Driving control system for vehicle
First Claim
1. A driving control system for a vehicle, comprising:
- a map information output means for outputting a map;
a vehicle position detecting means for detecting a vehicle position of a subject vehicle on the map;
a vehicle speed detecting means for detecting a vehicle speed;
a passable area determining means for determining a turning radius of the vehicle based on the detected vehicle speed and determining a passable area on the map which is safely passable by the vehicle based on the determined turning radius;
a passability/impassability judging means for deciding that the vehicle is safely passable within dimensions of an oncoming portion of road which is in front of the vehicle position in a traveling direction when the road portion is included in the passable area of the map; and
said map information output means, said vehicle position detecting means, said vehicle speed detecting means, said passable area determining means, and said passability/impassability judging means being operatively interconnected.
1 Assignment
0 Petitions

Accused Products

Abstract
A driving control system for a vehicle includes a map information output device for outputting a map, a vehicle position detecting device for detecting a vehicle position of a subject vehicle on the map, a vehicle speed detecting device for detecting a vehicle speed, a passable area determining device for determining a passable area on the map on the basis of the detected vehicle speed, and a passability/impassability judging device for deciding that the vehicle may pass through a portion of road when a road which is in front of the vehicle position in a traveling direction is included in the passable area on the map. The road which is in front of the vehicle position in the traveling direction is compared with the determined passable area, and when the road is included in the passable area, it is decided that the vehicle may pass through the portion of road. Thus, it is possible to properly judge whether or not the vehicle may pass through the portion of road by a simple calculation not including a complex and poor-accuracy calculation of the radius of curvature of a road.
456 Citations
Vehicle rearview mirror system | ||
Patent #
US 7,906,756 B2
Filed 04/23/2010
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Driver assistance system for vehicle | ||
Patent #
US 7,873,187 B2
Filed 08/16/2010
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Reflective mirror assembly | ||
Patent #
US 7,864,399 B2
Filed 03/19/2010
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Interior rearview mirror system for a vehicle | ||
Patent #
US 7,914,188 B2
Filed 12/11/2009
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Interior mirror system | ||
Patent #
US 7,898,398 B2
Filed 01/19/2010
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Vehicular accessory mounting system with a forwardly-viewing camera | ||
Patent #
US 7,888,629 B2
Filed 05/18/2009
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Accessory mounting system suitable for use in a vehicle | ||
Patent #
US 7,916,009 B2
Filed 04/21/2010
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Vehicular interior rearview information mirror system | ||
Patent #
US 7,918,570 B2
Filed 11/15/2010
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Interior rearview mirror system for vehicle | ||
Patent #
US 7,926,960 B2
Filed 12/07/2009
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Driver assistance system for vehicle | ||
Patent #
US 7,949,152 B2
Filed 12/28/2010
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Vehicular image sensing system | ||
Patent #
US 7,994,462 B2
Filed 12/17/2009
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Vehicular wireless communication system | ||
Patent #
US 8,000,894 B2
Filed 10/20/2010
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Vehicle information display | ||
Patent #
US 8,019,505 B2
Filed 01/14/2011
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Adjusting a level of map detail displayed on a personal navigation device according to detected speed | ||
Patent #
US 20110172917A1
Filed 01/11/2010
|
Current Assignee
MiTAC International Corporation
|
Original Assignee
MiTAC International Corporation
|
Interior rearview mirror system with forwardly-viewing camera | ||
Patent #
US 7,994,471 B2
Filed 02/14/2011
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Vehicular imaging system in an automatic headlamp control system | ||
Patent #
US 8,017,898 B2
Filed 08/13/2008
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Automatic headlamp control system | ||
Patent #
US 7,972,045 B2
Filed 08/10/2007
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Donnelly Corporation
|
Mirror assembly for vehicle | ||
Patent #
US 8,049,640 B2
Filed 02/25/2011
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Vehicle vision system | ||
Patent #
US 8,063,759 B2
Filed 06/05/2007
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Vehicular interior rearview mirror system | ||
Patent #
US 8,047,667 B2
Filed 03/28/2011
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Interior rearview mirror system | ||
Patent #
US 8,063,753 B2
Filed 02/24/2011
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
On-vehicle information terminal, abridged map generating apparatus, abridged map display method and display apparatus | ||
Patent #
US 7,668,650 B2
Filed 03/24/2005
|
Current Assignee
Clarion Co. Ltd.
|
Original Assignee
Xanavi Informatics Corporation
|
Vehicular image sensing system | ||
Patent #
US 7,655,894 B2
Filed 11/19/2008
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Vehicular interior electrochromic rearview mirror assembly | ||
Patent #
US 7,826,123 B2
Filed 06/02/2009
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Hybrid Steering System | ||
Patent #
US 20100212994A1
Filed 02/19/2010
|
Current Assignee
JCB LANDPOWER LIMITED
|
Original Assignee
JCB LANDPOWER LIMITED
|
Imaging system for vehicle | ||
Patent #
US 7,792,329 B2
Filed 10/27/2009
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Interior rearview mirror system | ||
Patent #
US 7,815,326 B2
Filed 04/23/2010
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Information mirror system | ||
Patent #
US 7,832,882 B2
Filed 01/26/2010
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Interior rearview mirror system for a vehicle | ||
Patent #
US 7,859,737 B2
Filed 09/08/2009
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Vision system for a vehicle including image processor | ||
Patent #
US 7,859,565 B2
Filed 08/19/2003
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Road curvature estimation system | ||
Patent #
US 7,522,091 B2
Filed 12/24/2004
|
Current Assignee
TK Holdings Incorporated
|
Original Assignee
Automotive Systems Laboratory Incorporated
|
Imaging system for vehicle | ||
Patent #
US 7,526,103 B2
Filed 04/14/2005
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Vehicular vision system | ||
Patent #
US 7,561,181 B2
Filed 05/05/2005
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
MATERIALS HANDLING VEHICLE HAVING A CONTROL APPARATUS FOR DETERMINING AN ACCELERATION VALUE | ||
Patent #
US 20090198416A1
Filed 01/27/2009
|
Current Assignee
Crown Equipment Corporation
|
Original Assignee
Crown Equipment Corporation
|
MATERIALS HANDLING VEHICLE WITH A MODULE CAPABLE OF CHANGING A STEERABLE WHEEL TO CONTROL HANDLE POSITION RATIO | ||
Patent #
US 20090194358A1
Filed 01/27/2009
|
Current Assignee
Crown Equipment Corporation
|
Original Assignee
Crown Equipment Corporation
|
Driver assistance system for vehicle | ||
Patent #
US 7,616,781 B2
Filed 04/24/2009
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Road curvature estimation system | ||
Patent #
US 7,626,533 B2
Filed 04/01/2008
|
Current Assignee
TK Holdings Incorporated
|
Original Assignee
Automotive Systems Laboratory Incorporated
|
Image sensing system for a vehicle | ||
Patent #
US 7,325,935 B2
Filed 01/08/2007
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Image sensing system for a vehicle | ||
Patent #
US 7,325,934 B2
Filed 01/08/2007
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Vehicular vision system | ||
Patent #
US 7,344,261 B2
Filed 10/06/2005
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Image sensing system for a vehicle | ||
Patent #
US 7,380,948 B2
Filed 01/04/2007
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Image sensing system for controlling an accessory or headlight of a vehicle | ||
Patent #
US 7,388,182 B2
Filed 01/09/2007
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
ROAD CURVATURE ESTIMATION SYSTEM | ||
Patent #
US 20080183419A1
Filed 04/01/2008
|
Current Assignee
TK Holdings Incorporated
|
Original Assignee
Automotive Systems Laboratory Incorporated
|
Vehicle headlight control using imaging sensor with spectral filtering | ||
Patent #
US 7,402,786 B2
Filed 10/06/2006
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Automatic exterior light control for a vehicle | ||
Patent #
US 7,423,248 B2
Filed 11/07/2007
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Vision system for a vehicle | ||
Patent #
US 7,425,076 B2
Filed 12/18/2007
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Target speed control system for a vehicle | ||
Patent #
US 7,433,772 B2
Filed 02/07/2007
|
Current Assignee
DENSO Corporation
|
Original Assignee
DENSO Corporation
|
Image sensing system for a vehicle | ||
Patent #
US 7,459,664 B2
Filed 01/24/2007
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Vehicle control system | ||
Patent #
US 20070191997A1
Filed 02/07/2007
|
Current Assignee
DENSO Corporation
|
Original Assignee
DENSO Corporation
|
Image sensing system for a vehicle | ||
Patent #
US 7,311,406 B2
Filed 01/10/2007
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Mobile communication terminal having a gear-shifting information providing function and method of providing gear-shifting information using the same | ||
Patent #
US 20060129297A1
Filed 12/12/2005
|
Current Assignee
LG Electronics Inc.
|
Original Assignee
LG Electronics Inc.
|
Navigation system and navigation method for movable body, program storage device and computer data signal embodied in carrier wave | ||
Patent #
US 7,146,272 B2
Filed 08/12/2002
|
Current Assignee
Pioneer Corporation
|
Original Assignee
Pioneer Corporation
|
Vehicular vision system | ||
Patent #
US 6,891,563 B2
Filed 12/20/2002
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
On-vehicle information terminal, abridged map generating apparatus, abridged map display method and display apparatus | ||
Patent #
US 20050216188A1
Filed 03/24/2005
|
Current Assignee
Clarion Co. Ltd.
|
Original Assignee
Xanavi Informatics Corporation
|
Road curvature estimation system | ||
Patent #
US 20050225477A1
Filed 12/24/2004
|
Current Assignee
TK Holdings Incorporated
|
Original Assignee
TK Holdings Incorporated
|
Method and system for an in-vehicle computing architecture | ||
Patent #
US 6,675,081 B2
Filed 08/06/2002
|
Current Assignee
HERE Global B.V.
|
Original Assignee
Navigation Technologies Corp.
|
Curve approach control apparatus | ||
Patent #
US 6,725,145 B1
Filed 09/11/2000
|
Current Assignee
Subaru Corp.
|
Original Assignee
Fuji Heavy Industries Limited
|
Method and system for providing an electronic horizon in an advanced driver assistance system architecture | ||
Patent #
US 6,735,515 B2
Filed 06/10/2002
|
Current Assignee
HERE Global B.V.
|
Original Assignee
Navigation Technologies Corp.
|
Navigation system and navigation method for movable body, program storage device and computer data signal embodied in carrier wave | ||
Patent #
US 20030033082A1
Filed 08/12/2002
|
Current Assignee
Pioneer Corporation
|
Original Assignee
Pioneer Corporation
|
Method for longitudinally controlling a vehicle in which information from a navigation system is recorded | ||
Patent #
US 6,546,331 B2
Filed 09/26/2001
|
Current Assignee
BMW AG
|
Original Assignee
BMW AG
|
Method and system for an in-vehicle computing architecture | ||
Patent #
US 6,577,937 B1
Filed 08/01/2002
|
Current Assignee
HERE Global B.V.
|
Original Assignee
Navigation Technologies Corp.
|
Method and system for an in-vehicle computer architecture | ||
Patent #
US 6,353,785 B1
Filed 11/06/2000
|
Current Assignee
HERE Global B.V.
|
Original Assignee
Navigation Technologies Corp.
|
Method and system for providing an electronic horizon in an advanced driver assistance system architecture | ||
Patent #
US 6,405,128 B1
Filed 12/20/1999
|
Current Assignee
HERE Global B.V.
|
Original Assignee
Navigation Technologies Corp.
|
Vehicle safety running apparatus | ||
Patent #
US 6,421,601 B2
Filed 04/05/2001
|
Current Assignee
Honda Giken Kogyo Kabushiki Kaisha
|
Original Assignee
Honda Giken Kogyo Kabushiki Kaisha
|
Method and system for providing safe routes using a navigation system | ||
Patent #
US 6,415,226 B1
Filed 12/20/1999
|
Current Assignee
HERE Global B.V.
|
Original Assignee
Navigation Technologies Corp.
|
Vision system for a vehicle including an image capture device and a display system having a long focal length | ||
Patent #
US 6,498,620 B2
Filed 11/19/1997
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Automatic power steering system | ||
Patent #
US 6,170,600 B1
Filed 08/14/1997
|
Current Assignee
Honda Giken Kogyo Kabushiki Kaisha
|
Original Assignee
Honda Giken Kogyo Kabushiki Kaisha
|
System for determining passability of vehicle | ||
Patent #
US 6,169,952 B1
Filed 04/07/1998
|
Current Assignee
Honda Giken Kogyo Kabushiki Kaisha
|
Original Assignee
Honda Giken Kogyo Kabushiki Kaisha
|
Vehicle maneuvering control device | ||
Patent #
US 6,208,927 B1
Filed 09/09/1998
|
Current Assignee
Subaru Corp.
|
Original Assignee
Fuji Heavy Industries Limited
|
Accurate vehicle navigation | ||
Patent #
US 6,230,097 B1
Filed 08/31/1998
|
Current Assignee
Trimble Navigation Limited
|
Original Assignee
Trimble Navigation Limited
|
Navigation device for vehicle and preparation of road shape data used therefor | ||
Patent #
US 6,268,825 B1
Filed 03/25/1999
|
Current Assignee
Ibaraki Toyota Jidosha Kabushiki Kaisha
|
Original Assignee
Ibaraki Toyota Jidosha Kabushiki Kaisha
|
Vehicle control system | ||
Patent #
US 5,978,731 A
Filed 11/10/1997
|
Current Assignee
Honda Giken Kogyo Kabushiki Kaisha
|
Original Assignee
Honda Giken Kogyo Kabushiki Kaisha
|
Vehicle control system | ||
Patent #
US 5,748,476 A
Filed 06/05/1995
|
Current Assignee
Honda Giken Kogyo Kabushiki Kaisha
|
Original Assignee
Honda Giken Kogyo Kabushiki Kaisha
|
Automobile screen control apparatus | ||
Patent #
US 5,796,350 A
Filed 03/04/1997
|
Current Assignee
Ibaraki Toyota Jidosha Kabushiki Kaisha
|
Original Assignee
Ibaraki Toyota Jidosha Kabushiki Kaisha
|
System for controlling a vehicle relative to a judged shape of a travel road | ||
Patent #
US 5,661,650 A
Filed 02/22/1995
|
Current Assignee
Honda Giken Kogyo Kabushiki Kaisha
|
Original Assignee
Honda Giken Kogyo Kabushiki Kaisha
|
Vehicle navigation apparatus with variable speed disc drive | ||
Patent #
US 5,684,703 A
Filed 06/07/1995
|
Current Assignee
Aisin AW Corporation Limited
|
Original Assignee
Aisin AW Corporation Limited
|
Navigation system | ||
Patent #
US 5,703,780 A
Filed 07/18/1995
|
Current Assignee
Mitsubishi Electric Corporation
|
Original Assignee
Mitsubishi Electric Corporation
|
Imaging system for vehicle | ||
Patent #
US 8,090,153 B2
Filed 05/13/2011
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Vehicle rearview mirror system | ||
Patent #
US 8,106,347 B2
Filed 03/01/2011
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Interior rearview mirror system for a vehicle | ||
Patent #
US 8,100,568 B2
Filed 03/24/2011
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Interior rearview mirror system | ||
Patent #
US 8,094,002 B2
Filed 03/03/2011
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Automatic lighting system with adaptive function | ||
Patent #
US 8,070,332 B2
Filed 03/29/2011
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Interior rearview mirror assembly with display device | ||
Patent #
US 8,083,386 B2
Filed 08/28/2009
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Donnelly Corporation
|
Vehicle information display | ||
Patent #
US 8,095,260 B1
Filed 09/12/2011
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Vehicular video mirror system | ||
Patent #
US 8,121,787 B2
Filed 08/15/2011
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Vehicular having a camera, a rain sensor and a single-ball interior electrochromic mirror assembly attached at an attachment element | ||
Patent #
US 8,134,117 B2
Filed 07/27/2011
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Automatic lighting system | ||
Patent #
US 8,142,059 B2
Filed 11/09/2011
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Interior rearview mirror assembly for vehicle | ||
Patent #
US 8,162,493 B2
Filed 03/30/2011
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Adaptive forward lighting system for vehicle | ||
Patent #
US 8,162,518 B2
Filed 06/30/2011
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Donnelly Corporation
|
Method of forming a mirrored bent cut glass shape for vehicular exterior rearview mirror assembly | ||
Patent #
US 8,164,817 B2
Filed 10/22/2010
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Vehicle information display system | ||
Patent #
US 8,170,748 B1
Filed 01/06/2012
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Materials handling vehicle with a module capable of changing a steerable wheel to control handle position ratio | ||
Patent #
US 8,172,033 B2
Filed 01/27/2009
|
Current Assignee
Crown Equipment Corporation
|
Original Assignee
Crown Equipment Corporation
|
Vehicular interior rearview mirror system | ||
Patent #
US 8,177,376 B2
Filed 10/28/2011
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Video mirror system suitable for use in a vehicle | ||
Patent #
US 8,179,236 B2
Filed 04/13/2010
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Rearview mirror assembly for vehicle | ||
Patent #
US 8,179,586 B2
Filed 02/24/2011
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Vision system for vehicle | ||
Patent #
US 8,189,871 B2
Filed 01/31/2011
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Forward facing sensing system for a vehicle | ||
Patent #
US 8,217,830 B2
Filed 07/28/2011
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular image sensing system | ||
Patent #
US 8,222,588 B2
Filed 08/05/2011
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Interior rearview mirror information display system for a vehicle | ||
Patent #
US 8,228,588 B2
Filed 12/10/2010
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Hybrid steering system | ||
Patent #
US 8,245,811 B2
Filed 02/19/2010
|
Current Assignee
JCB LANDPOWER LIMITED
|
Original Assignee
JCB LANDPOWER LIMITED
|
Interior rearview mirror assembly for a vehicle | ||
Patent #
US 8,267,559 B2
Filed 01/20/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Vehicular video mirror system | ||
Patent #
US 8,271,187 B2
Filed 02/17/2012
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Vehicular electrochromic interior rearview mirror assembly | ||
Patent #
US 8,277,059 B2
Filed 10/07/2010
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Interior rearview mirror system | ||
Patent #
US 8,282,226 B2
Filed 10/18/2010
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Mirror reflective element sub-assembly for exterior rearview mirror of a vehicle | ||
Patent #
US 8,282,253 B2
Filed 12/22/2011
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Donnelly Corporation
|
Interior rearview mirror system with forwardly-viewing camera and a control | ||
Patent #
US 8,288,711 B2
Filed 03/02/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Forward facing sensing system for vehicle | ||
Patent #
US 8,294,608 B1
Filed 07/03/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Automotive rearview mirror assembly | ||
Patent #
US 8,294,975 B2
Filed 01/11/2010
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
DRIVING ASSISTANCE DEVICE | ||
Patent #
US 20120277955A1
Filed 12/28/2009
|
Current Assignee
Ibaraki Toyota Jidosha Kabushiki Kaisha
|
Original Assignee
Ibaraki Toyota Jidosha Kabushiki Kaisha
|
Vehicle rearview mirror system | ||
Patent #
US 8,304,711 B2
Filed 01/20/2012
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Accessory system suitable for use in a vehicle and accommodating a rain sensor | ||
Patent #
US 8,309,907 B2
Filed 04/13/2010
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Vehicular vision system | ||
Patent #
US 8,314,689 B2
Filed 06/18/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Mirror assembly for vehicle | ||
Patent #
US 8,325,055 B2
Filed 10/28/2011
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Interior rearview mirror system | ||
Patent #
US 8,325,028 B2
Filed 01/06/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Imaging system for vehicle | ||
Patent #
US 8,325,986 B2
Filed 12/22/2011
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Vehicular image sensing system | ||
Patent #
US 8,324,552 B2
Filed 07/16/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Reflective mirror assembly | ||
Patent #
US 8,335,032 B2
Filed 12/28/2010
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Vehicle vision system with night vision function | ||
Patent #
US 8,355,839 B2
Filed 04/24/2012
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Vehicular rearview mirror system | ||
Patent #
US 8,362,885 B2
Filed 10/19/2011
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
TECHNIQUE FOR ENSURING SAFE TRAVEL OF A VEHICLE OR SAFETY OF AN OCCUPANT THEREIN | ||
Patent #
US 20130035827A1
Filed 10/11/2012
|
Current Assignee
American Vehicular Sciences LLC
|
Original Assignee
American Vehicular Sciences LLC
|
Automatic headlamp control | ||
Patent #
US 8,376,595 B2
Filed 05/17/2010
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Rearview mirror assembly for vehicle | ||
Patent #
US 8,379,289 B2
Filed 05/14/2012
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Adjusting a level of map detail displayed on a personal navigation device according to detected speed | ||
Patent #
US 8,386,173 B2
Filed 01/11/2010
|
Current Assignee
MiTAC International Corporation
|
Original Assignee
MiTAC International Corporation
|
Interior rearview mirror system for a vehicle | ||
Patent #
US 8,400,704 B2
Filed 07/23/2012
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Materials handling vehicle having a control apparatus for determining an acceleration value | ||
Patent #
US 8,412,431 B2
Filed 01/27/2009
|
Current Assignee
Crown Equipment Corporation
|
Original Assignee
Crown Equipment Corporation
|
Rear vision system for a vehicle | ||
Patent #
US 8,427,288 B2
Filed 10/21/2011
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Adaptive forward lighting system for vehicle | ||
Patent #
US 8,434,919 B2
Filed 04/20/2012
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Donnelly Corporation
|
Combined RGB and IR imaging sensor | ||
Patent #
US 8,446,470 B2
Filed 10/03/2008
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Imaging system for vehicle | ||
Patent #
US 8,451,107 B2
Filed 09/11/2008
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular vision system | ||
Patent #
US 8,462,204 B2
Filed 07/01/2009
|
Current Assignee
Kenneth Schofield, Keith J. Vadas, Mark L. Larson, Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Vehicular interior rearview mirror system | ||
Patent #
US 8,465,162 B2
Filed 05/14/2012
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Interior rearview mirror system | ||
Patent #
US 8,465,163 B2
Filed 10/08/2012
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Vehicular image sensing system | ||
Patent #
US 8,481,910 B2
Filed 11/30/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Vision system for vehicle | ||
Patent #
US 8,483,439 B2
Filed 05/25/2012
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Driver assistance system for a vehicle | ||
Patent #
US 8,492,698 B2
Filed 01/25/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Rearview mirror element assembly for vehicle | ||
Patent #
US 8,503,062 B2
Filed 08/27/2012
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Donnelly Corporation
|
Variable reflectance mirror reflective element for exterior mirror assembly | ||
Patent #
US 8,506,096 B2
Filed 10/01/2012
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Interior rearview mirror system | ||
Patent #
US 8,508,383 B2
Filed 03/26/2012
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Magna Mirrors of America Incorporated
|
Rearview mirror assembly for vehicle | ||
Patent #
US 8,508,384 B2
Filed 11/30/2012
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Vehicular blind spot indicator mirror | ||
Patent #
US 8,511,841 B2
Filed 01/13/2011
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Interior rearview mirror system | ||
Patent #
US 8,525,703 B2
Filed 03/17/2011
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Driver assist system for vehicle | ||
Patent #
US 8,543,330 B2
Filed 09/17/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Static and dynamic contours | ||
Patent #
US 8,554,475 B2
Filed 10/01/2007
|
Current Assignee
MiTAC International Corporation
|
Original Assignee
MiTAC International Corporation
|
Electrochromic mirror reflective element for vehicular rearview mirror assembly | ||
Patent #
US 8,559,093 B2
Filed 04/20/2012
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Information display system for a vehicle | ||
Patent #
US 8,577,549 B2
Filed 01/14/2013
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Imaging system for vehicle | ||
Patent #
US 8,593,521 B2
Filed 11/30/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular vision system | ||
Patent #
US 8,599,001 B2
Filed 11/19/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Automatic compass system for vehicle | ||
Patent #
US 8,608,327 B2
Filed 06/17/2013
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Variable transmission window | ||
Patent #
US 8,610,992 B2
Filed 10/22/2012
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Forward facing sensing system for vehicle | ||
Patent #
US 8,614,640 B2
Filed 10/22/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system | ||
Patent #
US 8,203,443 B2
Filed 11/09/2011
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Vehicular vision system | ||
Patent #
US 8,203,440 B2
Filed 01/16/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Vehicle vision system | ||
Patent #
US 8,629,768 B2
Filed 06/18/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Driver assistance system for vehicle | ||
Patent #
US 8,636,393 B2
Filed 05/06/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assistance system for a vehicle | ||
Patent #
US 8,637,801 B2
Filed 07/08/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Multi-camera vision system for a vehicle | ||
Patent #
US 8,643,724 B2
Filed 03/13/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Video mirror system for a vehicle | ||
Patent #
US 8,653,959 B2
Filed 12/02/2011
|
Current Assignee
Niall R. Lynam, John O. Lindahl, Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Rearview mirror assembly for vehicle | ||
Patent #
US 8,654,433 B2
Filed 08/05/2013
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Magna Mirrors of America Incorporated
|
Vision system for vehicle | ||
Patent #
US 8,665,079 B2
Filed 10/15/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assist system for vehicle | ||
Patent #
US 8,676,491 B2
Filed 09/23/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Accessory system for a vehicle | ||
Patent #
US 8,686,840 B2
Filed 01/25/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle yaw rate correction | ||
Patent #
US 8,694,224 B2
Filed 02/28/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Method of manufacturing a reflective element for a vehicular rearview mirror assembly | ||
Patent #
US 8,705,161 B2
Filed 02/14/2013
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Materials handling vehicle having a control apparatus for determining an acceleration value | ||
Patent #
US 8,718,890 B2
Filed 03/07/2013
|
Current Assignee
Crown Equipment Corporation
|
Original Assignee
Crown Equipment Corporation
|
Variable reflectance mirror reflective element for exterior mirror assembly | ||
Patent #
US 8,727,547 B2
Filed 08/12/2013
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Technique for ensuring safe travel of a vehicle or safety of an occupant therein | ||
Patent #
US 8,768,573 B2
Filed 10/11/2012
|
Current Assignee
American Vehicular Sciences LLC
|
Original Assignee
American Vehicular Sciences LLC
|
Interior rearview mirror system | ||
Patent #
US 8,779,910 B2
Filed 11/07/2011
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Exterior rearview mirror assembly | ||
Patent #
US 8,797,627 B2
Filed 12/17/2012
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Vehicular vision system | ||
Patent #
US 8,814,401 B2
Filed 03/22/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assistance system for vehicle | ||
Patent #
US 8,818,042 B2
Filed 11/18/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Mirror reflective element sub-assembly for exterior rearview mirror of a vehicle | ||
Patent #
US 8,833,987 B2
Filed 10/08/2012
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Donnelly Corporation
|
Vehicle vision system with yaw rate determination | ||
Patent #
US 8,849,495 B2
Filed 04/07/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Automatic vehicle exterior light control | ||
Patent #
US 8,842,176 B2
Filed 01/15/2010
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Parking assist system | ||
Patent #
US 8,874,317 B2
Filed 07/27/2010
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Automotive communication system | ||
Patent #
US 8,884,788 B2
Filed 08/30/2013
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Driver assistance system for a vehicle | ||
Patent #
US 8,886,401 B2
Filed 11/04/2013
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Adaptable wireless vehicle vision system based on wireless communication error | ||
Patent #
US 8,890,955 B2
Filed 02/09/2011
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Magna Mirrors of America Incorporated
|
Vehicular video mirror system | ||
Patent #
US 8,908,039 B2
Filed 06/04/2012
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Imaging system for vehicle | ||
Patent #
US 8,908,040 B2
Filed 05/17/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular vision system | ||
Patent #
US 8,917,169 B2
Filed 12/02/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
VEHICLE CONTROL APPARATUS | ||
Patent #
US 20150006045A1
Filed 12/20/2011
|
Current Assignee
Ibaraki Toyota Jidosha Kabushiki Kaisha
|
Original Assignee
Ibaraki Toyota Jidosha Kabushiki Kaisha
|
Driver assistance system for vehicle | ||
Patent #
US 8,977,008 B2
Filed 07/08/2013
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Driver assistance system for a vehicle | ||
Patent #
US 8,993,951 B2
Filed 07/16/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision system for vehicle | ||
Patent #
US 9,008,369 B2
Filed 08/25/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assistance system for vehicle | ||
Patent #
US 9,014,904 B2
Filed 09/23/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assist system for vehicle | ||
Patent #
US 9,014,966 B2
Filed 03/14/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular imaging system with camera misalignment correction and capturing image data at different resolution levels dependent on distance to object in field of view | ||
Patent #
US 9,018,577 B2
Filed 02/25/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Interior rearview mirror system | ||
Patent #
US 9,019,091 B2
Filed 03/17/2011
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Imaging and display system for vehicle | ||
Patent #
US 9,041,806 B2
Filed 08/31/2010
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Mirror reflective element sub-assembly for exterior rearview mirror of a vehicle | ||
Patent #
US 9,045,091 B2
Filed 09/15/2014
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Donnelly Corporation
|
Vehicle control apparatus | ||
Patent #
US 9,073,549 B2
Filed 12/20/2011
|
Current Assignee
Ibaraki Toyota Jidosha Kabushiki Kaisha
|
Original Assignee
Ibaraki Toyota Jidosha Kabushiki Kaisha
|
Exterior rearview mirror assembly | ||
Patent #
US 9,073,491 B2
Filed 08/04/2014
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Rear vision system with trailer angle detection | ||
Patent #
US 9,085,261 B2
Filed 01/25/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Variable reflectance mirror reflective element for exterior mirror assembly | ||
Patent #
US 9,090,211 B2
Filed 05/19/2014
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Braking control system for vehicle | ||
Patent #
US 9,090,234 B2
Filed 11/18/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular vision system | ||
Patent #
US 9,092,986 B2
Filed 01/31/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular rear view camera display system with lifecheck function | ||
Patent #
US 9,117,123 B2
Filed 07/05/2011
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Alert system for vehicle | ||
Patent #
US 9,126,525 B2
Filed 02/25/2010
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Multi-camera vision system for a vehicle | ||
Patent #
US 9,131,120 B2
Filed 05/15/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Forward facing sensing system for vehicle | ||
Patent #
US 9,140,789 B2
Filed 12/16/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assist system with algorithm switching | ||
Patent #
US 9,146,898 B2
Filed 10/25/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
On-board vehicle control system and method for determining whether a value is within an area of interest for extraneous warning suppression | ||
Patent #
US 9,153,132 B2
Filed 03/04/2014
|
Current Assignee
Nissan Motor Co. Ltd.
|
Original Assignee
Nissan North America Incorporated
|
Vision system for vehicle | ||
Patent #
US 9,171,217 B2
Filed 03/03/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Lane keeping system and lane centering system | ||
Patent #
US 9,180,908 B2
Filed 11/17/2011
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assistance system for vehicle | ||
Patent #
US 9,187,028 B2
Filed 02/14/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular vision system | ||
Patent #
US 9,191,574 B2
Filed 03/13/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision system for vehicle | ||
Patent #
US 9,191,634 B2
Filed 04/03/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assistance system for vehicle | ||
Patent #
US 9,193,303 B2
Filed 04/20/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Step filter for estimating distance in a time-of-flight ranging system | ||
Patent #
US 9,194,943 B2
Filed 04/11/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Method for Determining a Target Curve Incline of a Motor Vehicle During Traveling of a Curved Roadway Section | ||
Patent #
US 20150336585A1
Filed 10/31/2013
|
Current Assignee
Daimler AG
|
Original Assignee
Daimler AG
|
Vehicle vision system using kinematic model of vehicle motion | ||
Patent #
US 9,205,776 B2
Filed 05/20/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Automotive communication system | ||
Patent #
US 9,221,399 B2
Filed 11/07/2014
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Magna Mirrors of America Incorporated
|
Driver assistance system for a vehicle | ||
Patent #
US 9,245,448 B2
Filed 06/17/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Forward facing sensing system for vehicle | ||
Patent #
US 9,244,165 B1
Filed 09/21/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with collision mitigation | ||
Patent #
US 9,260,095 B2
Filed 06/13/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision display system for vehicle | ||
Patent #
US 9,264,672 B2
Filed 12/21/2011
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Mirrors of America Incorporated
|
Interior rearview mirror system for vehicle | ||
Patent #
US 9,278,654 B2
Filed 04/20/2012
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Driver assist system for vehicle | ||
Patent #
US 9,315,151 B2
Filed 04/03/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular collision mitigation system | ||
Patent #
US 9,318,020 B2
Filed 07/27/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Rear collision avoidance system for vehicle | ||
Patent #
US 9,327,693 B2
Filed 04/09/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Forward facing sensing system for vehicle | ||
Patent #
US 9,335,411 B1
Filed 01/25/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle lane keep assist system | ||
Patent #
US 9,340,227 B2
Filed 08/12/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Variable reflectance mirror reflective element for exterior mirror assembly | ||
Patent #
US 9,341,914 B2
Filed 07/27/2015
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Vehicle vision system with yaw rate determination | ||
Patent #
US 9,346,468 B2
Filed 09/29/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Trailer hitching aid system for vehicle | ||
Patent #
US 9,352,623 B2
Filed 02/17/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Method and system for dynamically calibrating vehicular cameras | ||
Patent #
US 9,357,208 B2
Filed 01/20/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assist system for vehicle | ||
Patent #
US 9,376,060 B2
Filed 11/16/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Accessory system of a vehicle | ||
Patent #
US 9,376,061 B2
Filed 04/23/2015
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
VEHICLE VISION SYSTEM | ||
Patent #
US 20160185293A1
Filed 03/07/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
On-board vehicle control system and method for determining whether a value is within an area of interest for extraneous warning suppression | ||
Patent #
US 9,406,231 B2
Filed 09/30/2015
|
Current Assignee
Nissan Motor Co. Ltd.
|
Original Assignee
Nissan North America Incorporated
|
Materials handling vehicle having a control apparatus for determining an acceleration value | ||
Patent #
US 9,421,963 B2
Filed 04/02/2014
|
Current Assignee
Crown Equipment Corporation
|
Original Assignee
Crown Equipment Corporation
|
Vision system for vehicle | ||
Patent #
US 9,428,192 B2
Filed 11/16/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system | ||
Patent #
US 9,436,880 B2
Filed 01/13/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Trailer angle detection system | ||
Patent #
US 9,446,713 B2
Filed 09/25/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Parking assist system | ||
Patent #
US 9,457,717 B2
Filed 10/27/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision display system for vehicle | ||
Patent #
US 9,469,250 B2
Filed 02/12/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system utilizing camera synchronization | ||
Patent #
US 9,481,301 B2
Filed 12/05/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Automotive communication system | ||
Patent #
US 9,481,306 B2
Filed 12/16/2015
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Braking control system for vehicle | ||
Patent #
US 9,481,344 B2
Filed 07/27/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle control system with adaptive wheel angle correction | ||
Patent #
US 9,487,235 B2
Filed 04/01/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Interior mirror assembly with display | ||
Patent #
US 9,487,144 B2
Filed 10/14/2009
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Magna Mirrors of America Incorporated
|
Vehicle camera alignment system | ||
Patent #
US 9,491,450 B2
Filed 07/30/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Calibration system and method for vehicular surround vision system | ||
Patent #
US 9,491,451 B2
Filed 11/14/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular camera with on-board microcontroller | ||
Patent #
US 9,495,876 B2
Filed 07/27/2010
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle monitoring system | ||
Patent #
US 9,499,139 B2
Filed 12/05/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular multi-camera vision system | ||
Patent #
US 9,508,014 B2
Filed 05/05/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle imaging system | ||
Patent #
US 9,509,957 B2
Filed 04/19/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Forward facing sensing system for vehicle | ||
Patent #
US 9,507,021 B2
Filed 05/09/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Collision avoidance system for vehicle | ||
Patent #
US 9,545,921 B2
Filed 05/02/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Exterior rearview mirror assembly | ||
Patent #
US 9,545,883 B2
Filed 07/06/2015
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Image processing method for detecting objects using relative motion | ||
Patent #
US 9,547,795 B2
Filed 01/20/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Rearview mirror assembly for vehicle | ||
Patent #
US 9,557,584 B2
Filed 08/12/2013
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Vehicle vision system with trailer angle detection | ||
Patent #
US 9,558,409 B2
Filed 12/11/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assistance system for vehicle | ||
Patent #
US 9,555,803 B2
Filed 05/16/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular vision system | ||
Patent #
US 9,563,809 B2
Filed 04/18/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with targetless camera calibration | ||
Patent #
US 9,563,951 B2
Filed 05/20/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision display system for vehicle | ||
Patent #
US 9,598,014 B2
Filed 10/17/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision system for vehicle | ||
Patent #
US 9,609,289 B2
Filed 08/29/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with image classification | ||
Patent #
US 9,619,716 B2
Filed 08/11/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Personalized driver assistance system for vehicle | ||
Patent #
US 9,623,878 B2
Filed 04/01/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision system for vehicle | ||
Patent #
US 9,643,605 B2
Filed 10/26/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assist system for vehicle | ||
Patent #
US 9,656,608 B2
Filed 06/13/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle camera image quality improvement in poor visibility conditions by contrast amplification | ||
Patent #
US 9,681,062 B2
Filed 09/25/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Trailer hitching aid system for vehicle | ||
Patent #
US 9,694,749 B2
Filed 05/23/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Mirror reflective element sub-assembly for exterior rearview mirror of a vehicle | ||
Patent #
US 9,694,753 B2
Filed 06/01/2015
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Magna Mirrors of America Incorporated
|
Method for determining a target curve incline of a motor vehicle during traveling of a curved roadway section | ||
Patent #
US 9,694,812 B2
Filed 10/31/2013
|
Current Assignee
Daimler AG
|
Original Assignee
Daimler AG
|
Vehicle vision system using kinematic model of vehicle motion | ||
Patent #
US 9,701,246 B2
Filed 12/07/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Process for determining state of a vehicle | ||
Patent #
US 9,715,769 B2
Filed 05/23/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Multi-camera image stitching calibration system | ||
Patent #
US 9,723,272 B2
Filed 10/04/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision display system for vehicle | ||
Patent #
US 9,731,653 B2
Filed 03/16/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision system for vehicle | ||
Patent #
US 9,736,435 B2
Filed 03/20/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system | ||
Patent #
US 9,738,224 B2
Filed 03/07/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with enhanced display functions | ||
Patent #
US 9,743,002 B2
Filed 11/18/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with reduced image color data processing by use of dithering | ||
Patent #
US 9,751,465 B2
Filed 04/16/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Lane keeping system and lane centering system | ||
Patent #
US 9,758,163 B2
Filed 11/09/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Mirror reflective element sub-assembly for exterior rearview mirror of a vehicle | ||
Patent #
US 9,758,102 B1
Filed 06/30/2017
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Magna Mirrors of America Incorporated
|
Driver assistant system using influence mapping for conflict avoidance path determination | ||
Patent #
US 9,761,142 B2
Filed 09/03/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with customized display | ||
Patent #
US 9,762,880 B2
Filed 12/07/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular multi-camera vision system | ||
Patent #
US 9,769,381 B2
Filed 11/28/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Method for enhancing vehicle camera image quality | ||
Patent #
US 9,774,790 B1
Filed 06/12/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with trailer angle detection | ||
Patent #
US 9,779,313 B2
Filed 01/24/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Rearview mirror assembly for vehicle | ||
Patent #
US 9,783,115 B2
Filed 01/24/2017
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Accessory system for a vehicle | ||
Patent #
US 9,783,125 B2
Filed 03/31/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular video mirror system | ||
Patent #
US 9,783,114 B2
Filed 12/05/2014
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Imaging and display system for vehicle | ||
Patent #
US 9,789,821 B2
Filed 05/22/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Imaging system for vehicle | ||
Patent #
US 9,796,332 B2
Filed 05/24/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Collision avoidance system for vehicle | ||
Patent #
US 9,802,609 B2
Filed 01/16/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Trailer angle detection system calibration | ||
Patent #
US 9,802,542 B2
Filed 09/19/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assist system for vehicle | ||
Patent #
US 9,809,168 B2
Filed 04/18/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision system for vehicle | ||
Patent #
US 9,809,171 B2
Filed 04/23/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular control system | ||
Patent #
US 9,824,285 B2
Filed 01/26/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with collision mitigation | ||
Patent #
US 9,824,587 B2
Filed 02/12/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driving assist system for vehicle | ||
Patent #
US 9,834,142 B2
Filed 05/19/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular control system using cameras and radar sensor | ||
Patent #
US 9,834,216 B2
Filed 01/24/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Method and system for dynamically calibrating vehicular cameras | ||
Patent #
US 9,834,153 B2
Filed 04/25/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Parking assist system | ||
Patent #
US 9,868,463 B2
Filed 09/28/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Variable reflectance mirror reflective element for exterior mirror assembly | ||
Patent #
US 9,878,670 B2
Filed 05/16/2016
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Vehicle vision system using image data transmission and power supply via a coaxial cable | ||
Patent #
US 9,900,490 B2
Filed 02/22/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
System and method of establishing a multi-camera image using pixel remapping | ||
Patent #
US 9,900,522 B2
Filed 12/01/2011
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver active safety control system for vehicle | ||
Patent #
US 9,911,050 B2
Filed 09/04/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system utilizing camera synchronization | ||
Patent #
US 9,912,841 B2
Filed 10/31/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Process for determining state of a vehicle | ||
Patent #
US 9,916,699 B2
Filed 07/24/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with calibration algorithm | ||
Patent #
US 9,916,660 B2
Filed 01/15/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assist system with image processing and wireless communication | ||
Patent #
US 9,919,705 B2
Filed 09/28/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assistance system for vehicle | ||
Patent #
US 9,940,528 B2
Filed 11/20/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision system for vehicle | ||
Patent #
US 9,948,904 B2
Filed 08/14/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Method for controlling a vehicle in accordance with parameters preferred by an identified driver | ||
Patent #
US 9,950,707 B2
Filed 04/17/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Trailering assist system with trailer angle detection | ||
Patent #
US 9,950,738 B2
Filed 07/20/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular imaging system comprising an imaging device with a single image sensor and image processor for determining a totally blocked state or partially blocked state of the single image sensor as well as an automatic correction for misalignment of the imaging device | ||
Patent #
US 9,972,100 B2
Filed 04/23/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with targetless camera calibration | ||
Patent #
US 9,979,957 B2
Filed 01/26/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle control system with traffic driving control | ||
Patent #
US 9,988,047 B2
Filed 12/12/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Imaging system for vehicle | ||
Patent #
US 10,003,755 B2
Filed 12/08/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assistance system for vehicle | ||
Patent #
US 10,005,394 B2
Filed 11/16/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular control system | ||
Patent #
US 10,015,452 B1
Filed 04/16/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Braking control system for vehicle | ||
Patent #
US 10,023,161 B2
Filed 10/31/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system utilizing corner detection | ||
Patent #
US 10,025,994 B2
Filed 12/02/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Spectral filtering for vehicular driver assistance systems | ||
Patent #
US 10,027,930 B2
Filed 03/28/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Rearview mirror assembly for vehicle | ||
Patent #
US 10,029,616 B2
Filed 01/16/2017
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Image processing method for detecting objects using relative motion | ||
Patent #
US 10,043,082 B2
Filed 01/16/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Control system for vehicle | ||
Patent #
US 10,046,702 B2
Filed 12/04/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision system for vehicle | ||
Patent #
US 10,053,013 B2
Filed 11/06/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Imaging and display system for vehicle | ||
Patent #
US 10,053,012 B2
Filed 10/16/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with enhanced lane tracking | ||
Patent #
US 10,055,651 B2
Filed 03/01/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular multi-camera vision system | ||
Patent #
US 10,057,489 B2
Filed 09/18/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision system for vehicle | ||
Patent #
US 10,071,676 B2
Filed 09/12/2016
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision system for vehicle | ||
Patent #
US 10,071,687 B2
Filed 11/27/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle parking assist system with vision-based parking space detection | ||
Patent #
US 10,078,789 B2
Filed 07/14/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assistance system for vehicle | ||
Patent #
US 10,086,747 B2
Filed 08/25/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Trailer parking assist system for vehicle | ||
Patent #
US 10,086,870 B2
Filed 08/16/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular control system with trailering assist function | ||
Patent #
US 10,089,541 B2
Filed 10/02/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with front and rear camera integration | ||
Patent #
US 10,089,537 B2
Filed 05/15/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision system for vehicle | ||
Patent #
US 10,099,614 B2
Filed 11/27/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assistance system for a vehicle | ||
Patent #
US 10,099,610 B2
Filed 10/10/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with enhanced display functions | ||
Patent #
US 10,104,298 B2
Filed 08/21/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular camera with on-board microcontroller | ||
Patent #
US 10,106,155 B2
Filed 11/11/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Forward facing sensing system for vehicle | ||
Patent #
US 10,107,905 B2
Filed 11/28/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular control system | ||
Patent #
US 10,110,860 B1
Filed 07/02/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assistant system using influence mapping for conflict avoidance path determination | ||
Patent #
US 10,115,310 B2
Filed 09/11/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular control system using cameras and radar sensor | ||
Patent #
US 10,118,618 B2
Filed 12/04/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Method for vehicular control | ||
Patent #
US 10,127,738 B2
Filed 03/12/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with customized display | ||
Patent #
US 10,129,518 B2
Filed 09/11/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular video mirror system | ||
Patent #
US 10,131,280 B2
Filed 10/09/2017
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Vehicle camera with multiple spectral filters | ||
Patent #
US 10,132,971 B2
Filed 03/01/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle monitoring system | ||
Patent #
US 10,137,892 B2
Filed 11/18/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision display system for vehicle | ||
Patent #
US 10,144,352 B2
Filed 08/14/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Interior rearview mirror system for vehicle | ||
Patent #
US 10,144,355 B2
Filed 03/07/2016
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Mirror reflective element sub-assembly for exterior rearview mirror of a vehicle | ||
Patent #
US 10,150,417 B2
Filed 09/11/2017
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Magna Mirrors of America Incorporated
|
Trailer backup assist system | ||
Patent #
US 10,160,382 B2
Filed 02/04/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle control system with reverse assist | ||
Patent #
US 10,160,437 B2
Filed 02/27/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Rearview mirror assembly for vehicle | ||
Patent #
US 10,166,927 B2
Filed 10/09/2017
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Vehicle vision system utilizing multiple cameras and ethernet links | ||
Patent #
US 10,171,709 B2
Filed 03/05/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Display system for vehicle | ||
Patent #
US 10,175,477 B2
Filed 08/12/2013
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Magna Mirrors of America Incorporated
|
Park-aid system for vehicle | ||
Patent #
US 10,179,545 B2
Filed 11/06/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Multi-camera dynamic top view vision system | ||
Patent #
US 10,179,543 B2
Filed 02/27/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular control system | ||
Patent #
US 10,187,615 B1
Filed 10/22/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle control system with adaptive wheel angle correction | ||
Patent #
US 10,202,147 B2
Filed 11/07/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Method for dynamically calibrating vehicular cameras | ||
Patent #
US 10,202,077 B2
Filed 05/23/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Collision avoidance system for vehicle | ||
Patent #
US 10,207,705 B2
Filed 10/25/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Parking assist system for vehicle | ||
Patent #
US 10,214,206 B2
Filed 07/11/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
System for locating a parking space based on a previously parked space | ||
Patent #
US 10,222,224 B2
Filed 04/15/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Rear vision system for vehicle with dual purpose signal lines | ||
Patent #
US 10,232,797 B2
Filed 04/29/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with calibration algorithm | ||
Patent #
US 10,235,775 B2
Filed 03/07/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular vision system | ||
Patent #
US 10,239,457 B2
Filed 08/20/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Method for enhancing vehicle camera image quality | ||
Patent #
US 10,257,432 B2
Filed 09/25/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Calibration system and method for vehicular surround vision system | ||
Patent #
US 10,264,249 B2
Filed 11/07/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system using kinematic model of vehicle motion | ||
Patent #
US 10,266,115 B2
Filed 07/10/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Rear seat occupant monitoring system for vehicle | ||
Patent #
US 10,272,839 B2
Filed 06/30/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Multi-camera image stitching calibration system | ||
Patent #
US 10,284,818 B2
Filed 07/31/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision using image data transmission and power supply via a coaxial cable | ||
Patent #
US 10,284,764 B2
Filed 02/19/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system | ||
Patent #
US 10,286,843 B2
Filed 08/21/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
System and method for estimating distance between a mobile unit and a vehicle using a TOF system | ||
Patent #
US 10,288,724 B2
Filed 11/20/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Trailer driving assist system | ||
Patent #
US 10,300,855 B2
Filed 10/25/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular display system | ||
Patent #
US 10,300,856 B2
Filed 08/20/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular control system | ||
Patent #
US 10,306,190 B1
Filed 01/21/2019
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular exterior rearview mirror assembly with blind spot indicator | ||
Patent #
US 10,308,186 B2
Filed 12/10/2018
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Magna Mirrors of America Incorporated
|
Vehicular vision system with enhanced display functions | ||
Patent #
US 10,321,064 B2
Filed 10/11/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with reduction of temporal noise in images | ||
Patent #
US 10,326,969 B2
Filed 08/11/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Parking assist system with annotated map generation | ||
Patent #
US 10,328,932 B2
Filed 06/01/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular vision system with rear backup video display | ||
Patent #
US 10,336,255 B2
Filed 11/29/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular control system using cameras and radar sensor | ||
Patent #
US 10,351,135 B2
Filed 11/01/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular exterior electrically variable reflectance mirror reflective element assembly | ||
Patent #
US 10,363,875 B2
Filed 07/23/2018
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Vehicular lane change system | ||
Patent #
US 10,406,980 B2
Filed 10/11/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Lane keeping system and lane centering system | ||
Patent #
US 10,427,679 B2
Filed 09/11/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with reduced image color data processing by use of dithering | ||
Patent #
US 10,434,944 B2
Filed 08/30/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Rearview mirror assembly for vehicle | ||
Patent #
US 10,449,903 B2
Filed 12/20/2018
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Processing method for distinguishing a three dimensional object from a two dimensional object using a vehicular system | ||
Patent #
US 10,452,931 B2
Filed 08/06/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with multi-paned view | ||
Patent #
US 10,457,209 B2
Filed 03/28/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular control system | ||
Patent #
US 10,462,426 B2
Filed 05/16/2019
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular vision system with rear backup video display | ||
Patent #
US 10,486,597 B1
Filed 07/01/2019
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Multi-camera dynamic top view vision system | ||
Patent #
US 10,486,596 B2
Filed 01/14/2019
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle camera system with image manipulation | ||
Patent #
US 10,493,916 B2
Filed 02/22/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular trailer backup assist system | ||
Patent #
US 10,493,917 B2
Filed 12/20/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular collision mitigation system | ||
Patent #
US 10,497,262 B2
Filed 11/20/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular vision system | ||
Patent #
US 10,509,972 B2
Filed 04/09/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with front and rear camera integration | ||
Patent #
US 10,515,279 B2
Filed 08/30/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle data recording system | ||
Patent #
US 10,523,904 B2
Filed 04/10/2019
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Method of manufacturing variable reflectance mirror reflective element for exterior mirror assembly | ||
Patent #
US 10,538,202 B2
Filed 01/24/2018
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Vehicle vision system with customized display | ||
Patent #
US 10,542,244 B2
Filed 11/12/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Method of synchronizing multiple vehicular cameras with an ECU | ||
Patent #
US 10,560,610 B2
Filed 12/28/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Coaxial cable with bidirectional data transmission | ||
Patent #
US 10,567,705 B2
Filed 06/06/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system using image data transmission and power supply via a coaxial cable | ||
Patent #
US 10,567,633 B2
Filed 05/02/2019
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Targetless vehicular camera calibration method | ||
Patent #
US 10,567,748 B2
Filed 05/21/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Parking assist system | ||
Patent #
US 10,569,804 B2
Filed 01/15/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Method for displaying video images for a vehicular vision system | ||
Patent #
US 10,574,885 B2
Filed 08/20/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Interior mirror assembly with display | ||
Patent #
US 10,583,782 B2
Filed 11/07/2016
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Magna Mirrors of America Incorporated
|
Vehicular control system with trailering assist function | ||
Patent #
US 10,586,119 B2
Filed 10/01/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular rear backup vision system with video display | ||
Patent #
US 10,589,678 B1
Filed 11/25/2019
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with traffic sign recognition | ||
Patent #
US 10,607,094 B2
Filed 02/05/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with accelerated object confirmation | ||
Patent #
US 10,609,335 B2
Filed 03/22/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Video processor module for vehicle | ||
Patent #
US 10,611,306 B2
Filed 08/09/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Imaging system for vehicle | ||
Patent #
US 10,616,507 B2
Filed 06/18/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assistance system for vehicle | ||
Patent #
US 10,623,704 B2
Filed 03/09/2015
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Method for dynamically calibrating vehicular cameras | ||
Patent #
US 10,640,041 B2
Filed 02/04/2019
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision system for vehicle | ||
Patent #
US 10,640,040 B2
Filed 09/10/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Method and system for dynamically ascertaining alignment of vehicular cameras | ||
Patent #
US 10,654,423 B2
Filed 12/04/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular exterior electrically variable reflectance mirror reflective element assembly | ||
Patent #
US 10,661,716 B2
Filed 07/29/2019
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Forward sensing system for vehicle | ||
Patent #
US 10,670,713 B2
Filed 10/22/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular driving assist system using forward-viewing camera | ||
Patent #
US 10,683,008 B2
Filed 07/15/2019
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular driver assist system | ||
Patent #
US 10,685,243 B2
Filed 08/20/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle control system with traffic driving control | ||
Patent #
US 10,688,993 B2
Filed 06/04/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with collision mitigation | ||
Patent #
US 10,692,380 B2
Filed 11/20/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular parking assist system that determines a parking space based in part on previously parked spaces | ||
Patent #
US 10,718,624 B2
Filed 03/04/2019
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular imaging system with blockage determination and misalignment correction | ||
Patent #
US 10,726,578 B2
Filed 05/14/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assistant system using influence mapping for conflict avoidance path determination | ||
Patent #
US 10,733,892 B2
Filed 10/29/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular control system with traffic lane detection | ||
Patent #
US 10,735,695 B2
Filed 10/28/2019
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular control system with temperature input | ||
Patent #
US 10,744,940 B2
Filed 06/25/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Imaging system for vehicle | ||
Patent #
US 10,766,417 B2
Filed 10/23/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle control system with reverse assist | ||
Patent #
US 10,773,707 B2
Filed 12/20/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Method for stitching images captured by multiple vehicular cameras | ||
Patent #
US 10,780,827 B2
Filed 11/25/2019
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Method for determining misalignment of a vehicular camera | ||
Patent #
US 10,780,826 B2
Filed 04/22/2019
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Adaptive forward lighting system for vehicle comprising a control that adjusts the headlamp beam in response to processing of image data captured by a camera | ||
Patent #
US 10,787,116 B2
Filed 09/10/2018
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Imaging system for vehicle | ||
Patent #
US 10,793,067 B2
Filed 07/25/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular collision mitigation system | ||
Patent #
US 10,803,744 B2
Filed 12/02/2019
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular adaptive headlighting system | ||
Patent #
US 10,807,515 B2
Filed 10/01/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular rear backup vision system with video display | ||
Patent #
US 10,814,785 B2
Filed 03/16/2020
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with incident recording function | ||
Patent #
US 10,819,943 B2
Filed 05/05/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular vision system using image data transmission and power supply via a coaxial cable | ||
Patent #
US 10,827,108 B2
Filed 02/17/2020
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Rearview mirror assembly for vehicle | ||
Patent #
US 10,829,052 B2
Filed 10/21/2019
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Vehicular control system | ||
Patent #
US 10,839,233 B2
Filed 03/05/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Trailering assist system with trailer angle detection | ||
Patent #
US 10,858,042 B2
Filed 04/23/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Method for determining alignment of vehicular cameras | ||
Patent #
US 10,868,974 B2
Filed 02/19/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular control system with remote processor | ||
Patent #
US 10,870,427 B2
Filed 11/26/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular trailering system | ||
Patent #
US 10,870,449 B2
Filed 10/01/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Method of synchronizing multiple vehicular cameras with an ECU | ||
Patent #
US 10,873,682 B2
Filed 02/10/2020
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular vision system | ||
Patent #
US 10,875,455 B2
Filed 05/16/2019
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Collision avoidance system for vehicle | ||
Patent #
US 10,875,527 B2
Filed 02/18/2019
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with enhanced night vision | ||
Patent #
US 10,875,403 B2
Filed 10/26/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular vision system | ||
Patent #
US 10,875,453 B2
Filed 05/13/2019
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular vision system | ||
Patent #
US 10,875,526 B2
Filed 10/22/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Forward sensing system for vehicle | ||
Patent #
US 10,877,147 B2
Filed 06/01/2020
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Roadway hazard warning system and method | ||
Patent #
US 5,420,580 A
Filed 12/29/1992
|
Current Assignee
Thomas F. Rawls
|
Original Assignee
University of South Florida
|
Method of transmitting and receiving warning broadcast signals during drive in dangerous area, and system thereof | ||
Patent #
US 5,280,632 A
Filed 11/20/1991
|
Current Assignee
SK Hynix Inc.
|
Original Assignee
SK Hynix Inc.
|
Vehicle speed control system | ||
Patent #
US 5,315,295 A
Filed 01/21/1992
|
Current Assignee
Mazda Motor Corporation
|
Original Assignee
Mazda Motor Corporation
|
Accident information providing system for automotive vehicle | ||
Patent #
US 5,270,708 A
Filed 03/18/1992
|
Current Assignee
Nissan Motor Co. Ltd.
|
Original Assignee
Nissan Motor Co. Ltd.
|
Device for the output of safety-related road information in locating and navigating systems of land vehicles | ||
Patent #
US 5,146,219 A
Filed 01/03/1991
|
Current Assignee
Robert Bosch GmbH
|
Original Assignee
Robert Bosch GmbH
|
Navigation system using angular rate sensor | ||
Patent #
US 4,882,689 A
Filed 02/09/1988
|
Current Assignee
Yazaki Corporation
|
Original Assignee
Yazaki Corporation
|
20 Claims
-
1. A driving control system for a vehicle, comprising:
-
a map information output means for outputting a map; a vehicle position detecting means for detecting a vehicle position of a subject vehicle on the map; a vehicle speed detecting means for detecting a vehicle speed; a passable area determining means for determining a turning radius of the vehicle based on the detected vehicle speed and determining a passable area on the map which is safely passable by the vehicle based on the determined turning radius; a passability/impassability judging means for deciding that the vehicle is safely passable within dimensions of an oncoming portion of road which is in front of the vehicle position in a traveling direction when the road portion is included in the passable area of the map; and said map information output means, said vehicle position detecting means, said vehicle speed detecting means, said passable area determining means, and said passability/impassability judging means being operatively interconnected. - View Dependent Claims (2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12)
-
-
13. A driving control system for a vehicle, comprising:
-
a map information output means for outputting a map; a vehicle position detecting means for detecting a vehicle position of a subject vehicle on the map; a vehicle speed detecting means for detecting a vehicle speed; a turning radius determining means for determining a turning radius of the vehicle based on said detected vehicle speed; a maximum turning radius determining means for determining, on the basis of a portion of road which is in front of the vehicle position in a traveling direction on the map, a maximum vehicle-turning radius required for the vehicle to safely pass through said road portion; a passable vehicle speed calculating means for calculating a passable vehicle speed at which the vehicle is safely passable within dimensions of said road portion based on the determined maximum turning radius and the determined turning radius; and said map information output means, said vehicle position detecting means, said vehicle speed detecting means, said turning radius determining means, said maximum turning radius determining means, and said passable vehicle speed calculating means being operatively interconnected. - View Dependent Claims (14, 15, 16, 17)
-
-
18. A driving control system for a vehicle, comprising:
-
a map information output means for outputting a map; a vehicle position detecting means for detecting a vehicle position of a subject vehicle on the map; a vehicle speed detecting means for detecting a vehicle speed; a turning radius determining means for determining a turning radius of the vehicle based on said detected vehicle speed; a judging-section determining means for establishing a first section having a predetermined range and a second section having a range narrower than said predetermined range on a road in front of the vehicle position in a traveling direction; a judgment-execution determining means for judging whether or not the vehicle is safely passable through a road in the first section on the basis of the detected vehicle speed and a curved condition of the road on the map, and for determining, based on said judgment, whether or not a judgment of a passability or impassability of the vehicle through a road in the second section should be conducted; a passability/impassability judging means for judging whether or not the vehicle is safely passable within dimensions of the road in the second section based on the detected vehicle speed, the determined turning radius and the curved condition of the road on the map, when it is decided by the judgment-execution determining means that the judgment of the passability or impassability of the vehicle through the road in the second section should be conducted; means for providing at least one of an alarm and a vehicle speed adjustment based on said judgment of whether or not the vehicle is passable through the road in the second section; and said information output means, said vehicle position detecting means, said vehicle speed detecting means, said turning radius determining means, said judging-section determining means, said judgment-execution determining means, said passability/impassability judging means, and said providing means being operatively interconnected. - View Dependent Claims (19, 20)
-
1 Specification
1. Field of the Invention
The present invention relates to a driving control system for a vehicle, which enables a vehicle to pass through a corner or the like on a road at an appropriate vehicle speed by utilizing a so-called navigation system including a map information output means for outputting a map, and a vehicle position detecting means for detecting a vehicle position on the map.
2. Description of Relevant Art
There is a conventionally known driving information display apparatus utilizing a navigation system, as described, for example, in Japanese Patent Application Laid-open No. 89298/85.
Such driving information display apparatus is capable of not only displaying a map and a vehicle position on a display surface, but also detecting a corner through which the vehicle cannot pass at a current vehicle speed over a given section in a traveling direction of the vehicle on the basis of the travel distance and the radius of curvature of the corner on a road on the map; calculating an appropriate vehicle speed at which the vehicle can properly pass through such corner, and displaying such information to attract a driver'"'"'s attention.
In the above known technique, the accuracy of the appropriate vehicle speed is largely dependent upon the accuracy of calculation of the radius of curvature of a corner on a road, i.e., the accuracy of the map provided by the navigation system. However, the accuracy of the map provided by the known navigation system is insufficient for correctly calculating the radius of curvature of the corner. Moreover, the above known technique suffers from a problem that the calculation of the radius of curvature of the corner is complicated and, hence, a calculating device of a large capacity is required.
It is an object of the present invention to provide a control system which enables the travel of a vehicle to be properly controlled by accurately judging whether or not it is possible for the vehicle to pass through a corner on a road without calculation of the radius of curvature of the corner, and accurately determining a vehicle speed at which the vehicle can safely pass through the corner.
To achieve the above object, according to a first aspect and feature of the present invention, there is provided a driving control system for a vehicle, comprising a map information output means for outputting a map, a vehicle position detecting means for detecting a vehicle position of a subject vehicle on the map, a vehicle speed detecting means for detecting a vehicle speed, a passable area determining means for determining a passable area on the map which is safely passable by the vehicle based on the detected vehicle speed, a passability/impassability judging means for deciding that the vehicle is safely passable through a portion or corner of a road which is in front of the vehicle position in a traveling direction of the vehicle when a road is included in the passable area on a map, and all of the discussed components being operatively interconnected.
With the above-described system, the passable area on the map is determined on the basis of the vehicle speed; and the road section which is in front of the vehicle position is compared with the passable area, and when the road is included in the passable area, it is decided that the vehicle is passable through the road section. Therefore, it is possible to properly judge whether or not the vehicle is passable through the road section by a simple calculation without a complicated and poor-accuracy calculation of the radius of curvature of a road.
In addition, according to a second aspect and feature of the present invention, there is provided a driving control system for a vehicle, comprising a map information output means for outputting a map, a vehicle position detecting means for detecting a vehicle position of a subject vehicle on the map, a maximum turnable radius determining means for determining, on the basis of a road portion which is in front of the vehicle position in a traveling direction on the map, a maximum turnable radius required for the vehicle to safely pass through the road portion, a passable vehicle speed calculating means for calculating a passable vehicle speed based on the maximum turnable radius, and all of the discussed components being operatively interconnected.
With the above-described system, the maximum turnable radius required for the vehicle to pass through the road section which is in front of the vehicle position in the traveling direction on the map is determined, and the passable vehicle speed is calculated on the basis of the maximum turnable radius. Therefore, it is possible to determine a passable vehicle speed by a simple calculation without calculation of the radius of curvature of a complex road.
Further, according to a third aspect and feature of the present invention, there is provided a driving control system for a vehicle, comprising a map information output means for outputting a map, a vehicle position detecting means for detecting a vehicle position of a subject vehicle on the map, a vehicle speed detecting means for detecting a vehicle speed, a judging-section determining means for establishing a first section having a predetermined range and a second section having a range narrower than said predetermined range on a road in front of the vehicle position in a traveling direction, a judgment-execution determining means for judging whether or not the vehicle is safely passable through a road in the first section on the basis of the detected vehicle speed and a curved condition of the road on the map, and for determining, on the basis of such judgment, whether or not the judgment of the passability or impassability of the vehicle through a road in the second section should be conducted, a passability/impassability judging means for judging whether or not the vehicle is safely passable through the road in the second section based on the detected vehicle speed and the curved condition of the road on the map, when it is decided by the judgment-execution determining means that the judgment of the passability or impassability of the vehicle through the road in the second section should be conducted, providing at least one of a means for an alarm and a vehicle speed adjustment based on the judgment of whether or not the vehicle is passable through the road in the second section, and all of the discussed components being operatively interconnected.
With the above-described system, for example, when the vehicle is traveling on a road having a long straight portion which provides no hindrance to the vehicle'"'"'s passage thereover, as does a freeway, it is not necessary to conduct the judgment of whether or not the vehicle is passable through the road in the second section and, hence, it is possible to reduce the calculation quantity which must be made by the system. This makes it possible to provide a reduction in size of the calculating device and, in its turn, of the entire control unit and to improve the speed of another or subsequent calculation by the system.
The above and other objects, features and advantages will become apparent from the following description of preferred embodiments, taken in conjunction with the accompanying drawings.
FIGS. 1 and 8 illustrate a driving control system for a vehicle according to a first embodiment of the present invention, wherein
FIG. 1 is a block diagram illustrating the entire arrangement;
FIG. 2 is a block diagram of a control section;
FIG. 3 is a flow sheet illustrating the operation;
FIG. 4 is a diagram for explaining the operation at a low vehicle speed;
FIG. 5 is a diagram for explaining the operation at a high vehicle speed;
FIG. 6 is a diagram for explaining the operation when a road is within a passable area;
FIG. 7 is a diagram for explaining the operation when a road is out of the passable area; and
FIG. 8 is a diagram for explaining a method for determining a passable vehicle speed.
FIGS. 9 to 20 illustrate a driving control system for a vehicle according to a second embodiment of the present invention, wherein
FIG. 9 is a block diagram illustrating the entire arrangement;
FIG. 10(a), 10(b) are jointly a diagram for explaining the outline of the operation;
FIGS. 11 to 13 are a flow than illustrating the operation;
FIG. 14 is a diagram for explaining a method for determining a detection area;
FIG. 15 is a diagram for explaining another method for determining a detection area;
FIG. 16 is a diagram for explaining a method for calculating a target vehicle speed;
FIG. 17 is a schematic view of an instrument panel;
FIG. 18 is a diagram illustrating one embodiment of an alarm means;
FIG. 19 is a diagram illustrating another embodiment of an alarm means; and
FIG. 20 is a diagram illustrating a further embodiment of an alarm means.
A driving control system for a vehicle according to a first embodiment of the present invention will now be described in connection with FIGS. 1 to 8.
Referring to FIG. 1, reference character NV is a navigation system for an automobile, which includes therein a well-known inertia navigating device 1, a map information output means 21 using an IC card or CD-ROM, and a control section 3 for various calculations which will be described hereinafter. The inertia navigating device 1 receives signals from a vehicle speed detecting means 61 and a yaw rate detecting means 71 in addition to a vehicle position information, a road information, a traffic information and the like from a satellite communication device 41 or a proximity communication device 51. Then the navigation device 1 calculates a current position of a subject vehicle, or a path to a goal, on the basis of the signals and road data from the map information output means 21, and displays them on CRT 91 through a man-machine interface 8. The control section 3 performs various calculations, which will be described hereinafter, in real time on the basis of outputs from the map information output means 21 and the vehicle speed detecting means 61.
Reference character D1 is a vehicle speed control unit which includes therein an image forming means 11, an alarm means 121 and a vehicle speed regulating means 131. The image forming means 11 includes, for example, a head-up display, and displays a road map, a vehicle position, a corner-passable vehicle speed or the like. The alarm means 121 includes an acoustical means such as a buzzer or chime and gives an alarm to a driver to reduce the travel speed. The vehicle speed regulating means 131 includes a brake device or an automatic cruise device and regulates the vehicle speed, so that the vehicle can pass through a corner.
As shown in FIG. 2, the control section 3 of the navigation system NV includes a minimum turnable radius calculating means M1 for calculating a minimum turnable radius R of a vehicle on the basis of a vehicle speed V0 ; a temporary or transient vehicle-position calculating means M2 for calculating a temporary or transient vehicle position P1 which is in front of the vehicle position P0 in the traveling direction by using a vehicle speed V0 and the vehicle position P0 ; a passable area determining means M3 for determining a vehicle-passable area A from the minimum turnable radius R of the vehicle and the temporary vehicle position P1 ; a passability/impassability judging means M4 for judging whether or not the vehicle is passable through a corner, from road position data N and the vehicle-passable area A; a maximum turning-radius calculating means M5 for calculating a maximum turning-radius R'"'"' such that the position data N is included in the passable area A if the vehicle can not pass the corner; a passable vehicle-speed calculating means M6 for calculating a passable vehicle-speed VMAX on the basis of the maximum turning-radius R'"'"'; and a comparing means M7 for comparing the passable vehicle-speed VMAX with the vehicle speed V0. The vehicle speed control unit D1 is controlled on the basis of an output from the comparing means M7.
The operation of the driving control system according to the present invention having the above-described construction will be described below with reference to a flow chart in FIG. 3.
First, a current position P0 (X0, Y0) of the subject vehicle is detected by the inertia navigating device 1 of the navigation system NV (at a step S1), and a current vehicle speed V0 is detected by the vehicle speed detecting means 61 (at a step S2). Then, a preread distance L is calculated on the basis of the vehicle speed V0 (at a step S3), and the temporary vehicle position calculating means M2 calculates a temporary vehicle position P1 (X1, Y1)from the vehicle position P0 (X0, Y0)and the preread distance L (at a step S4). As shown in FIGS. 4 and 5, the temporary vehicle position P1 (X1, Y1)is a reference position in which it is judged whether or not the vehicle is passable through the corner, and the passable vehicle speed VMAX enabling the vehicle to pass through the corner is determined. The preread distance L is determined at a larger value, as the vehicle speed V0 is larger, so that a sufficient speed-reduction distance can be insured when the current vehicle speed V0 is too large such that the vehicle is impassable through a corner which is in front of the temporary vehicle position P1 (X1, Y1).
Then, the minimum turnable radius calculating means M1 searches, on the map, a minimum turnable radius R on the basis of the vehicle speed V0 (at a step S5). This minimum turnable radius R is larger at a larger vehicle speed V0 and smaller at a smaller vehicle speed V0.
Subsequently, a passable area A is determined by the passable area determining means M3. More specifically, two same-radius circular arcs C1 and C2 having a radius equal to the minimum turnable radius R are defined so as to contact with each other at the temporary vehicle position P1 (X1, Y1), and the passable area A is established outside the two circular arcs C1 and C2 (at a step S6). The minimum turnable radius R is smaller when the vehicle speed V0 is smaller, as shown in FIG. 4, and hence, the passable area A is wider. On the other hand, the minimum turnable radius R is larger when the vehicle speed V0 is larger, as shown in FIG. 5, and hence, the passable area A is narrower.
Then, the map information output means 21 establishes a plurality of node points N=N1, N2, N3, . . . on a road on the basis of the road position data read from the IC card or the CD-ROM, and the passability/impassability judging means M4 judges whether or not these node points are present in the passable area A (at a step S7). When the node points N are present in the passable area A as shown in FIG. 4, it is decided that the vehicle is passable through the corner at the current vehicle speed V0. On the other hand, when the node points N are out of the passable area A as shown in FIG. 5, it is decided that the vehicle is impassable through the corner at the current vehicle speed V0. The node points are established at closer distances spaced apart from one another, as a road has a smaller radius of curvature.
Whether the node points N are inside or outside the passable area A is judged in the passability/impassability judging means M4 in a following manner: If both of distances B1 and B2 between the centers of the two circular arcs C1 and C2 having the radius R and the node point N are larger than a radius R, as shown in FIG. 6, it is decided that the node point N is inside the passable area A, and the vehicle is passable through the node point N at the current vehicle speed V0. On the other hand, if one of the distances B1 and B2 (e.g., B2) between the centers of the two circular arcs C1 and C2 having the radius R and the node point N is smaller than a radius R, as shown in FIG. 7, it is decided that the node point N is outside the passable area A, and the vehicle is impassable through the node point N at the current vehicle speed V0.
Even if, for example, the node points N1 and N3 are inside the passable area A, if the node point N2 is outside the passable area A, as shown in FIG. 8, the vehicle is impassable through the node point N at the current vehicle speed V0. Therefore, to permit the vehicle to pass through the corner at the current vehicle speed V0, it is required that all the node points N are inside the passable area A.
When it is decided at the step S7 that the vehicle is impassable through the corner, a maximum turning radius R'"'"' required for the vehicle to pass the corner is calculated in the maximum turning radius calculating means M5 (at a step S8). The maximum turning radius R'"'"' is determined as a radius R'"'"' of circular arcs C1 '"'"' and C2 '"'"' inside which all the node points are not present (see FIG. 8). Therefore, if the vehicle speed is reduced down to a speed at which the vehicle can be turned with the maximum turning radius R'"'"', the vehicle can pass through the corner.
A vehicle speed V1 at which the vehicle can be turned with the maximum turning radius R'"'"' is calculated in the passable vehicle-speed calculating means M6 (at a step S9), and such vehicle speed V1 is determined as a passable vehicle speed VMAX (at a step S10). When it is decided at the step S7 that the vehicle is passable through corner, the processing is advanced to the step S10, at which the current vehicle speed V0, as it is, is determined as the passable vehicle speed VMAX. The current vehicle speed V0 is compared with the passable vehicle speed VMAX, i.e., if the vehicle is impassable through the corner, the vehicle speed V0 is adjusted by the vehicle speed regulating means 131 of the vehicle control unit D1,so that it is reduced to a level equal to or less than the passable vehicle speed VMAX, until the vehicle reaches the temporary vehicle position P1 (at a step S12). This enables the vehicle to reliably pass through the corner.
It should be noted that in reducing the vehicle speed V0 to a level equal to or less than the passable vehicle speed VMAX, the alarm means 121 can be used in combination. More specifically, when the current vehicle speed V0 is, for example, within 1.2 times the passable vehicle speed VMAX, the alarm means 121 may be operated to provide only an alarm. When the vehicle speed V0 reaches at least 1.2 times the passable vehicle speed VMAX, the vehicle speed regulating means 131 may be operated to reduce the vehicle speed.
Without carrying out the complicated and low-accuracy calculation of a radius of curvature of a corner, it is judged whether or not the vehicle is passable through the corner. When the vehicle is impassable through the corner at the current vehicle speed, the vehicle is enabled to pass through the corner at a proper vehicle speed by performing the reduction of the vehicle speed by the alarm means 121 and/or the vehicle speed regulating means 131.
In the driving control system for the vehicle according to the first embodiment, when the preread distance L and the minimum turnable radius R are determined on the basis of the vehicle speed V0, they can be corrected on the basis of operational conditions such as the weight of a vehicle body and the like and/or driving environments such as a frictional coefficient of a road and the like. For example, when the weight of a vehicle body is large and the frictional coefficient of a road is small, if the preread distance L is set at a large value, and the minimum turnable radius R is set at a large value, a more proper judgment and control can be performed.
If a "NO" determination is made at the step S11 of the flow chart in FIG. 3, i.e., if the vehicle is passable through the corner at the current vehicle speed V0, it is possible to deter:mine that the vehicle can pass through the corner, no matter how many km/hr the speed may be reduced from the current vehicle speed V0.
Further, the passable vehicle speeds VMAX changed momentarily can be stored in a memory while being sequentially renewed over a predetermined time, and the current vehicle speed V0 can be compared with the maximum value of the stored passable vehicle speeds VMAX.
A driving control system for a vehicle according to a second embodiment of the present invention will now be described in connection with FIGS. 9 to 16.
In FIG. 9, reference character 22 is a navigation system for an automobile. A map information output device 22 using an IC card or CD-ROM is connected to the navigation system 22. Various information from a satellite communication device 42 and a proximity communication device 52 and signals from a vehicle speed detecting means 62 and a yaw rate detecting means 72 are supplied to the navigation system 22. A display means 92 including CRT is connected to the navigation system 22. A path to a goal and a vehicle position on a map are displayed on the display means 92.
Map data and information such as the vehicle position are supplied from the navigation system 22 to a vehicle speed control unit D2. The vehicle position is detected by a vehicle position detecting means such as an inertia navigating device. Signals are supplied to the vehicle speed control unit D2 from the vehicle speed detecting means 62, a road surface condition detecting means 14 for detecting a frictional coefficient of a road, a road gradient detecting means 15 for detecting an inclination (up- and down-grades and the degrees thereof) of a road, a rainfall detecting means 16 used in an automatic wiper device or the like, and a peripheral-light detecting means 17 used in an auto-light device or the like.
Further, an alarm means 122 and a speed-reducing means 132 as a vehicle speed regulating means are connected to the vehicle speed control unit D2. In addition to a means for giving an acoustic alarm using a chime or a buzzer, the alarm means 122 may be a means for giving a visual alarm using a light emitting diode or the like which will be described hereinafter. The speed-reduction means 132 is comprised of a throttle actuator connected to an engine control ECU for adjusting the throttle opening degree, and a brake actuator connected to a brake control ECU for actuating a brake device.
The vehicle speed control unit D2 includes a judging-section determining means 18 for determining an investigating section L1, an alarming section L2 and a speed-reducing; section L3 ; a judgment-execution determining means 19 for determining whether or not a judgment of passability/impassability in the alarm section L2 and the speed-reduction section L3 should be carried out on the basis of the decision that it is possible; or impossible for the vehicle to pass through a road in the investigating section L1 ; an alarming-execution determining means 20 for operating the alarm means 122 on the basis of the decision that it is possible or impossible for the vehicle to pass the road in the alarming section L2 ; and a speed-reducing-execution determining means 21 for actuating the speed-reducing means 132 on the basis of the decision that it is possible or impossible for the vehicle to pass through the road in the speed-reducing section L3. The vehicle speed control unit D2 calculates each of signals from the navigation system 22, the vehicle speed detecting means 62, the road surface condition detecting means 14, the rainfall detecting means 16 and the peripheral-light detecting means 17; operates the alarm means 122 to give an alarm to a driver, and actuates the speed-reduction means 132 to automatically reduce the speed of the vehicle.
The outline of the vehicle speed alarm and the vehicle speed control will be described below in connection with FIGS. 10(a), 10(b).
Coordinates N of a plurality of node points on a road which indicate a travel path for the subject vehicle, and coordinates P0 of a current position of the vehicle are included in map data supplied from the navigation system 22 to the vehicle speed control unit D2. An investigating section L1, an alarming section L2 and a speed-reducing section L3 each having a predetermined length determined in accordance with the vehicle speed are established on a road forward in a traveling direction on the basis of a vehicle position P0. A node point lying at a front end of the investigating section L1 farthest from the subject vehicle is determined as a first temporary vehicle position Pn; a node point lying at a front end of the intermediate alarming section L2 is determined as a second temporary vehicle position Pk, and a node point lying at a front end of the speed-reducing section L3 nearest to the subject vehicle is determined as a third temporary vehicle position Pj. The investigating section L1 constitutes a first section in this embodiment, and the alarming section L2 and the speed-reducing section L3 together constitute a second section in this embodiment.
If a road within the investigating section L1 (i.e., between the current position P0 and the first temporary vehicle position Pn) is a straight road, it is decided that there is no hindrance or problem for the passage of the vehicle through the investigating section L1, and the subsequent controls are not conducted. If there is a corner, an intersection, a crank, a junction or the like within the investigating section L1, then it is judged whether or not the vehicle is passable through a road in the alarming section L2 (i.e., between the current point P0 and the second temporary vehicle position Pk) at a current vehicle speed. If it is decided that there is a hindrance, the alarm means 122 is actuated to suggest the driver to conduct the reduction of speed, and it is judged whether or not the vehicle is passable through the speed-reducing section L3 (i.e., between the current position P0 and the third temporary vehicle position Pj) at the current vehicle speed. If it is decided that there is a hindrance to the passage, the speed-reduction means 132 is actuated to automatically reduce the speed of the vehicle.
The above-described operation will be further described below in detail with reference to a flow chart shown in FIGS. 11 to 13.
First, in the flow chart portion shown in FIG. 11, coordinates P0 of current position on a map are read into the judging-section determining means 18 from the navigation system 22, and a current vehicle speed V0 is read into the judging-section determining means 18 from the vehicle speed detecting means 62 (at steps Q1 and Q2). In the judging-section determining means 18, a road surface condition correcting factor K1 is calculated on the basis of a road surface frictional coefficient detected by the road surface condition detecting means 14; a road gradient correcting factor K2 is calculated from a road gradient detected by the road gradient detecting means 15; a rainfall correcting factor K3 is calculated from a rainfall condition detected by the rainfall detecting means 16; and a peripheral-light correcting factor K4 is calculated from a brightness detected by the peripheral-light detecting means 17 (steps Q3 to Q6). These correcting factors K1 to K4 are determined, for example, by a map-searching.
Then, a first set lateral acceleration a1 for determining a first detection area A1 for judging whether or not an alarming is required, and a second set lateral acceleration α2 for determining a second detection area A2 for judging whether or not a reduction of speed is required, are determined (at a step Q7). The first and second set lateral accelerations α1 and α2 are intended to define a limit value of lateral acceleration when the vehicle passes through a node point on a road, and they are determined so that α2 >α1 is established.
When the first and second set lateral accelerations α1 and α2 are determined, their values are corrected on the basis of the road surface condition correcting factor K1, the road gradient correcting factor K2, the rainfall correcting factor K3 and the peripheral-light correcting factor K4. More specifically, when the vehicle is in a condition in which it is difficult for the vehicle to sharply turn such as when the road surface frictional coefficient is small, when the road has a downgrade, when it is raining, or when the environment is dark, the values of the first and second set lateral accelerations α1 and α2 are corrected to small values.
Subsequently, a first set deceleration β1 for determining the investigating section L1 and the alarming section L2, and a second set deceleration β2 for determining the speed-reducing section L3 are determined (at a step Q8). Each of the first and second set decelerations β1 and β2 is a deceleration required to sufficiently reduce the speed of the vehicle within a predetermined time, until the vehicle reaches the second temporary vehicle position Pk or the third vehicle position Pj from the current position P0.
When the first and second set decelerations β1 and β2 are determined, their values are corrected on the basis of the road surface condition correcting factor K1, the road gradient correcting factor K2, the rainfall correcting factor K3 and the peripheral-light correcting factor K4. More specifically, when the vehicle is in a condition in which it is difficult to rapidly reduce the speed of the vehicle, such as when the road surface frictional coefficient is small, when the road has a downgrade, when it is raining, or when the environment is dark, the values of the first and second set decelerations β1 and β2 are corrected to small values.
In determining the first and second set lateral accelerations α1 and α2 and the first and second set decelerations β1 and β2, the road surface condition, the road gradient, the rainfall condition and the environment condition are taken into consideration in the present embodiment. But in addition to such factors, a driver condition may also be taken into consideration. More specifically, a driver'"'"'s fatigued condition or a driver'"'"'s drowsiness condition can be judged from the monitored movements of driver'"'"'s eyeballs and eyelids, or from a driver'"'"'s monitored heart rate, a driver'"'"'s monitored respiratory rate or the like, and on the basis thereof, the first and second set lateral accelerations α1 and α2 and the first and second set decelerations β1 and β2 can be corrected to values for safety, respectively.
Then, a first set time t1 which the vehicle requires to reach the second temporary vehicle position Pk from the current position P0, and a second set time t2 which the vehicle requires to reach the third temporary vehicle position Pj from the current position P0 are determined (at a step Q9).
Advancing to the flow chart portion shown in FIG. 12, an investigating section L1 is calculated on the basis of the current vehicle speed V0 and the first set deceleration β1 (at a step Q10) according to an expression, L1 =V02 /(2β1). This investigating section L1 corresponds to a distance required to stop the vehicle when the speed-reduction from the vehicle speed V0 is conducted with the first set deceleration β1.
An alarming section L2 is calculated on the basis of the current vehicle speed V0, the first set deceleration β1 and the first set time t1 according to an expression, L2 =V0 t1 -(β1 ×t12)/2 (at a step Q11). This alarming section L2 corresponds to a distance through which the vehicle travels within the first set time, when the speed-reduction from the vehicle speed V0 is conducted with the first set deceleration β1.
A speed-reducing section L3 is calculated on the basis of the current vehicle speed V0, the second set deceleration β2 and the second set time t2 according to an expression, L3 =V0 t2 -(β2 ×t22)/2 (at a step Q12). This speed-reducing section L3 corresponds to a distance through which the vehicle travels within the second set time t2, when the speed-reduction from the vehicle speed V0 is conducted with the second set deceleration β2.
Then, in the judgment-execution determining means 19, coordinates P0, N1 to Nn of node points included in the investigating section L1 are extracted, and a turn of a corner, an intersection, a crank, a junction or the like within the investigating section L1 is detected (at steps Q13 and Q14).
If the intersection, the crank or the junction is not detected at the step Q15 and the corner is not detected at the step Q16, or if the right-turning or left-turning is not conducted at such intersection or the like at the step Q17 and the corner is not detected at the step Q16 even if the intersection, the crank and/or the junction are/is detected at the step Q15, i.e., if the road within the investigating section L1 in which the vehicle travels is a straight road, it is decided that the vehicle is passable through the investigating section L1 without giving an alarm and without conducting the speed-reduction, and the system operation returns to the start of a program.
If the intersection, the crank and/or the junction is detected at the step Q15 and the right-turning or the left-turning is conducted at such intersection or the like at the step Q17, or if the corner is detected at the step Q16, i.e., if the road within the investigating section L1 in which the vehicle travels is not a straight road, it is decided that it can be required to give an alarm and conduct the speed-reduction, moving to a step Q18 in the flow chart portion shown in FIG. 13.
Moving to the flow chart portion shown in FIG. 13, in the alarming-execution determining means 20, coordinates Nj+1 to Nk of node points within the alarming section L2 are extracted, and coordinates P0, N1 to N-j of node points within the speed-reducing section L3 are extracted (at steps Q18 and Q19). Then, a first detection area A1 is established for each node point within the alarming section L2.
FIG. 14 illustrates a method for determining the first detection area A1. According to this method, first, a line c bisecting an angle formed by two lines: a line segment a connecting the node point within the alarming section L2 and a forward node point and a line segment b connecting the node point and a rearward node point is described. A minimum turning radius R1 is calculated on the basis of the current vehicle speed V0 and the first set lateral acceleration α1 according to an expression, R1 V02 /α1. And two circular arcs C1 and C2 having a turning center on the bisecting line c and passing the node point are described. Then, an obliquely-lined area surrounded by a circular arc C3 of a radius 2R1 about the node point and by the two circular arcs C1 and C2 is determined as the first detection area A1.
FIG. 15 illustrates another method for determining the first detection area A1. According to this method, a point of intersection between a line d for vertically bisecting a line segment a connecting the node point within the alarming section L2 and a forward node point and a line segment e bisecting a line segment b connecting the node point and a rearward node point is first determined. And a straight line f connecting such point of intersection and the node point is described. A minimum turning radius R1 is calculated on the basis of the current vehicle speed V0 and the first set lateral acceleration a1 according to an expression, R1 =V02 /α1. And two circular arcs C1 and C2 having a turning center on the straight line f and passing the node point are described. Then, an obliquely lined area surrounded by a circular arc C3 of a radius 2R1 about the node point and by the two circular arcs C1 and C2 is determined as the first detection area A1.
The minimum turning radius R1 of the first detection area A1 determined in the above manner corresponds to a minimum turning radius at which the vehicle can be turned at a lateral acceleration equal to or less than the first set lateral acceleration α1, when the vehicle enters the node point at the current vehicle speed V0. Therefore, if the forward node point is inside the first detection area A1, the vehicle is passable through the node point at a lateral acceleration equal to or less than the first set lateral acceleration α1. On the other hand, if the forward node point is outside the first detection area A1, the vehicle is impassable through the node point at a lateral acceleration equal to or less than the first set lateral acceleration α1.
If the forward node point is outside the first detection area A1 (at step Q21), it is decided that the vehicle is impassable through the alarming section L2 at the current vehicle speed V0, and the alarm means 122 is actuated to alarm the driver to conduct the speed-reduction, and this alarming is stopped after a lapse of the first set time t1 (at steps Q22 and Q23). The alarm means 122 will be described in detail hereinafter.
Then, in the speed-reducing execution determining means 21, a second detection area A2 is established for each node point within the speed-reducing section L3 (at a step Q24). The establishment of this second detection area A2 is carried out in substantially the same manner as the establishment of the first detection area A1 which has been described above in connection with FIGS. 14 and 15. But there is a difference in only a respect that a minimum turning radius R2 is calculated on the basis of the second set lateral acceleration α2 (α2 >α1)according to an expression, R2 =V02 /α2. Thus, the minimum turning radius R2 of the second detection area A2 is smaller than the minimum turning radius R1 of the first detection area A1 (R2 <R1).
The minimum turning radius R2 of the second detection area A2 established in the above manner corresponds to a minimum turning radius at which the vehicle can be turned at a lateral acceleration equal to or less than the second set lateral acceleration α2 , when the vehicle enters the node point at the current vehicle speed V0. If the forward node point is inside the second detection area A2, the vehicle is passable through the node point at a lateral acceleration equal to or less than the second set lateral acceleration α2. On the other hand, if the forward node point is outside the second detection area A2, the vehicle is impassable through the node point at a lateral acceleration equal to or less than the second set lateral acceleration α2.
If the forward node point is outside the second detection area A2 (at a step Q25), it is decided that the vehicle is impassable through the speed-reducing area L3 at the current vehicle speed V0, and the speed-reducing means 132 is actuated to automatically conduct the speed-reduction which is stopped after a lapse of the second set time t2 (steps Q26 and Q27).
As described above, it is first judged whether or not there is a corner or the like in the investigating section L1, and if there is no corner and the like, the judgment whether or not the vehicle is passable through the alarming section L2 and the speed-reducing section L3 is discontinued. Therefore, if the vehicle travels on a road having a long continued straight portion without any hindrance to the vehicle'"'"'s passage thereover, such as a freeway, an unnecessary calculation can be prevented from being conducted. Accordingly, the invention provides a reduction in size of a calculating means used therein and also increases the speed of other calculations made thereby. Moreover, by conducting the alarming and the speed-reduction functions on the basis of the decision that the vehicle is passable or impassable through the alarming section L2 and the speed-reducing section L3, a fine control of the vehicle speed can be performed from the alarming to the speed-reduction in accordance with the approaching condition of the vehicle to a corner or the like.
The time of operation of the alarm means 122 and the time of operation of the speed-reducing means 132 have been defined by the first and second set times t1 and t2 previously set in the above embodiment, but they can be determined in other manners such as the following:
If it is decided that the vehicle is impassable through a predetermined node point within the alarming section L2 at a current vehicle speed V0, a first target vehicle speed V1 as a vehicle speed permitting the vehicle to pass through such node point is calculated and stored in a memory.
FIG. 16 illustrates a method for determining the first target vehicle speed V1. If a forward node point is outside a first detection area A1 established at a node point, a circular arc C4 extending through the node point and the forward node point and having a phantom turning center on the straight line c (see FIG. 14) or a straight line f (see FIG. 15) is described, and a first target vehicle speed V1 is calculated on the basis of a radius R1 '"'"' of of this circular are C4 and the first set lateral acceleration α1 according to an expression, V1 =(α1 ×R1 '"'"')1/2.
If a driver operates the brake in response to an alarm, thereby causing the vehicle speed V0 to be reduced to the first target vehicle speed V1 stored in the memory, the operation of the alarm means 122 is discontinued. This memory value is eliminated when the vehicle speed V0 has reached the first target vehicle speed V1, or when the vehicle has reached the node point.
Likewise, if it is decided that the vehicle is impassable through a predetermined node point within the speed-reducing section L3 at a current vehicle speed V0, a second target vehicle speed V2 as a vehicle speed permitting the vehicle to pass through such node point is calculated in the same manner as that shown in FIG. 8. In this case, the second target vehicle speed V2 is calculated on the basis of the second set lateral acceleration α2 according to an expression, V2 =(α2 ×R2 '"'"')1/2.
If the vehicle speed V0 is reduced to the second target vehicle speed V2 stored in the memory by an automatic reduction of speed, the operation of the speed-reducing means 132 is discontinued. This memory value is eliminated when the vehicle speed V0 has reached the second target vehicle speed V2, or when the vehicle has reached the node point.
Further, the judgment of whether or not the alarming means 122 and the speed-reducing; means 132 should be actuated can be carried out in the following manner:
A first target vehicle speed V1 is calculated in the manner described above for all the node points within the alarming section L2, and is stored in the memory. Then, a deceleration required to reduce the current vehicle speed V0 to the first target vehicle speed V1 before the vehicle reaches each node point is calculated. When such deceleration exceeds the first set deceleration β1, the alarm means 122 is actuated. Likewise, the second target vehicle speed V2 is calculated for all the node points within the speed-reducing section L3, and is stored in the memory. When a deceleration required to reduce the current vehicle speed V0 to the second target vehicle speed V2 before the vehicle reaches each node point, exceeds the second set deceleration β2, the speed-reducing means is actuated.
The specified construction of the alarm means 122 will be described below.
As shown in FIG. 17, the alarm means 122 including a light-emitting diode is formed into a lengthwise long bar and mounted at an easily visible place between a speedometer 23 and a tachometer 24 mounted in an instrument panel.
As shown in FIG. 18, the alarm means 122 includes a "blue" region, a "yellow" region and a "red" region provided in sequence from the bottom to the top. The boundary between the "blue" region and the "yellow" region corresponds to an alarm threshold value at which the alarm means 122 is operated, and the boundary between the "yellow" region and the "red" region corresponds to an automatic speed-reduction threshold value at which the speed-reducing means 132 is operated. Each of the alarm threshold value and the automatic speed-reduction threshold value is determined as a fixed value which is not dependent on the curvature of a corner in this embodiment, but they can be varied depending upon, for example, a road surface condition and a driver'"'"'s skill.
A region of the alarm means 122 from a lower end to a current vehicle speed is lit by an increase in vehicle speed, and when the vehicle speed exceeds the alarm threshold value, a portion of the "yellow" region between the alarm threshold value and the current value is lit, so that the degree of excess of the current vehicle speed can be easily recognized in accordance with the area of the lit portion. If the vehicle speed is further excessive to exceed the automatic speed-reduction threshold value, a portion of the "red" region between the automatic speed-reduction threshold value and the current vehicle speed is lit together with the entire "yellow" region, so that the degree of excess of the current vehicle speed can be easily recognized in accordance with the area of the lit portion.
FIG. 19 illustrates another embodiment of an alarm means 122. In this alarm means 122, a region from its lower end to a current vehicle speed is lit by an increase in vehicle speed. In the lit region, a portion below an alarm (speed-reduction) threshold value is lit "blue", and a portion above the alarm (speed-reduction) threshold value is lit "red". The alarm (speed-reduction) threshold value is varied vertically depending on the curvature of a corner.
If the vehicle speed is equal to or less than the alarm (speed-reduction) threshold value, only a "blue" region is lit, and if the vehicle speed exceeds the alarm (speed-reduction) threshold value, the degree of excess of the current vehicle speed is easily recognized by the area of a "red" region lit in accordance with the excess.
FIG. 20 illustrates a further embodiment of an alarm means 122. In this alarm means 122, an outer peripheral portion around a dial of a speedometer 23 is formed of a light-emitting diode. A portion indicating a higher speed than the alarm (speed-reduction) threshold value (a variable value dependent upon the curvature of a corner) is lit as a "red" region. Therefore, the excess amount of the vehicle speed can be visually recognized by a distance between the position of a pointer indicating a current speed and a starting end of the "red" region. If the starting end of the lit "red" region is moved toward a lower-speed side as the vehicle approaches an entrance of a corner, it is possible to permit the driver to further effectively recognize the emergence degree.
As described above, an alarm can be reliably given by giving a visual alarm by lighting of the light-emitting diode, even when an auditorily handicapped driver is driving the vehicle, or even when the sound volume of an audio device is too large to provide a sufficient effect by an alarm means such as a chime or a buzzer.
When it is required to give an alarm because the vehicle speed is excessive, it is possible to permit a driver to further reliably recognize an alarm not only by lighting the alarm means 122, but also by simultaneously lighting all indicators on the instrument panel such as the speedometer 23, the tachometer 24 and a lamp indicating the operation of a winker or blinker.
Although the embodiments of the present invention have been described in detail, it will be understood that the present invention is not limited to these embodiments, and various modifications can be made without departing from the spirit and scope of the invention defined in claims.