #
US 8,671,507 B2
Filed 06/28/2010
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Vacuum cleaning device with air quality monitoring system | ||
Patent #
US 8,683,645 B2
Filed 07/22/2010
|
Current Assignee
Transform Sr Brands LLC
|
Original Assignee
Sears Brands LLC
|
Autonomous coverage robot | ||
Patent #
US 8,726,454 B2
Filed 05/09/2008
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Central vacuum cleaner multiple vacuum source control | ||
Patent #
US 8,732,895 B2
Filed 10/06/2006
|
Current Assignee
Cube Investments Limited
|
Original Assignee
Cube Investments Limited
|
Autonomous surface cleaning robot for dry cleaning | ||
Patent #
US 8,739,355 B2
Filed 08/07/2007
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Debris monitoring | ||
Patent #
US 8,742,926 B2
Filed 12/30/2011
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Autonomous robot auto-docking and energy management systems and methods | ||
Patent #
US 8,749,196 B2
Filed 12/29/2006
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Robot system | ||
Patent #
US 8,761,931 B2
Filed 05/14/2013
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Obstacle following sensor scheme for a mobile robot | ||
Patent #
US 8,761,935 B2
Filed 06/24/2008
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Autonomous floor-cleaning robot | ||
Patent #
US 8,763,199 B2
Filed 06/28/2010
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Autonomous surface cleaning robot for wet and dry cleaning | ||
Patent #
US 8,774,966 B2
Filed 02/08/2011
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Methods and apparatus for position estimation using reflected light sources | ||
Patent #
US 8,780,342 B2
Filed 10/12/2012
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Robot confinement | ||
Patent #
US 8,781,627 B2
Filed 06/19/2009
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Autonomous surface cleaning robot for dry cleaning | ||
Patent #
US 8,782,848 B2
Filed 03/26/2012
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Obstacle following sensor scheme for a mobile robot | ||
Patent #
US 8,788,092 B2
Filed 08/06/2007
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Navigational control system for a robotic device | ||
Patent #
US 8,793,020 B2
Filed 09/13/2012
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Vacuum brush | ||
Patent #
US 8,800,107 B2
Filed 02/16/2011
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Method and system for multi-mode coverage for an autonomous robot | ||
Patent #
US 8,838,274 B2
Filed 06/30/2010
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Compact autonomous coverage robot | ||
Patent #
US 8,839,477 B2
Filed 12/19/2012
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Autonomous robot auto-docking and energy management systems and methods | ||
Patent #
US 8,854,001 B2
Filed 11/08/2011
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Autonomous surface cleaning robot for wet and dry cleaning | ||
Patent #
US 8,855,813 B2
Filed 10/25/2011
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Robot confinement | ||
Patent #
US 8,868,237 B2
Filed 03/19/2007
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Celestial navigation system for an autonomous robot | ||
Patent #
US 8,874,264 B1
Filed 11/18/2011
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Robotic vacuum | ||
Patent #
US 8,881,339 B2
Filed 04/30/2012
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Robotic vacuum cleaning system | ||
Patent #
US 8,910,342 B2
Filed 06/12/2014
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Localization by learning of wave-signal distributions | ||
Patent #
US 8,930,023 B2
Filed 11/05/2010
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Modular robot | ||
Patent #
US 8,950,038 B2
Filed 09/25/2013
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Lawn care robot | ||
Patent #
US 8,954,193 B2
Filed 12/12/2013
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Navigating autonomous coverage robots | ||
Patent #
US 8,954,192 B2
Filed 06/05/2007
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Robotic vacuum cleaning system | ||
Patent #
US 8,955,192 B2
Filed 06/12/2014
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Celestial navigation system for an autonomous vehicle | ||
Patent #
US 8,972,052 B2
Filed 11/03/2009
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Autonomous surface cleaning robot for dry cleaning | ||
Patent #
US 8,966,707 B2
Filed 07/15/2010
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Coverage robot mobility | ||
Patent #
US 8,978,196 B2
Filed 12/20/2012
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Autonomous surface cleaning robot for wet cleaning | ||
Patent #
US 8,985,127 B2
Filed 10/02/2013
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Remote control scheduler and method for autonomous robotic device | ||
Patent #
US 9,008,835 B2
Filed 06/24/2005
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Dust detection system | ||
Patent #
US 9,015,897 B2
Filed 06/28/2011
|
Current Assignee
Aktiebolaget Electrolux
|
Original Assignee
Aktiebolaget Electrolux
|
Autonomous floor-cleaning robot | ||
Patent #
US 9,038,233 B2
Filed 12/14/2012
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Lawn care robot | ||
Patent #
US 9,043,952 B2
Filed 12/12/2013
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Lawn care robot | ||
Patent #
US 9,043,953 B2
Filed 12/12/2013
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Dust indicator for a vacuum cleaner | ||
Patent #
US 9,095,244 B2
Filed 06/28/2011
|
Current Assignee
Aktiebolaget Electrolux
|
Original Assignee
Aktiebolaget Electrolux
|
Method and system for multi-mode coverage for an autonomous robot | ||
Patent #
US 9,104,204 B2
Filed 05/14/2013
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Navigational control system for a robotic device | ||
Patent #
US 9,128,486 B2
Filed 03/06/2007
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Debris sensor for cleaning apparatus | ||
Patent #
US 9,144,361 B2
Filed 05/13/2013
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Autonomous coverage robot navigation system | ||
Patent #
US 9,144,360 B2
Filed 12/04/2006
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Navigating autonomous coverage robots | ||
Patent #
US 9,149,170 B2
Filed 07/05/2007
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Autonomous floor cleaning robot | ||
Patent #
US 9,167,946 B2
Filed 08/06/2007
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Autonomous robot auto-docking and energy management systems and methods | ||
Patent #
US 9,215,957 B2
Filed 09/03/2014
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Robotic vacuum | ||
Patent #
US 9,220,386 B2
Filed 04/30/2012
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Celestial navigation system for an autonomous vehicle | ||
Patent #
US 9,223,749 B2
Filed 12/31/2012
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
DEBRIS SENSOR FOR CLEANING APPARATUS | ||
Patent #
US 20150374188A1
Filed 08/12/2015
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Autonomous mobile robot system | ||
Patent #
US 9,229,454 B1
Filed 10/02/2013
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Debris monitoring | ||
Patent #
US 9,233,471 B2
Filed 04/22/2014
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Detecting robot stasis | ||
Patent #
US 9,317,038 B2
Filed 02/26/2013
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Robotic vacuum cleaning system | ||
Patent #
US 9,320,400 B2
Filed 12/31/2014
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Autonomous coverage robots | ||
Patent #
US 9,320,398 B2
Filed 08/13/2009
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Methods and apparatus for position estimation using reflected light sources | ||
Patent #
US 9,360,300 B2
Filed 06/02/2014
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Robot system | ||
Patent #
US 9,392,920 B2
Filed 05/12/2014
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Robot lawnmower mapping | ||
Patent #
US 9,420,741 B2
Filed 12/15/2014
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Autonomous surface cleaning robot for wet and dry cleaning | ||
Patent #
US 9,445,702 B2
Filed 06/11/2014
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Obstacle following sensor scheme for a mobile robot | ||
Patent #
US 9,446,521 B2
Filed 06/06/2014
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Compact autonomous coverage robot | ||
Patent #
US 9,480,381 B2
Filed 08/11/2014
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Remote control scheduler and method for autonomous robotic device | ||
Patent #
US 9,486,924 B2
Filed 03/27/2015
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Removing debris from cleaning robots | ||
Patent #
US 9,492,048 B2
Filed 12/24/2013
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Autonomous robot localization | ||
Patent #
US 9,510,505 B2
Filed 10/10/2014
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Robotic lawn mowing boundary determination | ||
Patent #
US 9,516,806 B2
Filed 10/10/2014
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Robotic mowing of separated lawn areas | ||
Patent #
US 9,538,702 B2
Filed 12/22/2014
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Autonomous mobile robot | ||
Patent #
US 9,554,508 B2
Filed 03/17/2015
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Robot confinement | ||
Patent #
US 9,582,005 B2
Filed 02/12/2014
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Debris sensor for cleaning apparatus | ||
Patent #
US 9,591,959 B2
Filed 08/12/2015
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Robot system | ||
Patent #
US 9,599,990 B2
Filed 06/15/2016
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Autonomous floor-cleaning robot | ||
Patent #
US 9,622,635 B2
Filed 05/21/2014
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Cyclone dust separator arrangement, cyclone dust separator and cyclone vacuum cleaner | ||
Patent #
US 9,649,000 B2
Filed 11/08/2013
|
Current Assignee
Aktiebolaget Electrolux
|
Original Assignee
Aktiebolaget Electrolux
|
Robotic vacuum cleaning system | ||
Patent #
US 9,675,224 B2
Filed 11/20/2015
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Central vacuum cleaning system control subsytems | ||
Patent #
US 9,693,667 B2
Filed 05/29/2008
|
Current Assignee
Cube Investments Limited
|
Original Assignee
Cube Investments Limited
|
Robot confinement | ||
Patent #
US 9,713,302 B2
Filed 09/18/2014
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Robotic mowing of separated lawn areas | ||
Patent #
US 9,826,678 B2
Filed 12/01/2016
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Debris monitoring | ||
Patent #
US 9,826,872 B2
Filed 12/31/2015
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Robotic lawn mowing boundary determination | ||
Patent #
US 9,854,737 B2
Filed 12/07/2016
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Debris sensor for cleaning apparatus | ||
Patent #
US 9,883,783 B2
Filed 01/30/2017
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Navigational control system for a robotic device | ||
Patent #
US 9,949,608 B2
Filed 05/30/2014
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Removing debris from cleaning robots | ||
Patent #
US 9,955,841 B2
Filed 10/01/2013
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Blade assembly for a grass cutting mobile robot | ||
Patent #
US 10,021,830 B2
Filed 02/02/2016
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Lawn care robot | ||
Patent #
US 10,037,038 B2
Filed 04/28/2015
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Autonomous robot localization | ||
Patent #
US 10,067,232 B2
Filed 12/05/2016
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Compact autonomous coverage robot | ||
Patent #
US 10,070,764 B2
Filed 10/24/2016
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Robotic mowing of separated lawn areas | ||
Patent #
US 10,159,180 B2
Filed 10/26/2017
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Pipe unclogging device and Attachments | ||
Patent #
US 20190010686A1
Filed 07/10/2017
|
Current Assignee
Darrel Hughes, Keith Cummings
|
Original Assignee
Darrel Hughes, Keith Cummings
|
Debris sensor for cleaning apparatus | ||
Patent #
US 10,182,693 B2
Filed 12/26/2017
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Coverage robots and associated cleaning bins | ||
Patent #
US 10,244,915 B2
Filed 05/13/2013
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Debris monitoring | ||
Patent #
US 10,244,913 B2
Filed 10/26/2017
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Robot lawnmower mapping | ||
Patent #
US 10,274,954 B2
Filed 08/05/2016
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Autonomous coverage robot | ||
Patent #
US 10,299,652 B2
Filed 03/19/2014
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Vacuum brush | ||
Patent #
US 10,314,449 B2
Filed 07/08/2014
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Blade assembly for a grass cutting mobile robot | ||
Patent #
US 10,426,083 B2
Filed 06/13/2018
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Robotic vacuum cleaning system | ||
Patent #
US 10,433,696 B2
Filed 05/09/2017
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Ranging and angle of arrival antenna system for a mobile robot | ||
Patent #
US 10,459,063 B2
Filed 02/16/2017
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Autonomous surface cleaning robot for dry cleaning | ||
Patent #
US 10,470,629 B2
Filed 05/30/2014
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Cleaning roller for cleaning robots | ||
Patent #
US 10,512,384 B2
Filed 12/15/2016
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Modular Robot | ||
Patent #
US 10,524,629 B2
Filed 08/18/2014
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Central vacuum cleaning system control subsystems | ||
Patent #
US 10,582,824 B2
Filed 06/13/2017
|
Current Assignee
Cube Investments Limited
|
Original Assignee
Cube Investments Limited
|
Cleaning roller for cleaning robots | ||
Patent #
US 10,595,624 B2
Filed 07/25/2017
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Debris sensor for cleaning apparatus | ||
Patent #
US 10,595,695 B2
Filed 01/18/2019
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Robotic lawn mowing boundary determination | ||
Patent #
US 10,750,667 B2
Filed 12/21/2017
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Debris monitoring | ||
Patent #
US 10,758,104 B2
Filed 03/29/2019
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Robotic mowing of separated lawn areas | ||
Patent #
US 10,874,045 B2
Filed 11/09/2018
|
Current Assignee
iRobot Corporation
|
Original Assignee
iRobot Corporation
|
Electric vacuum cleaner with suction power responsive to nozzle conditions | ||
Patent #
US 5,276,939 A
Filed 02/12/1992
|
Current Assignee
Sanyo Electric Company Limited
|
Original Assignee
Sanyo Electric Company Limited
|
Vacuum cleaner comprising a suction tube and suction tube provided with a remote-control circuit comprising a capacitive sensor | ||
Patent #
US 5,353,468 A
Filed 10/13/1992
|
Current Assignee
US Philips Corporation
|
Original Assignee
US Philips Corporation
|
Vacuum cleaner and suction tube for use with a vacuum cleaner | ||
Patent #
US 5,363,534 A
Filed 05/25/1993
|
Current Assignee
Techtronic Floor Care Technology Limited
|
Original Assignee
US Philips Corporation
|
Vacuum cleaner | ||
Patent #
US 5,182,833 A
Filed 05/03/1990
|
Current Assignee
Matsushita Electric Industrial Company Limited
|
Original Assignee
Matsushita Electric Industrial Company Limited
|
Method and apparatus for operating vacuum cleaner | ||
Patent #
US RE34,286 E
Filed 09/11/1991
|
Current Assignee
Hitachi America Limited
|
Original Assignee
Hitachi America Limited
|
Vacuum cleaner | ||
Patent #
US 5,216,778 A
Filed 03/06/1992
|
Current Assignee
Hitachi America Limited
|
Original Assignee
Hitachi America Limited
|
Fuzzy control apparatus generating a plurality of membership functions for determining a drive condition of an electric vacuum cleaner | ||
Patent #
US 5,216,777 A
Filed 11/22/1991
|
Current Assignee
Matsushita Electric Industrial Company Limited
|
Original Assignee
Matsushita Electric Industrial Company Limited
|
Vacuum cleaner with fuzzy control | ||
Patent #
US 5,233,682 A
Filed 04/09/1991
|
Current Assignee
Matsushita Electric Industrial Company Limited 1006 OAZA Kadoma-Shi Osaka Japan
|
Original Assignee
Matsushita Electric Industrial Company Limited
|
Vacuum cleaner with fuzzy logic control | ||
Patent #
US 5,243,732 A
Filed 10/07/1991
|
Current Assignee
Hitachi Ltd.
|
Original Assignee
Hitachi America Limited
|
Vacuum cleaner with fuzzy logic | ||
Patent #
US 5,251,358 A
Filed 11/22/1991
|
Current Assignee
Matsushita Electric Industrial Company Limited
|
Original Assignee
Matsushita Electric Industrial Company Limited
|
Electric vacuum cleaner having an electric blower driven in accordance with the conditions of floor surfaces | ||
Patent #
US 5,255,409 A
Filed 07/17/1991
|
Current Assignee
Sanyo Electric Company Limited
|
Original Assignee
Sanyo Electric Company Limited
|
Automatic control device for the cleaning power of a vacuum cleaner | ||
Patent #
US 5,265,305 A
Filed 12/18/1989
|
Current Assignee
Interlava Ag
|
Original Assignee
INTERLAVA AG
|
Motor speed signal transmitter for a vacuum cleaner | ||
Patent #
US 5,081,738 A
Filed 10/11/1990
|
Current Assignee
Aktiebolaget Electrolux
|
Original Assignee
Aktiebolaget Electrolux
|
Vacuum cleaner with function to adjust sensitivity of dust sensor | ||
Patent #
US 5,105,502 A
Filed 06/11/1991
|
Current Assignee
Matsushita Electric Industrial Company Limited
|
Original Assignee
Matsushita Electric Industrial Company Limited
|
Vacuum suction machine with high efficiency filter and operating interlock | ||
Patent #
US 5,102,435 A
Filed 03/11/1991
|
Current Assignee
Minuteman International Inc.
|
Original Assignee
Minuteman International Inc.
|
Handle assembly for a vacuum system cleaning tool | ||
Patent #
US 5,109,568 A
Filed 06/15/1990
|
Current Assignee
Rexair Inc.
|
Original Assignee
Rexair Inc.
|
Vacuum cleaner with device for adjusting sensitivity of dust sensor | ||
Patent #
US 5,136,750 A
Filed 06/28/1991
|
Current Assignee
Matsushita Electric Industrial Company Limited
|
Original Assignee
Matsushita Electric Industrial Company Limited
|
Vacuum cleaner and method of determining type of floor surface being cleaned thereby | ||
Patent #
US 5,144,715 A
Filed 08/14/1990
|
Current Assignee
Matsushita Electric Industrial Company Limited
|
Original Assignee
Matsushita Electric Industrial Company Limited
|
Vacuum cleaner | ||
Patent #
US 5,144,714 A
Filed 02/19/1991
|
Current Assignee
Matsushita Electric Industrial Company Limited
|
Original Assignee
Matsushita Electric Industrial Company Limited
|
Vacuum cleaner and method for operating the same | ||
Patent #
US 5,155,885 A
Filed 10/03/1989
|
Current Assignee
Hitachi America Limited
|
Original Assignee
Hitachi America Limited
|
Upright vacuum cleaner | ||
Patent #
US 5,152,028 A
Filed 12/07/1990
|
Current Assignee
Matsushita Electric Industrial Company Limited
|
Original Assignee
Matsushita Electric Industrial Company Limited
|
Motor control apparatus for an electric vacuum cleaner | ||
Patent #
US 5,166,585 A
Filed 10/04/1991
|
Current Assignee
Hitachi America Limited
|
Original Assignee
Hitachi America Limited
|
Dust detector for vacuum cleaner | ||
Patent #
US 5,163,202 A
Filed 08/14/1991
|
Current Assignee
Matsushita Electric Industrial Company Limited
|
Original Assignee
Matsushita Electric Industrial Company Limited
|
Method and apparatus for operating vacuum cleaner | ||
Patent #
US 4,983,895 A
Filed 06/13/1989
|
Current Assignee
Hitachi America Limited
|
Original Assignee
Hitachi America Limited
|
Canister vacuum cleaner and method of manufacture | ||
Patent #
US 4,987,637 A
Filed 10/20/1986
|
Current Assignee
Panasonic Corporation Of North America
|
Original Assignee
Whirlpool Corporation
|
Safety interlock device for a vacuum cleaner | ||
Patent #
US 4,980,945 A
Filed 11/27/1989
|
Current Assignee
Panasonic Corporation Of North America
|
Original Assignee
Whirlpool Corporation
|
Electrical safety interlock and pulse-type reset circuit for a vacuum cleaner system | ||
Patent #
US 4,993,104 A
Filed 08/11/1989
|
Current Assignee
Rexair Inc.
|
Original Assignee
Rexair Inc.
|
Vacuum cleaner | ||
Patent #
US 5,023,973 A
Filed 12/18/1989
|
Current Assignee
Sanyo Electric Company Limited
|
Original Assignee
Sanyo Electric Company Limited
|
Control and/or indication device for the operation of vacuum cleaners | ||
Patent #
US 5,033,151 A
Filed 11/15/1989
|
Current Assignee
INTERLAVA AG
|
Original Assignee
INTERLAVA AG
|
Vacuum cleaner switch | ||
Patent #
US 5,047,597 A
Filed 01/17/1990
|
Current Assignee
The Scott Fetzer Company
|
Original Assignee
The Scott Fetzer Company
|
Method and apparatus for operating vacuum cleaner | ||
Patent #
US 5,075,607 A
Filed 10/04/1990
|
Current Assignee
Hitachi America Limited
|
Original Assignee
Hitachi America Limited
|
Electric cleaner | ||
Patent #
US 4,920,605 A
Filed 10/17/1988
|
Current Assignee
Matsushita Electric Industrial Company Limited
|
Original Assignee
Matsushita Electric Industrial Company Limited
|
Mounting device for sensors and pick-ups | ||
Patent #
US 4,937,912 A
Filed 01/30/1989
|
Current Assignee
INTERLAVA AG
|
Original Assignee
INTERLAVA AG
|
Automatic electric vacuum cleaner with temporary manual override | ||
Patent #
US 4,942,640 A
Filed 12/01/1988
|
Current Assignee
Matsushita Electric Industrial Company Limited
|
Original Assignee
Matsushita Electric Industrial Company Limited
|
Suction cleaner | ||
Patent #
US 4,940,474 A
Filed 05/11/1989
|
Current Assignee
Aktiebolaget Electrolux
|
Original Assignee
Aktiebolaget Electrolux
|
Optical part including integral combination of optical fiber and light emitting or receiving element and method of manufacturing the same | ||
Patent #
US 4,946,242 A
Filed 08/22/1988
|
Current Assignee
Hitachi America Limited, Hitachi Cable Limited
|
Original Assignee
Hitachi America Limited, Hitachi Cable Limited
|
Canister vacuum cleaner with automatic operation control | ||
Patent #
US 4,953,253 A
Filed 06/29/1989
|
Current Assignee
Toshiba Corporation
|
Original Assignee
Toshiba Corporation
|
Method and apparatus for operating vacuum cleaner | ||
Patent #
US 4,958,406 A
Filed 12/14/1988
|
Current Assignee
Hitachi America Limited
|
Original Assignee
Hitachi America Limited
|
Floor detector for vacuum cleaners | ||
Patent #
US 4,977,639 A
Filed 08/14/1989
|
Current Assignee
Mitsubishi Electric Home Appliance Co. Ltd., Mitsubishi Electric Corporation
|
Original Assignee
Mitsubishi Electric Home Appliance Co. Ltd., Mitsubishi Electric Corporation
|
Vacuum cleaner with shielded electronic control module | ||
Patent #
US 4,817,234 A
Filed 07/25/1988
|
Current Assignee
MATSUSHITA FLOOR CARE COMPANY
|
Original Assignee
Whirlpool Corporation
|
Method and apparatus for operating vacuum cleaner | ||
Patent #
US 4,880,474 A
Filed 10/08/1987
|
Current Assignee
Hitachi America Limited
|
Original Assignee
Hitachi America Limited
|
Vacuum cleaner with performance monitoring system | ||
Patent #
US 4,733,431 A
Filed 12/09/1986
|
Current Assignee
MATSUSHITA APPLIANCE CORPORATION
|
Original Assignee
Whirlpool Corporation
|
Vacuum cleaner with operating condition indicator system | ||
Patent #
US 4,733,430 A
Filed 12/09/1986
|
Current Assignee
Panasonic Corporation Of North America
|
Original Assignee
Whirlpool Corporation
|
Optical indication and operation monitoring unit for vacuum cleaners | ||
Patent #
US 4,767,213 A
Filed 02/02/1987
|
Current Assignee
INTERLAVA AG.
|
Original Assignee
INTERLAVA AG
|
Optical media monitoring device | ||
Patent #
US 4,785,295 A
Filed 02/20/1987
|
Current Assignee
OKI Electric Industry Company Limited
|
Original Assignee
OKI Electric Industry Company Limited
|
Microcomputer control system for a canister vacuum cleaner | ||
Patent #
US 4,654,924 A
Filed 12/31/1985
|
Current Assignee
Panasonic Corporation Of North America
|
Original Assignee
Whirlpool Corporation
|
Vacuum cleaner | ||
Patent #
US 4,680,827 A
Filed 12/30/1985
|
Current Assignee
INTERLAVA AG
|
Original Assignee
INTERLAVA AG
|
Protective device for dust collecting devices | ||
Patent #
US 4,580,311 A
Filed 10/01/1984
|
Current Assignee
INTERLAVA AG A SWISS CORP.
|
Original Assignee
Gerhard Kurz
|
Vacuum cleaner | ||
Patent #
US 4,601,082 A
Filed 09/28/1984
|
Current Assignee
INTERLAVA AG A SWISS CORP.
|
Original Assignee
Gerhard Kurz
|
Vacuum cleaner | ||
Patent #
US 4,611,365 A
Filed 10/10/1984
|
Current Assignee
Matsushita Electric Industrial Company Limited
|
Original Assignee
Matsushita Electric Industrial Company Limited
|
Device for automatically controlling the suction power of a vacuum cleaner | ||
Patent #
US 4,514,874 A
Filed 03/09/1983
|
Current Assignee
INTERLAVA AG A SWISS CORP.
|
Original Assignee
Gerhard Kurz
|
Vacuum cleaning tool adapter with electrical control means | ||
Patent #
US 4,473,923 A
Filed 05/10/1982
|
Current Assignee
Dayco Products LLC
|
Original Assignee
Dayco Europe Srl
|
Operating-condition indicator for vacuum cleaners | ||
Patent #
US 4,481,692 A
Filed 04/15/1983
|
Current Assignee
INTERLAVA AG A SWISS CORP.
|
Original Assignee
Gerhard Kurz
|
Vacuum cleaner control | ||
Patent #
US 4,370,690 A
Filed 02/06/1981
|
Current Assignee
Whirlpool Floor Care Corp.
|
Original Assignee
Whirlpool Corporation
|
Electric motor control for vacuum cleaner | ||
Patent #
US 4,370,777 A
Filed 11/28/1980
|
Current Assignee
DUEPRO AG INDUSTRIESTRASSE CH-8590 ROMANSHORN SWITZERLAND
|
Original Assignee
Duepro AG
|
Vacuum cleaner for household and industrial application | ||
Patent #
US 4,370,776 A
Filed 08/07/1981
|
Current Assignee
PROGRESS-ELEKTROGERATE MAUZ PFEIFFER GMBH CO. GRIEGSTRASSE 25 7000 STUTTGART 1
|
Original Assignee
PROGRESS-ELEKTROGERATE MAUZ PFEIFFER GMBH CO.
|
Vacuum cleaner with constant air flow | ||
Patent #
US 4,399,585 A
Filed 09/07/1981
|
Current Assignee
PROGRESS-ELEKTROGERATE MAUZ GMBH CO. GRIEGSTRASSE 25 7000 STUTTGART 1
|
Original Assignee
PROGRESS-ELEKTROGERATE MAUZ PFEIFFER GMBH CO.
|
Full bag indicator | ||
Patent #
US 4,416,033 A
Filed 10/08/1981
|
Current Assignee
Maytag Corporation
|
Original Assignee
Hoover Company
|
Remote control for a vacuum cleaner motor | ||
Patent #
US 4,419,783 A
Filed 05/13/1982
|
Current Assignee
Aktiebolaget Electrolux
|
Original Assignee
Aktiebolaget Electrolux
|
Fill-up indication arrangement for a vacuum cleaner | ||
Patent #
US 4,419,782 A
Filed 10/22/1981
|
Current Assignee
Vorwerk Company Interholding Gesellschaft Mit BeschrNkter Haftung
|
Original Assignee
Vorwerk Company Interholding Gesellschaft Mit BeschrNkter Haftung
|
Vacuum cleaner with filling-condition indicator | ||
Patent #
US 4,330,900 A
Filed 06/06/1980
|
Current Assignee
Vorwerk Company Interholding Gesellschaft Mit BeschrNkter Haftung
|
Original Assignee
Vorwerk Company Interholding Gesellschaft Mit BeschrNkter Haftung
|
Vacuum cleaner control | ||
Patent #
US 4,357,729 A
Filed 01/26/1981
|
Current Assignee
Panasonic Corporation Of North America
|
Original Assignee
Whirlpool Corporation
|
Vacuum cleaner dust bag and motor disconnect device | ||
Patent #
US 4,184,225 A
Filed 07/14/1978
|
Current Assignee
Aktiebolaget Electrolux
|
Original Assignee
Aktiebolaget Electrolux
|
Indicating device for vacuum cleaners | ||
Patent #
US 4,193,292 A
Filed 01/05/1979
|
Current Assignee
Aktiebolaget Electrolux
|
Original Assignee
Aktiebolaget Electrolux
|
Indicating device for vacuum cleaners | ||
Patent #
US 4,199,838 A
Filed 09/11/1978
|
Current Assignee
Aktiebolaget Electrolux
|
Original Assignee
Aktiebolaget Electrolux
|
Device indicating a state due to the pressure modification | ||
Patent #
US 4,233,597 A
Filed 03/20/1978
|
Current Assignee
INTERLAVA AG A SWISS CORP.
|
Original Assignee
Gerhard Kurz
|
Combination dust container for vacuum cleaner and signalling device | ||
Patent #
US 4,070,170 A
Filed 08/18/1976
|
Current Assignee
Aktiebolaget Electrolux
|
Original Assignee
Aktiebolaget Electrolux
|
Vacuum cleaner dust container filling indicator device | ||
Patent #
US 4,100,878 A
Filed 12/02/1976
|
Current Assignee
Aktiebolaget Electrolux
|
Original Assignee
Aktiebolaget Electrolux
|
Vacuum cleaner condition indicator and safety device | ||
Patent #
US 4,124,916 A
Filed 08/04/1977
|
Current Assignee
Bissell Inc.
|
Original Assignee
Singer PLC
|
Vacuum cleaner device | ||
Patent #
US 4,001,912 A
Filed 01/16/1976
|
Current Assignee
Aktiebolaget Electrolux
|
Original Assignee
Aktiebolaget Electrolux
|
Constant performance vacuum cleaner | ||
Patent #
US 4,021,879 A
Filed 11/28/1975
|
Current Assignee
Consolidated Foods Limited
|
Original Assignee
Consolidated Foods Limited
|
Vacuum cleaner filter bag condition indicator | ||
Patent #
US 4,020,525 A
Filed 08/13/1975
|
Current Assignee
Ryobi Motor Products Incorporated
|
Original Assignee
Singer PLC
|
Fill indicator for a vacuum cleaner dust collector | ||
Patent #
US 4,060,050 A
Filed 08/18/1976
|
Current Assignee
Aktiebolaget Electrolux
|
Original Assignee
Aktiebolaget Electrolux
|
Vacuum cleaner clogged condition indicator | ||
Patent #
US 3,936,904 A
Filed 06/03/1974
|
Current Assignee
MATSUSHITA APPLIANCE CORPORATION
|
Original Assignee
Whirlpool Corporation
|
Remote control for vacuum cleaner motor | ||
Patent #
US RE28,920 E
Filed 03/05/1975
|
Current Assignee
Aktiebolaget Electrolux
|
Original Assignee
Aktiebolaget Electrolux
|
Vacuum cleaner full bag indicator | ||
Patent #
US 3,210,793 A
Filed 03/16/1964
|
Current Assignee
Robert S. Waters
|
Original Assignee
Robert S. Waters
|
VACUUM CLEANER SUCTION AND BRUSH CONTROL | ||
Patent #
US 3,588,943 A
Filed 11/12/1968
|
Current Assignee
Thomas E. Hetland
|
Original Assignee
Thomas E. Hetland
|
Vacuum bag indicator | ||
Patent #
US 3,333,564 A
Filed 06/28/1966
|
Current Assignee
Robert S. Waters
|
Original Assignee
Robert S. Waters
|
VACUUM CLEANER HAVING SIGNAL FOR INDICATING ABSENCE OF DUST BAG | ||
Patent #
US 3,745,965 A
Filed 05/31/1972
|
Current Assignee
Aktiebolaget Electrolux
|
Original Assignee
Aktiebolaget Electrolux
|
Visual-audible alarm for a vacuum cleaner | ||
Patent #
US 3,381,652 A
Filed 10/21/1965
|
Current Assignee
National Union Electric Corp.
|
Original Assignee
Elmer E. Bruning, Harold W. Schaefer
|
Control for a vacuum cleaner system | ||
Patent #
US 3,382,524 A
Filed 07/21/1966
|
Current Assignee
Clifford L. Sandstrom
|
Original Assignee
Clifford L. Sandstrom
|
ELECTRIC VACUUM CLEANER | ||
Patent #
US 3,577,869 A
Filed 08/05/1968
|
Current Assignee
Tsugeki Toshii, Hosokawa Tomoyuki, Asanari Shigeyuki
|
Original Assignee
Tsugeki Toshii, Hosokawa Tomoyuki, Asanari Shigeyuki
|
VACUUM CLEANER MOTOR CONTROL | ||
Patent #
US 3,579,706 A
Filed 11/12/1968
|
Current Assignee
Thomas E. Hetland
|
Original Assignee
Thomas E. Hetland
|
11 Claims
-
1. A vacuum cleaner comprising:
-
a canister having portions that define an intake port and a blow port; a suction motor within the canister for drawing air into the canister through the intake port and exhausting the air through the blow port; a hose containing wires and being connected to one of;
(a) the intake port for directing the air into the intake port, and (b) the blow port for directing the air exhausted from the blow port;a handle separate from the canister and connected to the hose; and a control unit disposed within the handle, the control unit being electrically connected to one of; (a) the intake port, and (b) the blow port via the wires in the hose, and the control unit having circuitry for detecting to which of said ports said hose is connected to. - View Dependent Claims (2, 3, 4, 5, 6, 7, 8, 9, 10, 11)
-
1 Specification
This is a division of application Ser. No. 08/241,578, filed May 12, 1994 entitled ELECTRONIC VACUUM CLEANER CONTROL SYSTEM.
This invention relates to vacuum cleaners, and more particularly to electronic control systems for vacuum cleaners.
Vacuum cleaners are typically provided with simple controls that allow the user to turn on and off the unit and perhaps to select the power to be applied to the suction motor to vary the level of suction. With the advent of lower costs for various electronic components, it has become feasible to provide additional features to the user using more sophisticated electronic control systems. In some instances, it has become possible to provide vacuum cleaners with microcontrollers to direct the operation of the unit. However, the functions that have been added have not always been those desired by the user. In other cases the added functionality provided by the addition of electronic controls has made vacuum cleaner control systems needlessly complex and overly expensive. For example, in canister vacuum cleaners two microcontrollers have sometimes been used to control the operation of the vacuum cleaner, one located in the canister and another in the handle that is connected to the vacuum cleaner hose and that contains the user controls. Other canister vacuum cleaners have supported various automatic modes of operation, but have either required that any optical dust sensor be located in the canister, which is cumbersome if the microcontroller used to control the operation of the vacuum cleaner is located in the handle, or have employed needlessly complex processing routines to determine the appropriate power setting of the suction motor. Still other vacuum cleaners have not allowed a user to easily select between a variety of bag change modes. While some previously known canister vacuum cleaners have had blow ports to which the vacuum cleaner hose could be attached, in has not been possible to control the operation of these vacuum cleaners using circuitry in a handle connected to the hose.
It would therefore be desirable to be able to provide a canister vacuum cleaner in which a microcontroller-based control unit contained in the handle of the vacuum cleaner is connected to the canister by a wired hose, which supports two-way communications between the control unit and the suction motor and various sensors contained in the canister, thereby allowing a single microcontroller to be used, simplifying the construction of the unit.
It would further be desirable to be able to provide a vacuum cleaner that can be placed in one of two user-selectable bag change modes: a maximum suction bag change mode, in which the vacuum cleaner shuts off when the pressure drop across the vacuum cleaner bag exceeds a predetermined threshold and a maximum fill bag change mode, in which the vacuum cleaner shuts off only after the pressure drop exceeds a higher threshold.
It also would be desirable to be able to provide a vacuum cleaner that has an optical dust sensor located in the handle of the vacuum cleaner, so that the vacuum cleaner can be placed in an automatic mode in which the power setting of the suction motor is adjusted based on the frequency with which dust particles are drawn past the sensor.
It also would be desirable to be able to provide a vacuum cleaner that has an optical dust sensor that is constructed from a light source and a photodetector, each of which is mounted in a lens unit having an integrally formed lens.
It also would be desirable to be able to provide a vacuum cleaner that has a blow port to which a vacuum cleaner hose can be attached and a control unit contained within a handle connected to the hose that contains circuitry for detecting when the hose is connected to the blow port.
In view of the foregoing, it is an object of this invention to provide an improved canister vacuum cleaner in which a microcontroller-based control unit contained in the handle of the vacuum cleaner is connected to the canister by a wired hose, which supports two-way communications between the control unit and the suction motor and various sensors contained in the canister, thereby allowing a single microcontroller to be used, simplifying the construction of the unit.
It is a further object of the invention to provide a vacuum cleaner that can be placed in one of two user-selectable bag change modes: a maximum suction bag change mode, in which the vacuum cleaner shuts off when the pressure drop across the vacuum cleaner bag exceeds a predetermined threshold and a maximum fill bag change mode, in which the vacuum cleaner shuts off only after the pressure drop exceeds a higher threshold.
It also is an object of the invention to provide a vacuum cleaner that has an optical dust sensor located in the handle of the vacuum cleaner, so that the vacuum cleaner can be placed in an automatic mode in which the power setting of the suction motor is adjusted based on the frequency with which dust particles are drawn past the sensor.
It is also an object of the invention to provide a vacuum cleaner that has an optical dust sensor that is constructed from a light source and a photodetector, each of which is mounted in a lens unit having an integrally formed lens.
It is also an object of the invention to provide a vacuum cleaner that has a blow port to which a vacuum cleaner hose can be attached and a control unit contained within a handle connected to the hose that contains circuitry for detecting when the hose is connected to the blow port.
In accordance with the present invention an improved electronic vacuum cleaner control system is provided for controlling the operation of a canister vacuum cleaner. The control system includes a control unit contained in the handle of the vacuum cleaner that is connected to a canister by a flexible hose. The hose contains a number of wires which support two-way communications between the control unit and the canister. The wires in the hose allow the canister to supply power to the control unit and also allow the control unit to receive signals from various sensors contained within the canister. The wires in the hose also allow the control unit to control the power that is applied to the vacuum cleaner suction motor by transmitting various control signals to the suction motor.
The vacuum cleaner of the present invention also allows the user to select between two user-selectable bag change modes--a maximum suction bag change mode and a maximum fill bag change mode. In the maximum suction bag change mode the vacuum cleaner shuts off when the pressure drop across the vacuum cleaner bag exceeds a predetermined threshold, which indicates that the bag has filled somewhat and the suction power of the vacuum cleaner has been degraded as a result. In the maximum fill bag change mode, the vacuum cleaner does not shut off until the pressure drop across the bag exceeds a higher threshold, indicating that the bag has filled to its maximum extent and that suction power has been substantially degraded.
Further, the vacuum cleaner has an optical dust sensor located in the handle of the vacuum cleaner, which allows the vacuum cleaner to operate in an automatic mode, in which the power setting of the suction motor is controlled by the vacuum cleaner based on the readings of the dust sensor. Specifically, the dust sensor and the vacuum cleaner control unit monitor the frequency with which dust particles are drawn past the sensor and adjust the power setting of the suction motor accordingly. The dust sensor is constructed from a light source and a photodetector, each of which is mounted in a lens unit having an integrally formed lens.
The vacuum cleaner also has a blow port to which a vacuum cleaner hose can be attached. The vacuum cleaner control unit contains circuitry for detecting when the hose is connected to the blow port. The control unit also contains switches that may be actuated by the user to select the power setting of the vacuum cleaner suction motor when the vacuum cleaner is operating in the blow port mode.
The above and other advantages of the invention will be apparent upon consideration of the following detailed description, taken in conjunction with the accompanying drawings, in which like reference numerals refer to like parts throughout, and in which:
FIG. 1 is a perspective view of an illustrative embodiment of a canister vacuum cleaner using the electronic control system of the present invention;
FIG. 2 is a top view of a portion of the handle of the vacuum cleaner of FIG. 1, showing the vacuum cleaner control panel;
FIG. 3 is a schematic diagram of an illustrative embodiment of the electronic control system of the present invention;
FIG. 4 is a logic circuit diagram of an illustrative embodiment of the electronic control system of the present invention;
FIG. 5 is an exploded perspective view of a portion of the handle of the vacuum cleaner of FIG. 1;
FIG. 6 is a perspective view of an illustrative optical device and a lens unit;
FIG. 7 is a further perspective view of the illustrative optical device and lens unit shown in FIG. 6;
FIG. 8 is a cross-sectional side view of the optical device and lens unit of FIGS. 6 and 7, shown with the optical device mounted inside the lens unit;
FIG. 9 is a cross-sectional view of a portion of the handle of the vacuum cleaner of FIG. 1 showing the optical path of light emitted from the light-emitting diode;
FIG. 10 is a circuit diagram of an illustrative embodiment of a portion of the electronic control system used to process signals from the dust sensor;
FIG. 11 is an illustrative flow chart showing the logical flow of the routines executed by the control unit of the electronic control system of the present invention;
FIG. 12 is a circuit diagram of an illustrative embodiment of a portion of the circuitry used to encode sensor data;
FIG. 13 is a circuit diagram of an illustrative embodiment of a portion of the circuitry used to decode sensor data that is encoded by the circuitry shown in FIG. 12; and
FIG. 14 is a circuit diagram showing the use of an illustrative microcontroller.
In accordance with the present invention, vacuum cleaner 20, shown in FIG. 1, is provided with an electronic control system for controlling the operation of the vacuum cleaner 20. Vacuum cleaner 20 is preferably a canister vacuum cleaner having a nozzle 22 with a powered rotary brush, as well as other cleaning attachments (not shown). In operation, dust-laden air is drawn into canister 24 and collected in bag 25 after passing through nozzle 22 (or other attachment), wand 26, handle 28, and hose 30. The handle 28 has an electronic control panel 32 that allows the user to select various vacuum cleaner functions.
Electronic control panel 32 is shown in more detail in FIG. 2. The user can turn on the vacuum cleaner 20 by pressing either ON (CARPET) switch 34 or the ON (FLOOR) switch 36. If ON (CARPET) switch 34 is pressed, the suction motor of vacuum cleaner 20 is turned on and the power brush in nozzle 22 is turned on, so that a carpet may be cleaned effectively. If 0N (FLOOR) switch 36 is pressed, the suction motor of vacuum cleaner 20 is turned on, but the power brush in nozzle 22 remains off, so that a bare floor can be cleaned. ON (FLOOR) switch 36 is also preferably used when other attachments are used in place of nozzle 22, to avoid energizing the conductors in wand 26 unnecessarily. Indicator light 38 is lit when 0N (CARPET) switch 34 is depressed and indicator light 40 is lit when ON (FLOOR) switch 36 is depressed. After the carpet or floor has been cleaned, vacuum cleaner 20 may be turned off using OFF switch 42. If vacuum cleaner 20 is plugged into an active power outlet, indicator light 44 is lit to show that the vacuum cleaner is ready to be turned on, even though presently off.
The user may manually select the desired vacuum cleaner power setting by depressing HIGH switch 46 for high power, MED switch 48 for medium power, or LOW switch 50 for low power. Indicator lights 52, 54, and 56 are used to indicate which power setting has been selected. The default power setting is high power. The electronic control system of vacuum cleaner 20 also supports an automatic mode in which the control system automatically adjusts the power setting. The automatic mode may be invoked by pressing AUTO switch 58. When vacuum cleaner 20 is in the automatic mode, indicator light 60 is lit.
Another user-selectable feature is the bag-change mode. If the user presses MAX SUCTION switch 62, the electronic control system of vacuum cleaner 20 will shut off vacuum cleaner 20 when the vacuum cleaner suction power has been discernibly degraded. If MAX FILL switch 64 is pressed, the electronic control system of vacuum cleaner 20 will shut off vacuum cleaner 20 only after the bag has filled to the maximum extent allowable. Indicator lights 66 and 68 light to indicate whether the maximum suction or the maximum fill mode has been selected.
A schematic block diagram of electronic control system 70 is shown in FIG. 3. A central component of electronic control system 70 is control unit 72, which is mounted in handle 28. In addition to a microprocessor or microcontroller for executing control routines, control unit 72 contains the circuitry necessary to provide an interface with the user, including the switches and indicators and accompanying circuitry of electronic control panel 32. Control unit 72 also contains circuitry for controlling the power to nozzle 22 and the vacuum cleaner suction motor in motor assembly 74. Additional circuitry within control unit 72 is used to receive signals from various sensors in door assembly 76. Both motor assembly 74, which contains the vacuum cleaner suction motor, and door assembly 76, are contained within vacuum cleaner canister 24.
The various mechanical and electrical components of electrical control system 70 are shown in more detail in FIG. 4. As shown in FIG. 4, control unit 72 contains microcontroller 78, power supply 80, control switch and indicator circuitry 82, decoder circuit 84, power nozzle control circuit 86, and dust detection circuit 88. Attached to the dust detection circuit 88 is dust sensor 90. Control unit 72 further includes suction motor drive circuit 156. Motor assembly 74 contains suction motor 92 and triac module 94. Door assembly 76 contains door switch module 98 and door switch 100. Power nozzle 22 contains nozzle motor 102 for driving the nozzle brush (not shown).
Control unit 72 is connected to motor assembly 74 and door assembly 76 by wires 106, which are contained within hose 30 (FIG. 1). Line wire 108 and neutral wire 110 are used to carry power from the AC input throughout the electronic control system 70. Code wires 112 and 114 and neutral wire 110 support two-way communications between control unit 72 and the motor and door assemblies 74 and 76. Code wire 112 (with neutral wire 110) carries control signals from control unit 72 to motor assembly 74. Code wire 114 (with neutral wire 110) is used to carry encoded signals from the encoding circuitry of door assembly 76 to control unit 72 when the hose 30 is connected to intake port 162 (FIG. 1). In this configuration, code wire 114 is connected to door assembly 76 via terminal 164. As will be described in more detail below, when hose 30 is connected to blow port 166 (FIG. 1), code wire 114 is connected to door assembly 76 via terminal 168.
Microcontroller 78 has on-board memory that contains routines that allow microcontroller 78 to control the power that is applied to nozzle motor 102 and suction motor 92 in response to input signals received from the switches on electronic control panel 32 and various sensors. Microcontroller 78 monitors the state of the switches in the switch and indicator circuitry 82 to determine which mode of operation has been selected by the user. For example, when 0N (CARPET) switch 38 has been pressed, microcontroller 78 applies power to nozzle motor 102 and suction motor 92. Microcontroller 78 receives encoded signals from door assembly 76, which indicate whether the bag should be changed or whether the door is open. In the automatic mode of operation, microcontroller 78 determines the appropriate power setting for suction motor 92 based on the frequency with which dust particles are detected to be flowing through handle 28.
Vacuum cleaner 20 preferably operates at discrete power settings: low (75 VRMS), medium (90 VRMS), medium-high (105 VRMS --not available manually), or high (120 VRMS). When the high power setting is selected, the medium power preferably will initially be applied followed by a smooth increase over a period of approximately 0.5 s to the high setting, thereby avoiding a current surge. When operating automatically, microcontroller 78 preferably adjusts the vacuum cleaner power setting, initially setting the vacuum cleaner power to "low". When the number of dust particles being drawn into the vacuum cleaner per unit time is more than a predetermined amount, the vacuum cleaner power preferably is raised to the next highest setting after a predetermined delay. When there is a predetermined decrease in the number of dust particles being drawn into the vacuum cleaner per unit time, the next lowest setting preferably is selected after a predetermined delay.
In order to measure the dust flow, vacuum cleaner 20 preferably uses optical dust sensor 90 to generate a signal proportional to the number of dust particles that are drawn into vacuum cleaner 20 per unit time. As shown in FIG. 5, dust sensor 90 preferably has a light source--light-emitting diode 116--and a photodetector--phototransistor 118, which are preferably mounted on opposite sides of an air passageway 120, which extends through handle 28. Preferably, light-emitting diode 116 is an inexpensive emitter, such as Part No. IRL 80A, available from Siemens Components Corporation of Cupertino, California. Phototransistor 118 is preferably an inexpensive high-sensitivity phototransistor, such as Part No. LPT-80A, also available from Siemens Components Corporation.
Inner surface 71 of handle 28 defines the air passageway 120. Preferably, there is sufficient space in handle 28 between inner surface 71 and outer surface 73, to allow the light-emitting diode 116 and the phototransistor 118 to fit between the inner surface 71 and the outer surface 73, without having to form unsightly protrusions on the outer surface 73 to accommodate the light-emitting diode 116 and the phototransistor 118.
Light-emitting diode 116 is preferably mounted in a lens unit 122. Phototransistor 118 may preferably be mounted in an identical lens unit 123. Lens units 122 and 123 are preferably a one-piece components that are not only used to hold the light-emitting diode 116 and phototransistor 118, but also contain integrally formed lenses for focusing the light.
Lens unit 122 is used to focus the light emitted from light-emitting diode 116 toward phototransistor 118. When the light from the light-emitting diode 116 reaches lens unit 123, it is focused onto the phototransistor 118 by lens unit 123. Using lens unit 122 reduces the diameter of the emitted light beam as it impinges the lens unit 123 from approximately 0.4 inches (1 cm) to approximately (0.08 inches (2 mm). Lens unit 123 further focuses the beam onto phototransistor 118. Preferably, lens units 122 and 123 are formed from an optical-grade polycarbonate, which transmits light at least in a wavelength range of about 800 nm to 1000 nm.
An illustrative lens unit is shown in more detail in FIGS. 6 and 7, which also show optical device 127, which can be either light emitting diode 116 or phototransistor 118. If optical device 127 is a light emitting diode, light is emitted via a hemispherical lens 129 that is part of the packaged optical device 127. If optical device 127 is a phototransistor 118, light is received via the hemispherical lens 129.
As shown in FIG. 6, upper wall 135 has slots 131 that accommodate the leads 133 of optical device 127, when optical device 127 is mounted in lens unit 125. Upper wall 135 and lower wall 137 restrict vertical motion of optical device 127 with respect to lens unit 125. Side walls 139 and 141 restrict lateral horizontal motion. Preferably, the optical device 127 can be mounted in lens unit 125 by snapping the optical device 127 into place. Lens unit 125 has wedge-shaped ridge 143, which biases optical device 127 against ridge 147 after optical device 127 is snapped into place past the ridge 143.
Lens unit 125 preferably has an integrally formed lens 149, which is shown in cross-section in FIG. 8. Lens 149 preferably has a first face that has a radius of curvature of approximately 0.24 inches (0.6 cm) and a second face that has a radius of curvature of approximately 0.115 inches (0.3 cm). As shown in FIG. 8, lens 129 and lens 149 are separated by an air gap. Preferably this gap is approximately 0.018 inches (0.5 mm).
The path of the light emitted from light-emitting diode 116 across passageway 120 is shown in FIG. 9. The diameter of passageway 120 is preferably approximately 1.25 inches (3 cm). Light exits lens 155 of light-emitting diode 116 and passes through lens portion 96 of lens unit 122, which focuses the light toward phototransistor 118. When the light reaches lens unit 123, lens portion 97 of lens unit 123 focuses the light onto the light-sensitive portion of phototransistor 118 via hemispherical lens 157. As shown in FIG. 9, the lens units 122 and 123 are mounted so that the lens portions 96 and 97 of these devices are flush with inner surface 159 of passageway 120.
In automatic mode, light is emitted by light-emitting diode 116 at a constant intensity. As shown in FIG. 10, the intensity of the light emitted by light-emitting diode 116 is controlled by microcontroller 78 (FIG. 4) via control terminal 126. The light emitted by light-emitting diode 116 is received by phototransistor 118, which generates corresponding phototransistor output signals. When a dust particle passes between light-emitting diode 116 and phototransistor 118, the intensity of the light from light-emitting diode 116 that is received by phototransistor 118 is momentarily reduced, causing the phototransistor output signal to drop.
Preferably, the dust detection circuit 88 (FIG. 4) contains a two-stage analog amplifier 124, as shown in FIG. 10. Two-stage analog amplifier 124 processes the phototransistor output signals, so that microcontroller 78 (FIG. 4) can recognize the flow rate of the particles being drawn through passageway 120. The phototransistor output signal from phototransistor 118 preferably is passed to amplifier 128 via capacitor 117, which blocks low-frequency signal transients, such as those occurring more slowly than approximately 1 ms. Because capacitor 117 blocks low-frequency signals, two-state analog amplifier 124 effectively detects the leading edges of the signals produced as dust particles pass between light-emitting diode 116 and phototransistor 118. (In the event that a very large particle is drawn between light-emitting diode 116 and phototransistor 118, both the leading and trailing edges may be detected.) As the leading edge of a particle passes between light-emitting diode 116 and phototransistor 118, the intensity of the light from light-emitting diode 116 that is received by phototransistor 118 is abruptly reduced. This transient signal is passed to amplifier 128 via capacitor 117. (When the trailing edge of a large particle passes light-emitting diode 116 and phototransistor 118, the intensity of the light from light-emitting diode 116 that is received by phototransistor 118 rises abruptly and this transient phototransistor signal is also passed to amplifier 128.)
The transient signals that are received by amplifier 128 are amplified and passed to comparator 132. If the amplified output of phototransistor 118 exceeds the threshold set by resistor 130, comparator 132 will generate a corresponding output pulse, which is strengthened to a level sufficient to be received by microcontroller 78 by output amplifier 134. The processed phototransistor output signal is provided to microcontroller 78 via output terminal 136.
Microcontroller 78 preferably measures the average time period between dust particle edge detections, which generally corresponds to the average time period between detected dust particles. The microcontroller 78 measures this time period as shown in FIG. 11. At step 138, two-stage analog amplifier 124 detects a dust particle and generates an output pulse. Microcontroller 78 measures an initial time, TINITIAL, at step 140 using an internal clock. After detecting another dust particle at step 142, microcontroller 78 increments a counter at step 144 to reflect that a dust particle was detected at step 142. At test 146, microcontroller 78 tests to determine whether the count is equal to a predetermined limit, N, where N is preferably 20 (at step 140, the value of count is zero). If the count is not equal to N, control loops back to step 142, until another dust particle is detected. After repeatedly looping through steps 142 and 144 and test 146, the count will equal N, and microcontroller 78 will measure the final time, TFINAL, at step 148. The average period of time elapsed between the detection of each of the dust particles, τAVG, is calculated by microcontroller 78 at step 150. Microcontroller 78 then adjusts the power setting of vacuum cleaner 20 at step 152, if necessary. Preferably, if τAVG is greater than 9 ms, the low power setting is chosen. If τAVG is between 7 and 9 ms, the medium power setting preferably is chosen. When τAVG is between 5 and 7 ms the medium-high setting preferably is used. For values of τAVG less than 5 ms, the highest power setting preferably is selected. After adjusting the power setting, microcontroller 78 preferably waits at step 154 for a predetermined time, for example, two seconds, before looping back to step 138. The two second delay ensures that microcontroller 78 does not adjust the power setting too frequently.
Microcontroller 78 preferably controls the power delivered to suction motor 92 using a conventional triac module 94, as shown in FIG. 4. Triac module 94 applies power to suction motor 92 from line wire 108 and neutral wire 110 in response to control signals that are generated by suction motor drive circuit 156 under the direction of microcontroller 78. The control signals from suction motor drive circuit 156 are provided to triac module 94 via code wire 112 and neutral wire 110. Microcontroller 78 preferably determines whether or not power is delivered to nozzle motor 102 using a conventional triac circuit contained within power nozzle drive circuit 86.
Door assembly 76 (FIGS. 4 and 12) preferably contains various sensors for measuring parameters that are related to the operation of vacuum cleaner 20, such as whether or not bag 25 is present, the pressure drop across bag 25 (FIG. 1), and the state of door 174 (open or closed). Control unit 72 preferably monitors the outputs of the sensors and controls the power applied to suction motor 92 and nozzle motor 102 in response. If desired, additional sensors can be provided, either in door assembly 76 or elsewhere, to monitor motor temperature, motor speed, airflow rate, etc., and react accordingly.
In order to determine whether the vacuum cleaner bag should be changed, door assembly 76 preferably contains two normally open vacuum pressure switches 158 and 160 that monitor the differential pressure across the bag (i.e. from just before the bag inlet to the exhaust side of the bag). As the bag fills, the bag becomes clogged with dust, causing the magnitude of the pressure drop across the bag to increase. When the pressure drop exceeds a first threshold level--for example, 42 inches of water--vacuum switch 158 closes, which alters the voltage provided to decoder circuit 84 in control unit 72 via code wire 114 and neutral wire 110. By decoding the value of this voltage, microcontroller 78 can determine that the pressure drop has exceeded the first threshold. If the "maximum suction" mode has been selected, microcontroller 78 shuts off the power to suction motor 92 at this point. If, however, the "maximum fill" mode has been selected, the bag is allowed to fill until the pressure drop exceeds a second threshold level--for example, 57 inches of water. When the second threshold is exceeded, vacuum switch 160 closes, which further alters the voltage provided to decoder circuit 84 in control unit 72. In response, microcontroller 78 shuts off power to suction motor 92, because suction power is substantially degraded whenever the pressure drop across the bag is greater than 57 inches of water.
The circuitry of door assembly 76 is shown in more detail in FIG. 12. When hose 30 is connected to intake port 162 (FIG. 1), code wire 114 connects to terminal 164 in intake port 162, whereas when hose 30 is connected to blow port 166 (FIG. 1), code wire 114 is connected to terminal 168 in blow port 166. When hose 30 is connected to intake port 162, the pressure drop across the bag of vacuum cleaner 20 is monitored by vacuum switches 158 and 160. If the pressure drop exceeds 42 inches of water, vacuum switch 158 will close, which changes the resistance between terminal 164 and terminal 170 from 4 kΩ to 3 kΩ. This change is detected by decoder circuit 84, so that if vacuum cleaner 20 is in the maximum suction mode, power to suction motor 92 can be shut off and indicator light 66 can be repeatedly turned on and off (FIG. 4). When the pressure drop across the bag exceeds 57 inches of water, vacuum switch 160 closes, so that the resistance between terminal 164 and terminal 170 drops to 1 kΩ. The decoder circuit 84 detects this change and, if vacuum cleaner 20 is in the maximum fill mode, power is shut off to suction motor 92 and indicator light 68 is repeatedly turned on and off.
In addition to connecting code wire 114 to terminal 168 in blow port 166 when hose 30 is connected to blow port 166, code wire 112, neutral wire 110, and line wire 108 in hose 30 are also connected to motor assembly 74 and door assembly 76 in the same way that these wires are connected when hose 30 is connected to intake port 162. By providing a blow port 166 that allows a full set of electrical connections to be made between wires 106 and motor assembly 74 and door assembly 76, the user can control vacuum cleaner 20 using electronic control panel 32 on handle 28, even when the vacuum cleaner 20 is being used in the blow port mode.
When the hose 30 is connected to blow port 166, the resistance between code wire 114 and neutral wire 110 will be 1 kΩ (the resistance of resistor 172). If a resistance of 1 kΩ is detected before power is applied to suction motor 92, microcontroller 78 will recognize that blow port 166 is in use and will only allow OFF switch 42, LOW switch 50, MED switch 48, and HIGH switch 46 to be operational. When using the blow port 166, it is only necessary to press LOW switch 50, MED switch 48, or HIGH switch 46 to turn on the vacuum cleaner 20. The OFF switch 42 can be used to turn off the vacuum cleaner 20, as usual. The remaining switches, MAX FILL switch 64, MAX SUCTION switch 62, AUTO switch 58, ON (CARPET) switch 34, and ON (FLOOR) switch 36, are disabled. Further, microcontroller 78 directs power nozzle drive circuit 86 to cut off power normally supplied to the nozzle 22, so that the electrical terminals of handle 28 that are used to connect handle 28 to wand 26 and nozzle 22 are not needlessly energized.
Door switch 176 is mounted on door 174 (FIG. 1) so that when door 174 is closed and bag 25 is in place, a flat portion of bag 25 will bias door switch 176 into a closed position. When either door 174 is open or bag 25 is missing, door switch 176 will return to a normally-open position. When microcontroller 78 detects that door switch 176 is open, no power will be applied to suction motor 92 (FIG. 1) to prevent damage to suction motor 92 from foreign objects entering through the area of the door 174. Indicator light 44 will also be repeatedly turned on and off.
The decoder circuit 84, which determines the state of vacuum switches 158 and 160 and door switch 176, is shown in more detail in FIG. 13. Terminal 178 is connected to code wire 114, which is connected to either terminal 164 or 168 (FIG. 12), depending on whether hose 30 is attached to intake port 162 or blow port 166. Comparators 180, 182, and 184 are connected to terminal 178, so that the voltage on terminal 178, which is indicative of the resistance between terminal 170 and either terminal 164 or 168 (FIG. 12), can be monitored. The outputs of comparators 180, 182, and 184 are provided to microcontroller 78 via terminals 186, 188, and 190, respectively.
If door switch 176 (FIG. 12) is open, outputs 186, 188, and 190 are low. Whenever output 186 is low, it will be apparent to microcontroller 78 that door 174 is open, so that the power to vacuum cleaner 20 can be shut off. Output 186 is high when door 174 is closed. Output 188 is high whenever vacuum switch 158 is closed, indicating that the pressure drop across the vacuum cleaner bag is greater than 42 inches of water. Output 190 is high whenever vacuum switch 160 is closed, which occurs when the pressure drop across the bag is greater than 57 inches of water. If microcontroller 78 senses that outputs 188 and 190 are high before power has been applied to suction motor 92, microcontroller 78 will be able to determine that hose 30 is connected to blow port 166 rather than intake port 162.
Microcontroller 78 receives the signals provided at outputs 186, 188, and 190 (FIG. 13) at inputs 192, 194, and 196, respectively (FIG. 14). One of the advantages of the arrangement of electronic control system 70 is that because microcontroller 78 is located in handle 28 (FIG. 1) rather than canister 24 (FIG. 1), few wires are required between handle 28 and canister 24. Specifically, it is only necessary to provide four wires 106 (FIG. 1) to support two-way communications between the motors and sensors in canister 24 and microcontroller 78 in handle 28, whereas if microcontroller 78 were located in canister 24 and the user-selectable switches and the indicator lights remained on handle 28, it would be necessary to run numerous wires between handle 28 and canister 24 to ensure that microcontroller 78 is adequately connected to each of the switches and indicator lights. Alternatively, it would be necessary to provide two microcontrollers, one each in canister 24 and handle 28. Another advantage of the arrangement of the electronic vacuum cleaner control system 70 is that dust sensor 90 is located in the handle, in close proximity to control unit 72. With this arrangement, it is not necessary to provide wires in hose 30 to relay dust sensor data to microcontroller 78, which would cause hose 30 to be needlessly complex and more expensive to manufacture.
Preferably, microcontroller 78 is a 4 bit microcontroller with 1024×8 bits of program memory and 64×4 bits of data memory, such as part No. μPD 7566, available from NEC Corporation of Japan. As shown in FIG. 14, microcontroller 78 monitors the pulses generated by dust detection circuit 88 at pin 198. Pin 200 is used to detect whether the input voltage on line wire 108 is positive or negative with respect to neutral wire 110, which allows microcontroller timing to be derived from the 50 or 60 Hz input voltage. (Operation at 50 or 60 Hz is a factory selectable option). Microcontroller 78 scans the switches 34, 36, 42, 46, 48, 50, 58, 62, and 64 each input voltage cycle using pins 202, 204, and 206, in conjunction with the scan outputs at pins 208, 210, and 212, to determine which switches have been pressed by the user. The states of switches 42, 36, and 34 are read while pin 210 is low and pins 212 and 208 are high. The states of switches 46, 48, and 50 are read while pin 212 is low and pins 210 and 208 are high. The states of switches 58, 64, and 62 are read while pin 208 is low and pins 210 and 212 are high.
The indicator lights preferably are controlled in a similar fashion. When pin 210 is low, transistor 240 is on and the status of indicator lights 44, 40, and 38 is determined by the states of transistors 242, 244, 246, and 248. When pin 212 is low, transistor 250 is on and the status of indicator lights 52, 54, 56, and 60 is determined by the states of transistors 242, 244, 246, and 248. When pin 208 is low, transistor 252 is on and the status of indicator lights 66 and 68 is determined by the states of transistors 242, 244, 246, and 248.
Pin 214 is used to control the power applied to nozzle motor 102 by power nozzle drive circuit 86. Pin 216 is used to direct suction motor drive circuit 156 to generate control signals that cause triac module 94 to apply the desired power to suction motor 92.
The output from clock oscillator 218 is supplied to microcontroller 78 via pins 220 and 222, which allows microcontroller 78 to execute control routines at a clock speed of 500 kHz. Power supply 80 of control unit 72 (FIG. 4), which supplies power to microcontroller 78 via pin 224, is preferably a conventional dual-voltage power supply circuit of the non-isolated type.
Capacitor 226 and resistor 228 form a reset delay circuit. When power is first applied to microcontroller 78, capacitor 226 discharges and microcontroller 78 is reset via pin 230. Pins 232, 234, and 236 of microcontroller 78 control indicator lights 38, 40, 44, 52, 54, 56, 66, and 68.
Whenever vacuum cleaner 20 is plugged into a live outlet, the status of dust sensor 90 is checked by repeatedly turning light-emitting diode 116 (FIG. 5) on and off using terminal 238, which is connected to control terminal 126 (FIG. 5). Microcontroller 78 attempts to detect each resulting pulse at terminal 200. If a pulse is missed indicating that the dust sensor 90 is obstructed by dust, microcontroller 78 will not enable the automatic mode. If the automatic mode is subsequently selected, indicator light 60 will be repeatedly turned on and off and power will be cut off to nozzle motor 102 and suction motor 92. Upon selecting one of the LOW, MED, or HIGH power settings, indicator light 60 will be extinguished. The automatic mode may, however, be selected after vacuum cleaner 20 has been turned off and the dust blocking dust sensor 90 has been cleared.
Thus it is seen that an improved electronic control system for a vacuum cleaner is provided in which a microcontroller-based control unit contained in the handle of the vacuum cleaner is connected to the canister by a wired hose, which supports two-way communications between the control unit and the suction motor and various sensors contained in the canister, thereby allowing a single microcontroller to be used, simplifying the construction of the unit. The vacuum cleaner can be placed in one of two user-selectable bag change modes: a maximum suction bag change mode, in which the vacuum cleaner shuts off when the pressure drop across the vacuum cleaner bag exceeds a predetermined threshold and a maximum fill bag change mode, in which the vacuum cleaner shuts off only after the pressure drop exceeds a higher threshold. The vacuum cleaner also has an optical dust sensor located in the handle of the vacuum cleaner, so that the vacuum cleaner can be placed in an automatic mode in which the power setting of the suction motor is adjusted based on the frequency with which dust particles are drawn past the sensor. The optical dust sensor is constructed from a light source and a photodetector, each of which is mounted in a lens unit having an integrally formed lens. Additionally, the vacuum cleaner has a blow port to which a vacuum cleaner hose can be attached and circuitry for detecting when the hose is connected to the blow port. One skilled in the art will appreciate that the present invention can be practiced by other than the described embodiments, which are presented for the purposes of illustration and not of limitation, and the present invention is limited only by the claims that follow.