Linearly regulated voltage multiplier
First Claim
1. A charge pump circuit having an input terminal for receiving a supply voltage and an output terminal for providing a boosted voltage with respect to the supply voltage, the charge pump circuit comprising:
- a charge transfer capacitor having first and second terminals;
a first switch connected between the first terminal of the charge transfer capacitor and the input terminal;
a charge storage capacitor connected between the output terminal and a first voltage reference;
a second switch connected between the first terminal of the charge transfer capacitor and the output terminal;
a first resistor connected to the output terminal; and
an error amplifier including;
an operational amplifier having a first input terminal coupled to the output terminal of the charge pump circuit, a second input terminal coupled to a second voltage reference, and an output line connected solely to the second terminal of the charge transfer capacitor and not directly connected to any other components; and
a single feedback loop comprising the charge transfer capacitor, the second switch, and the first resistor connected between the first input terminal and the output line of the operational amplifier, the operational amplifier and the single feedback loop forming an integrator to integrate a difference between the second voltage reference and a voltage at the first input terminal of the operational amplifier based on the boosted voltage.
1 Assignment
0 Petitions

Accused Products

Abstract
A regulating circuit for the output voltage of a voltage booster, of the type which comprises a first charge transfer capacitor adapted to draw electric charges from the supply terminal and transfer them to the output terminal, through electronic switches controlled by non-overlapped complementary phase signals, and a second charge storage capacitor connected between the output terminal and ground, further comprises an error amplifier which generates, during one of the operational phases, a DC voltage corresponding to the difference between a reference voltage and a divided voltage of the output voltage of the voltage booster; this DC voltage is applied directly to one end of the transfer capacitor.
164 Citations
Automotive vehicle battery test system | ||
Patent #
US 7,924,015 B2
Filed 05/06/2010
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Battery tester with promotion feature | ||
Patent #
US 7,940,053 B2
Filed 05/25/2010
|
Current Assignee
Interstate Battery Systems Of America Incorporated, Midtronics Incorporated
|
Original Assignee
Interstate Battery Systems Of America Incorporated, Midtronics Incorporated
|
Electronic battery test based upon battery requirements | ||
Patent #
US 7,940,052 B2
Filed 02/02/2010
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
In-vehicle battery monitor | ||
Patent #
US 7,999,505 B2
Filed 10/05/2004
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Battery maintenance tool with probe light | ||
Patent #
US 7,977,914 B2
Filed 10/31/2007
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
DC/DC CONVERTER CIRCUIT | ||
Patent #
US 20110181265A1
Filed 01/13/2011
|
Current Assignee
Renesas Electronics Corporation
|
Original Assignee
Renesas Electronics Corporation
|
Battery tester with promotion feature to promote use of the battery tester by providing the user with codes having redeemable value | ||
Patent #
US 7,791,348 B2
Filed 02/27/2007
|
Current Assignee
Interstate Battery Systems Of America Incorporated, Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Energy management system for automotive vehicle | ||
Patent #
US 7,688,074 B2
Filed 06/14/2004
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Wireless battery tester with information encryption means | ||
Patent #
US 7,772,850 B2
Filed 07/11/2005
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Electronic battery tester with vehicle type input | ||
Patent #
US 7,656,162 B2
Filed 07/22/2004
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Electronic battery tester with databus | ||
Patent #
US 7,728,597 B2
Filed 11/03/2008
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Battery tester that calculates its own reference values | ||
Patent #
US 7,710,119 B2
Filed 12/14/2005
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Automotive vehicle electrical system diagnostic device | ||
Patent #
US 7,642,787 B2
Filed 10/24/2006
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Automotive vehicle electrical system diagnostic device | ||
Patent #
US 7,705,602 B2
Filed 08/29/2006
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Battery tester capable of identifying faulty battery post adapters | ||
Patent #
US 7,642,786 B2
Filed 05/31/2005
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Alternator tester | ||
Patent #
US 7,706,991 B2
Filed 06/11/2007
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Electronic battery tester configured to predict a load test result based on open circuit voltage, temperature, cranking size rating, and a dynamic parameter | ||
Patent #
US 7,723,993 B2
Filed 09/02/2003
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Wireless battery monitor | ||
Patent #
US 7,774,151 B2
Filed 12/21/2004
|
Current Assignee
Franklin Grid Solutions LLC
|
Original Assignee
Midtronics Incorporated
|
Theft prevention device for automotive vehicle service centers | ||
Patent #
US 7,777,612 B2
Filed 08/03/2006
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Battery run down indicator | ||
Patent #
US 7,808,375 B2
Filed 04/09/2008
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Apparatus and method for counteracting self discharge in a storage battery | ||
Patent #
US 7,479,763 B2
Filed 03/18/2004
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Battery charger with booster pack | ||
Patent #
US 7,501,795 B2
Filed 06/03/2004
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Centralized data storage of condition of a storage battery at its point of sale | ||
Patent #
US 7,498,767 B2
Filed 02/16/2006
|
Current Assignee
Interstate Battery Systems International Incorporated
|
Original Assignee
Midtronics Incorporated
|
Battery test module | ||
Patent #
US 7,505,856 B2
Filed 06/02/2005
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Apparatus and method for predicting battery capacity and fitness for service from a battery dynamic parameter and a recovery voltage differential | ||
Patent #
US 7,545,146 B2
Filed 12/09/2004
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Electronic battery tester | ||
Patent #
US 7,557,586 B1
Filed 05/19/2003
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Apparatus and method for simulating a battery tester with a fixed resistance load | ||
Patent #
US 7,595,643 B2
Filed 08/21/2006
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Replaceable clamp for electronic battery tester | ||
Patent #
US 7,598,699 B2
Filed 02/20/2004
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Scan tool for electronic battery tester | ||
Patent #
US 7,598,744 B2
Filed 06/07/2005
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Battery maintenance device having databus connection | ||
Patent #
US 7,598,743 B2
Filed 02/22/2005
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Battery monitoring system | ||
Patent #
US 7,619,417 B2
Filed 12/14/2006
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Shunt connection to a PCB of an energy management system employed in an automotive vehicle | ||
Patent #
US 7,319,304 B2
Filed 07/23/2004
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Query based electronic battery tester | ||
Patent #
US 7,363,175 B2
Filed 04/24/2006
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
High-voltage device having a measuring resistor | ||
Patent #
US 7,379,312 B2
Filed 08/10/2004
|
Current Assignee
GE Medical Systems Global Technology Company LLC
|
Original Assignee
GE Medical Systems Global Technology Company LLC
|
Battery testers with secondary functionality | ||
Patent #
US 7,398,176 B2
Filed 02/13/2006
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Electronic battery tester having a user interface to configure a printer | ||
Patent #
US 7,408,358 B2
Filed 06/16/2003
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Broad-band low-inductance cables for making Kelvin connections to electrochemical cells and batteries | ||
Patent #
US 7,425,833 B2
Filed 09/12/2006
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Scan tool for electronic battery tester | ||
Patent #
US 7,446,536 B2
Filed 10/05/2004
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Kelvin connector for a battery post | ||
Patent #
US 7,198,510 B2
Filed 11/14/2001
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Apparatus and method for predicting the remaining discharge time of a battery | ||
Patent #
US 7,208,914 B2
Filed 12/30/2003
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Alternator tester | ||
Patent #
US 7,246,015 B2
Filed 06/09/2004
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Electronic battery tester with relative test output | ||
Patent #
US 7,295,936 B2
Filed 02/16/2006
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Battery tester upgrade using software key | ||
Patent #
US 7,012,433 B2
Filed 09/18/2002
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Automotive vehicle electrical system diagnostic device | ||
Patent #
US 7,126,341 B2
Filed 07/19/2002
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Cable for electronic battery tester | ||
Patent #
US 6,913,483 B2
Filed 06/23/2003
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Theft prevention device for automotive vehicle service centers | ||
Patent #
US 7,119,686 B2
Filed 04/13/2004
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Query based electronic battery tester | ||
Patent #
US 7,034,541 B2
Filed 05/17/2005
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Programmable current exciter for measuring AC immittance of cells and batteries | ||
Patent #
US 6,466,026 B1
Filed 10/12/2001
|
Current Assignee
Keith S Champlin
|
Original Assignee
Keith S Champlin
|
Method and apparatus for evaluating stored charge in an electrochemical cell or battery | ||
Patent #
US 6,495,990 B2
Filed 08/27/2001
|
Current Assignee
Keith S Champlin
|
Original Assignee
Keith S Champlin
|
Method and apparatus for auditing a battery test | ||
Patent #
US 6,885,195 B2
Filed 03/14/2002
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Electronic battery tester cable | ||
Patent #
US 6,933,727 B2
Filed 06/23/2003
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Battery test module | ||
Patent #
US 7,058,525 B2
Filed 08/13/2002
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
In-vehicle battery monitor | ||
Patent #
US 6,850,037 B2
Filed 10/15/2002
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Electronic battery tester with automotive scan tool communication | ||
Patent #
US 6,967,484 B2
Filed 06/12/2003
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Electronic battery tester/charger with integrated battery cell temperature measurement device | ||
Patent #
US 6,919,725 B2
Filed 10/03/2003
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Integrated conductance and load test based electronic battery tester | ||
Patent #
US 6,456,045 B1
Filed 05/30/2001
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Alternator tester with encoded output | ||
Patent #
US 6,914,413 B2
Filed 09/05/2003
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Apparatus and method for protecting a battery from overdischarge | ||
Patent #
US 6,888,468 B2
Filed 01/22/2003
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Battery clamp with integrated current sensor | ||
Patent #
US 6,544,078 B2
Filed 07/18/2001
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Electronic battery tester | ||
Patent #
US 6,781,382 B2
Filed 12/05/2002
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
High voltage integrated Miller capacitor feedback circuit | ||
Patent #
US 6,590,439 B1
Filed 10/13/2000
|
Current Assignee
Maxim Integrated Products Inc.
|
Original Assignee
Maxim Integrated Products Inc.
|
Battery tester with databus | ||
Patent #
US 6,586,941 B2
Filed 03/23/2001
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Electronic battery tester with data bus for removable module | ||
Patent #
US 6,998,847 B2
Filed 07/01/2004
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Battery tester configured to receive a removable digital module | ||
Patent #
US 6,759,849 B2
Filed 10/25/2002
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Method and apparatus for measuring a parameter of a vehicle electrical system | ||
Patent #
US 7,154,276 B2
Filed 09/05/2003
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Energy management system for automotive vehicle | ||
Patent #
US 6,909,287 B2
Filed 10/29/2001
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Battery clamp with embedded environment sensor | ||
Patent #
US 6,469,511 B1
Filed 07/18/2001
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Electronic battery tester with network communication | ||
Patent #
US 6,871,151 B2
Filed 03/07/2002
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Electronic battery tester | ||
Patent #
US 6,556,019 B2
Filed 03/19/2002
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Booster pack with storage capacitor | ||
Patent #
US 7,015,674 B2
Filed 03/28/2002
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Programmable current exciter for measuring AC immittance of cells and batteries | ||
Patent #
US 6,621,272 B2
Filed 10/15/2002
|
Current Assignee
Keith S Champlin
|
Original Assignee
Keith S Champlin
|
Apparatus and method for testing rechargeable energy storage batteries | ||
Patent #
US 6,441,585 B1
Filed 06/15/2000
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Electronic battery tester | ||
Patent #
US 6,707,303 B2
Filed 11/26/2001
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Electronic battery tester | ||
Patent #
US 6,806,716 B2
Filed 01/29/2004
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Jamey Butteris, Kevin I. Bertness
|
Power booster method and apparatus for improving the performance of radio frequency linear power amplifiers | ||
Patent #
US 6,396,350 B2
Filed 12/21/2000
|
Current Assignee
Intel Corporation
|
Original Assignee
Paradigm Wireless Systems Inc.
|
Method and apparatus using a circuit model to evaluate cell/battery parameters | ||
Patent #
US 6,737,831 B2
Filed 02/08/2002
|
Current Assignee
Keith S Champlin
|
Original Assignee
Keith S Champlin
|
Battery test module | ||
Patent #
US 7,039,533 B2
Filed 12/05/2002
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Apparatus and method for simulating a battery tester with a fixed resistance load | ||
Patent #
US 7,116,109 B2
Filed 11/11/2003
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Battery tester with battery replacement output | ||
Patent #
US 6,906,522 B2
Filed 03/29/2002
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
In-vehicle battery monitor | ||
Patent #
US 6,633,165 B2
Filed 09/20/2001
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Battery charger with booster pack | ||
Patent #
US 6,788,025 B2
Filed 06/21/2002
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Electronic battery tester | ||
Patent #
US 6,891,378 B2
Filed 03/25/2003
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Broad-band low-inductance cables for making Kelvin connections to electrochemical cells and batteries | ||
Patent #
US 7,106,070 B2
Filed 07/22/2004
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Electronic battery tester | ||
Patent #
US 6,566,883 B1
Filed 10/31/2000
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Battery test module | ||
Patent #
US 6,795,782 B2
Filed 12/05/2002
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Method and apparatus for testing cells and batteries embedded in series/parallel systems | ||
Patent #
US 6,906,523 B2
Filed 04/09/2002
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Electronic battery tester with battery failure temperature determination | ||
Patent #
US 6,930,485 B2
Filed 03/14/2003
|
Current Assignee
Interstate Battery Systems International Incorporated
|
Original Assignee
Midtronics Incorporated
|
Electronic battery tester with network communication | ||
Patent #
US 7,003,411 B2
Filed 08/09/2004
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Apparatus and method for carrying out diagnostic tests on batteries and for rapidly charging batteries | ||
Patent #
US 6,424,158 B2
Filed 07/10/2001
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Electronic battery tester with relative test output | ||
Patent #
US 7,003,410 B2
Filed 06/17/2004
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Battery tester capable of predicting a discharge voltage/discharge current of a battery | ||
Patent #
US 7,081,755 B2
Filed 09/03/2003
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Query based electronic battery tester | ||
Patent #
US 6,941,234 B2
Filed 09/30/2003
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Battery charge control device | ||
Patent #
US 6,696,819 B2
Filed 01/08/2002
|
Current Assignee
Franklin Grid Solutions LLC
|
Original Assignee
Midtronics Incorporated
|
Alternator tester | ||
Patent #
US 6,466,025 B1
Filed 01/13/2000
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
High-voltage device having a measuring resistor | ||
Patent #
US 20050036344A1
Filed 08/10/2004
|
Current Assignee
GE Medical Systems Global Technology Company LLC
|
Original Assignee
GE Medical Systems Global Technology Company LLC
|
Circuit for charging supplemental battery in portable electronic device | ||
Patent #
US 6,864,664 B2
Filed 06/06/2003
|
Current Assignee
Sony Electronics Inc., Sony Corporation
|
Original Assignee
Sony Electronics Inc., Sony Corporation
|
Electronic battery tester/charger with integrated battery cell temperature measurement device | ||
Patent #
US 20050073314A1
Filed 10/03/2003
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Apparatus and method for simulating a battery tester with a fixed resistance load | ||
Patent #
US 20050099185A1
Filed 11/11/2003
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Arrangement for driving display units with an adaptive start sequence | ||
Patent #
US 6,914,473 B2
Filed 02/21/2002
|
Current Assignee
Entropic Communications Incorporated
|
Original Assignee
Koninklijke Philips N.V.
|
Electronic battery tester configured to predict a load test result | ||
Patent #
US 20040046566A1
Filed 09/02/2003
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Variable charge pump circuit with dynamic load | ||
Patent #
US 6,724,241 B1
Filed 01/27/2003
|
Current Assignee
Atmel Corporation
|
Original Assignee
Atmel Corporation
|
VARIABLE CHARGE PUMP CIRCUIT WITH DYNAMIC LOAD | ||
Patent #
US 20040080360A1
Filed 01/27/2003
|
Current Assignee
Atmel Corporation
|
Original Assignee
Atmel Corporation
|
Apparatus and method for protecting a battery from overdischarge | ||
Patent #
US 20040140904A1
Filed 01/22/2003
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Electronic battery tester | ||
Patent #
US 20040189308A1
Filed 03/25/2003
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Circuit for charging supplemental battery in portable electronic device | ||
Patent #
US 20040257039A1
Filed 06/06/2003
|
Current Assignee
Sony Electronics Inc., Sony Corporation
|
Original Assignee
Sony Electronics Inc., Sony Corporation
|
High voltage generating circuit improved in parasitic capacitance of voltage-dividing resistance | ||
Patent #
US 6,531,912 B2
Filed 02/23/2001
|
Current Assignee
Renesas Electronics Corporation
|
Original Assignee
NEC Corporation
|
Electronic battery tester with relative test output | ||
Patent #
US 20030088375A1
Filed 10/02/2002
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Battery test module | ||
Patent #
US 20030124417A1
Filed 12/05/2002
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Booster pack with storage capacitor | ||
Patent #
US 20030184258A1
Filed 03/28/2002
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Reference voltage generating device and generating method of the same | ||
Patent #
US 6,337,598 B1
Filed 02/29/2000
|
Current Assignee
Longitude Licensing Limited
|
Original Assignee
NEC Corporation
|
Arrangement for driving display units with an adaptive start sequence | ||
Patent #
US 20020130708A1
Filed 02/21/2002
|
Current Assignee
Entropic Communications Incorporated
|
Original Assignee
Koninklijke Philips N.V.
|
Microelectronic current regulator | ||
Patent #
US 6,459,248 B2
Filed 01/29/2001
|
Current Assignee
Infineon Technologies Austria Ag
|
Original Assignee
Primarion Incorporated
|
Battery test module | ||
Patent #
US 20020193955A1
Filed 08/13/2002
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Voltage regulated charge pump | ||
Patent #
US 6,300,820 B1
Filed 02/07/2000
|
Current Assignee
Exar Corporation
|
Original Assignee
Exar Corporation
|
Voltage multiplier with low threshold voltage sensitivity | ||
Patent #
US 5,886,887 A
Filed 03/26/1998
|
Current Assignee
Integrated Memory Technologies Incorporated
|
Original Assignee
Integrated Memory Technologies Incorporated
|
Two phase low energy signal processing using charge transfer capacitance | ||
Patent #
US 5,923,204 A
Filed 11/06/1997
|
Current Assignee
Nokia Mobile Phones UK Limited
|
Original Assignee
Nokia Mobile Phones UK Limited
|
Method and apparatus for measuring a parameter of a vehicle electrical system | ||
Patent #
US 8,164,343 B2
Filed 10/30/2008
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Automotive battery charging system tester | ||
Patent #
US 8,198,900 B2
Filed 03/02/2004
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Battery testers with secondary functionality | ||
Patent #
US 8,237,448 B2
Filed 07/07/2008
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Battery tester for electric vehicle | ||
Patent #
US 8,306,690 B2
Filed 07/17/2008
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
System for automatically gathering battery information | ||
Patent #
US 8,344,685 B2
Filed 04/01/2009
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Integrated tag reader and environment sensor | ||
Patent #
US 8,436,619 B2
Filed 04/01/2009
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Simplification of inventory management | ||
Patent #
US 8,442,877 B2
Filed 04/01/2009
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Automotive vehicle electrical system diagnostic device | ||
Patent #
US 8,493,022 B2
Filed 04/22/2010
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Electronic battery tester or charger with databus connection | ||
Patent #
US 8,513,949 B2
Filed 09/04/2008
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
In-vehicle battery monitor | ||
Patent #
US 8,674,654 B2
Filed 08/09/2011
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Method and apparatus for measuring a parameter of a vehicle electrical system | ||
Patent #
US 8,674,711 B2
Filed 12/19/2006
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
System for automatically gathering battery information | ||
Patent #
US 8,704,483 B2
Filed 11/28/2012
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Storage battery and battery tester | ||
Patent #
US 8,203,345 B2
Filed 12/04/2008
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Battery pack maintenance for electric vehicles | ||
Patent #
US 8,738,309 B2
Filed 09/30/2010
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Electronic battery tester | ||
Patent #
US 8,754,653 B2
Filed 07/07/2009
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Electronic battery tester mounted in a vehicle | ||
Patent #
US 8,872,516 B2
Filed 02/28/2011
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Electronic battery tester with battery age input | ||
Patent #
US 8,872,517 B2
Filed 03/15/2011
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Electronic battery tester with network communication | ||
Patent #
US 8,958,998 B2
Filed 04/12/2010
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
System for automatically gathering battery information | ||
Patent #
US 8,963,550 B2
Filed 10/11/2011
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
REFERENCE VOLTAGE GENERATING APPARATUS AND SWITCHING POWER APPARATUS | ||
Patent #
US 20150077177A1
Filed 09/17/2014
|
Current Assignee
Toshiba Corporation
|
Original Assignee
Toshiba Corporation
|
Method and apparatus for measuring a parameter of a vehicle electrical system | ||
Patent #
US 9,018,958 B2
Filed 10/19/2011
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Battery testers with secondary functionality | ||
Patent #
US 9,052,366 B2
Filed 08/06/2012
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Electronic battery tester for testing storage battery | ||
Patent #
US 9,201,120 B2
Filed 08/09/2011
|
Current Assignee
Franklin Grid Solutions LLC
|
Original Assignee
Midtronics Incorporated
|
Electronic storage battery diagnostic system | ||
Patent #
US 9,229,062 B2
Filed 05/23/2011
|
Current Assignee
Franklin Grid Solutions LLC
|
Original Assignee
Midtronics Incorporated
|
Current clamp with jaw closure detection | ||
Patent #
US 9,244,100 B2
Filed 03/11/2014
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Reference voltage generating apparatus and switching power apparatus | ||
Patent #
US 9,256,241 B2
Filed 09/17/2014
|
Current Assignee
Toshiba Corporation
|
Original Assignee
Toshiba Corporation
|
Method and apparatus for measuring a parameter of a vehicle electrical system | ||
Patent #
US 9,255,955 B2
Filed 05/02/2011
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Battery tester for electric vehicle | ||
Patent #
US 9,274,157 B2
Filed 09/23/2010
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Battery testing system and method | ||
Patent #
US 9,312,575 B2
Filed 05/13/2014
|
Current Assignee
Franklin Grid Solutions LLC
|
Original Assignee
Midtronics Incorporated
|
Battery tester for electric vehicle | ||
Patent #
US 9,335,362 B2
Filed 11/05/2012
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Battery maintenance device with thermal buffer | ||
Patent #
US 9,419,311 B2
Filed 06/18/2010
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Monitor for front terminal batteries | ||
Patent #
US 9,425,487 B2
Filed 03/01/2011
|
Current Assignee
Franklin Grid Solutions LLC
|
Original Assignee
Midtronics Incorporated
|
System for automatically gathering battery information | ||
Patent #
US 9,496,720 B2
Filed 01/24/2012
|
Current Assignee
Franklin Grid Solutions LLC
|
Original Assignee
Midtronics Incorporated
|
Method and apparatus for detecting cell deterioration in an electrochemical cell or battery | ||
Patent #
US 9,588,185 B2
Filed 02/25/2010
|
Current Assignee
Keith S Champlin
|
Original Assignee
Keith S Champlin
|
Suppressing HF cable oscillations during dynamic measurements of cells and batteries | ||
Patent #
US 9,851,411 B2
Filed 03/12/2013
|
Current Assignee
Keith S Champlin
|
Original Assignee
Keith S Champlin
|
Battery clamp with endoskeleton design | ||
Patent #
US 9,923,289 B2
Filed 01/16/2015
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Kelvin connector adapter for storage battery | ||
Patent #
US 9,966,676 B2
Filed 09/27/2016
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Hybrid and electric vehicle battery pack maintenance device | ||
Patent #
US 10,046,649 B2
Filed 03/14/2013
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Cable connector for electronic battery tester | ||
Patent #
US 10,222,397 B2
Filed 09/22/2015
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Alternator tester | ||
Patent #
US 10,317,468 B2
Filed 01/26/2016
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Battery pack tester | ||
Patent #
US 10,429,449 B2
Filed 11/08/2012
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Automotive maintenance system | ||
Patent #
US 10,473,555 B2
Filed 07/14/2015
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Battery clamp | ||
Patent #
US 10,608,353 B2
Filed 06/27/2017
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Calibration and programming of in-vehicle battery sensors | ||
Patent #
US 10,843,574 B2
Filed 04/28/2016
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Voltage booster circuit of the charge-pump type with bootstrapped oscillator | ||
Patent #
US 5,589,793 A
Filed 09/29/1993
|
Current Assignee
SGS-Thomson Microelectronics
|
Original Assignee
SGS-Thomson Microelectronics
|
Circuit for controlling the maximum current in a MOS power transistor used for driving a load connected to earth | ||
Patent #
US 5,404,053 A
Filed 06/09/1993
|
Current Assignee
Marelli Autronica SPA, SGS-Thomson Microelectronics
|
Original Assignee
SGS-Thomson Microelectronics
|
Charge pump circuit | ||
Patent #
US 5,239,455 A
Filed 10/17/1991
|
Current Assignee
Zarlink Semiconductor Limited
|
Original Assignee
Plessey Semiconductors Limited
|
Charge pump amplifier | ||
Patent #
US 4,425,550 A
Filed 12/24/1981
|
Current Assignee
Motorola Inc.
|
Original Assignee
Motorola Inc.
|
27 Claims
-
1. A charge pump circuit having an input terminal for receiving a supply voltage and an output terminal for providing a boosted voltage with respect to the supply voltage, the charge pump circuit comprising:
-
a charge transfer capacitor having first and second terminals; a first switch connected between the first terminal of the charge transfer capacitor and the input terminal; a charge storage capacitor connected between the output terminal and a first voltage reference; a second switch connected between the first terminal of the charge transfer capacitor and the output terminal; a first resistor connected to the output terminal; and an error amplifier including; an operational amplifier having a first input terminal coupled to the output terminal of the charge pump circuit, a second input terminal coupled to a second voltage reference, and an output line connected solely to the second terminal of the charge transfer capacitor and not directly connected to any other components; and a single feedback loop comprising the charge transfer capacitor, the second switch, and the first resistor connected between the first input terminal and the output line of the operational amplifier, the operational amplifier and the single feedback loop forming an integrator to integrate a difference between the second voltage reference and a voltage at the first input terminal of the operational amplifier based on the boosted voltage. - View Dependent Claims (2, 3, 4, 5, 6)
-
-
7. A charge pump circuit for use in an integrated semiconductor device, the charge pump circuit having an input terminal for receiving a supply voltage and an output terminal for providing a boosted voltage with respect to the supply voltage, the charge pump circuit comprising:
-
a charge transfer capacitor having first and second terminals; a first switch connected between the first terminal of the charge transfer capacitor and the input terminal, the first switch being controlled by a first clock signal to couple the input terminal to the first terminal of the charge transfer capacitor in order to charge the charge transfer capacitor; a charge storage capacitor connected between the output terminal and a first voltage reference; a second switch connected between the first terminal of the charge transfer capacitor and the output terminal, the second switch being controlled by a second clock signal to couple the first terminal of the charge transfer capacitor to the output terminal in order to transfer the charge in the charge transfer capacitor to the charge storage capacitor; a first resistor connected to the output terminal; and an error amplifier including; an operational amplifier having a first input terminal coupled to the output terminal of the charge pump circuit through the first resistor, a second input terminal coupled to a second voltage reference, and an output terminal connected to the second terminal of the charge transfer capacitor, wherein the charge transfer capacitor, the second switch, and the first resistor comprise a single integrating feedback loop connected between the first input terminal and the output terminal of the operational amplifier when the second switch couples the first terminal of the charge transfer capacitor to the output terminal wherein the single integrating feedback loop is the only feedback loop connected between the first input terminal and the output terminal of the operational amplifier. - View Dependent Claims (8, 9, 10, 11, 12)
-
-
13. A voltage booster having an input terminal for receiving a supply voltage and an output terminal for supplying a boosted voltage with respect to the supply voltage, comprising:
-
a charge transfer capacitor; a first switch controlled by a first drive signal to couple a first terminal of said charge transfer capacitor to the input terminal; a second switch controlled by a second drive signal to couple the first terminal of said charge transfer capacitor to the output terminal; a charge storage capacitor connected between the output terminal and a first voltage reference; an error amplifier comprising an operational amplifier having a first input terminal coupled to the output terminal, a second input terminal coupled to the first voltage reference through a third switch controlled by a third drive signal and coupled to a second voltage reference through a fourth switch controlled by a fourth drive signal, and an output terminal coupled to a second terminal of said charge transfer capacitor; and a single integrating feedback loop comprising the charge transfer capacitor, the second switch, and the output terminal coupled between the first input terminal and the output terminal of the operational amplifier. - View Dependent Claims (14, 15, 16, 17, 18, 19, 20, 21)
-
-
22. A charge pump circuit having an input terminal coupled to receive a supply voltage and an output terminal for providing a boosted voltage with respect to the supply voltage, the charge pump circuit comprising:
-
an amplifier having a first input, a second input and an output line, the output line having only a single integrated component directly connected thereto; a charge transfer capacitor having a first terminal coupled to the input terminal for receiving the supply voltage and a second terminal directly connected to the output line of the amplifier, the charge transfer capacitor being that single integrated component directly connected to the output line; a charge storage capacitor connected to the output terminal for retaining the boosted voltage; a first switch coupled between the first terminal of the charge transfer capacitor and the output terminal for coupling the first terminal of the charge transfer capacitor to the charge storage capacitor to provide the boosted voltage to the output terminal; and an integrator comprising the amplifier having the first input coupled to the output terminal through a first resistor, the integrator integrating a difference between a voltage at the first input of the amplifier and a first reference voltage when the first switch is in a conducting state to generate an error signal at the output of the amplifier, the error signal being coupled to the second terminal of the charge transfer capacitor to regulate the boosted voltage, the charge transfer capacitor being the sole element directly connected to the amplifier output line. - View Dependent Claims (23, 24, 25)
-
-
26. A method for providing a boosted voltage to an output terminal of a charge pump circuit coupled to receive a supply voltage, the method comprising:
-
coupling the supply voltage to a first plate of a charge transfer capacitor through a first switch by rendering the first switch conductive during a first period; rendering the first switch non-conductive and coupling the first plate of the charge transfer capacitor to the output terminal and to a charge storage capacitor through a second switch by rendering the second switch conductive during a second period to provide the boosted voltage to the output terminal; and generating an error signal by integrating a difference between a voltage based on the boosted voltage and a reference voltage through an amplifier and a single integrating feedback loop comprising the charge transfer capacitor, the second switch, and a voltage divider coupled to the output terminal; and regulating the boosted voltage during the second period by applying the error signal to a second plate of the charge transfer capacitor from an output terminal of the amplifier. - View Dependent Claims (27)
-
1 Specification
This invention relates to a voltage multiplier having an output voltage regulating circuit.
Electronic systems quite often require that higher voltages than the supply voltage be generated internally thereof This is the case, for example, with EEPROM memories, which require write voltages well above the conventional 5-volt supply, or with devices powered from low-voltage batteries, typically at 3 volts or less. The circuit that serves this function is known as the charge pump, voltage multiplier or booster circuit, and is preferably provided within the integrated circuit.
A conventional booster circuit, which is utilized in integrated circuits requiring a supply voltage multiplication factor of two, or at least an elevated supply voltage, comprises a charge transfer capacitor, which is switched by means of electronic switches driven by two phases of a clock generator, and a charge storage capacitor.
That circuit can output fairly large currents (of up to a few tens of mA), and accordingly, is capable of generating a boosted voltage for supply to the integrated circuit as a whole or to a significant portion thereof.
The clock generator utilized in association with that booster circuit generates two non-overlapping complementary phase signals. During the first phase, a supply voltage is applied to a first terminal of the transfer capacitor, while a second terminal of that same capacitor is connected to ground. During the second phase, the first terminal is cut off from the supply voltage, while the second terminal is disconnected from ground and connected to the supply voltage. In this way, the first terminal of the charge transfer capacitor is brought to a voltage level twice as high as the supply voltage. This boosted voltage is used for charging a charge storage capacitor. At the end of the second phase, the first terminal of the charge transfer capacitor is disconnected from the storage capacitor and coupled back to the supply voltage. The voltage that appears on the charge storage capacitor is the boosted output voltage from the voltage booster.
With a zero current delivery, the output voltage Vout would obviously be twice as high as the supply voltage and become perfectly stable already after a few clock cycles. However, in the presence of a current on the load, the value of the output voltage is affected by the voltage drops across the capacitors and the switches provided for switching the capacitors. These voltage drops vary with the value of the output current, the process used, and the operating temperature. Further, any variations in the supply voltage, such as are typical to occur in systems powered from nickel-cadmium batteries, reflect on the booster output voltage, doubled or at least amplified in magnitude.
It is quite often desirable, or even necessary, that the boosted output voltage be held constant as the current on the load and the value of the supply voltage Vbat vary. In such cases, the output voltage must be stabilized by a specially provided regulating circuit.
One prior solution which includes a circuit for providing a stabilized output voltage is disclosed in European Patent Application No. 92118084.0 filed on Oct. 22, 1992 by Motorola, Inc. and published under No. 0540948 on May 12, 1993.
The voltage booster disclosed in that patent application is of the same type as that just described, and the regulating circuit therein is implemented by a negative output voltage regulating loop.
The regulating loop is provided by an integrator adapted to generate a DC error signal which is proportional to the difference between the output voltage from the voltage booster and a reference voltage. This error signal is used to drive (at a conduction phase of the booster circuit operational cycle) the control gate of a MOS transistor, which functions as a switch to connect the charge transfer capacitor to the supply voltage, by controlling its internal resistance, and hence, the charge time constant of the capacitor. In this way, the output voltage of the voltage booster circuit can be held constant, in the steady state condition, at a proportional value to the reference voltage.
A major problem encountered with this prior solution is that the dependence of the voltage applied to the control gate of a MOS transistor on the internal resistance of the latter is markedly non-linear. The presence of this non-linear element makes the regulating loop non-linear. As persons of ordinary skill in the art will readily recognize, a non-linear feedback loop may pose significant "lockup" problems, i.e., problems with the attainment of the proper output voltage value from the moment the circuit is turned on, and problems with holding this output voltage constant against the occurrence of sharp current variations on the load.
Another prior solution, disclosed in European Patent Application No. 94830413.4 filed on Aug. 31, 1994 by SGS-Thomson Microelectronics srl, provides a voltage booster including a linear type of output voltage regulating circuit.
This patent application describes a voltage booster circuit, illustrated in some detail by FIG. 1, of a type comprising a charge transfer capacitor C1 which is switched, similar to the previously discussed circuit, between two phases of a clock signal, so as to have a charge storage capacitor C2 charged at a boosted voltage Vout relative to the booster supply voltage Vbat. The output voltage is controlled by a linear regulating loop which comprises an integrator adapted to generate an error signal of the difference between a reference voltage Vrif and a proportional voltage Vx to the output voltage Vout. This error signal is applied, during one of the two operational phases, directly to the bottom plate of the charge transfer capacitor C1 so as to supply a variable voltage on that plate which allows the output voltage to be held at a constant value.
The integrator comprises an operational amplifier OA whose inverting input is connected to the center node of a voltage divider R1-R2 and to the output of the amplifier through a series of a resistor RZ, an integration capacitor CI, and a transfer switch or gate M7-M8. The resistor RZ and integration capacitor CI together are labeled in FIG. 1 as ZI and form an integrating feedback loop for the operational amplifier OA. The non-inverting input is connected, through a switch M9, to a reference voltage Vrif, and through another switch M10, to a ground potential.
Plotted in FIG. 2 are timing diagrams for the control phases utilized in the circuit of FIG. 1.
As can be seen, phases F1 and F2 are non-overlapping complementary phases, phase F1-- neg is substantially coincident with phase F1sur-- neg, and phase F2-- neg is essentially coincident with phase F2sur-- neg. The phases F1sur-- neg and F2sur-- neg are commonly generated by a timing circuit being supplied from the voltage Vout which is a boosted voltage relative to the supply voltage Vbat. In other words, the drive phases F1sur-- neg and F2sur-- neg are boosted phases.
The MOS transistors M5 and M6 are driven by the phase signals F1sur-- neg and F2sur-- neg, the transistors M7 and M8 are driven by the phase signal F2 and its complement, the transistor M9 is driven by the phase signal F2, and the transistor M10 is driven by the phase signal F1.
During the phase F1, the bottom plate of the capacitor C1 is forced to ground potential by the operational amplifier OA having its feedback loop open and non-inverting input connected to ground, while the top plate of the capacitor C1 is connected to the supply voltage Vbat. In this way, the capacitor C1 will be charged at the voltage Vbat.
During the phase F2, the non-inverting input of the operational amplifier OA is brought to the voltage Vrif by the closed transistor M9, and concurrently therewith, the feedback loop of the amplifier OA is closed. Thus, the output voltage from the amplifier OA will reach a proportional value to the integral of the error between the voltage Vrif and the voltage Vx=Vout*R1/(R1+R2). The bottom plate of the capacitor C1 will, therefore, be at a suitable voltage value to bring the output voltage to the desired value,
Vout=Vrif*(R1+R2)/R1)
The initial settling time period upon turning on this circuit, being typically on the order of 500 microseconds, is a relatively short one compared to the settling time period of the previously discussed voltage boosters.
These voltage booster circuits are usually integrated on the same slice of semiconductor material, or chip, along with the electronic devices to be powered thereby. In the circuit of FIG. 1, as well as in the other circuits previously discussed, the two capacitors C1 and C2 typically cannot be integrated because they would occupy too large an amount of the chip area due to their high capacitance value. All the other components, namely the operational amplifier OA, MOS transistors utilized as electronic switches, resistors, and integration capacitor CI, are instead integrated on the chip. However, the integrated circuit components of FIG. 1 occupy a relatively large area on the chip.
According to the principles of the present invention, there is provided a voltage multiplier or booster for relatively large output currents, which includes a linear type of output voltage regulating circuit, has a very short settling time, and has a simpler circuit construction than prior art devices, so as to facilitate its integration on silicon and afford a significant saving in chip area.
The booster circuit of this invention can be used for powering semiconductor electronic devices whose supply voltage needs boosting; by reason of its small size, the inventive circuit being advantageously integratable along with the circuit that it is expected to power.
According to one embodiment of the present invention, there is provided a charge pump circuit having an input terminal for receiving a supply voltage and an output terminal for providing a boosted voltage with respect to the supply voltage. The circuit includes a charge transfer capacitor, charge storage capacitor, resistor, first and second switches and an error amplifier. The first switch receives the supply voltage and charges the charge transfer capacitor which is connected to the output of the error amplifier. The second switch transfers the stored charge from the charge transfer capacitor to the charge storage capacitor. The resistor is connected between the output terminal of the charge pump circuit and an inverting input of the error amplifier. The non-inverting input is connectable to ground or a reference voltage. During the charge transfer, the charge transfer capacitor and the resistor define an integrating feedback loop for the operational amplifier. The charge transfer capacitor and the resistor integrates the difference between the reference voltage at the non-inverting input and the voltage at the inverting input, thereby eliminating the use of a separately provided integrating capacitor.
The features and advantages of a circuit according to the invention will be apparent from the following detailed description of an embodiment thereof, given by way of non limitative example with reference to the accompanying drawings.
FIG. 1 shows a functional diagram of a voltage booster circuit provided with an output voltage regulating circuit, according to the prior art.
FIG. 2 shows the waveform of the drive phases utilized in the circuit of FIG. 1.
FIG. 3 shows a functional diagram of a voltage booster provided with an output voltage regulating circuit, according to the present invention.
FIG. 4 shows the waveform of the drive phases utilized in the circuit of FIG. 3.
FIG. 5 is a timing diagram of the output voltage from the voltage booster circuit shown in FIG. 3.
With reference to the drawing figures, and in particular FIG. 3, generally shown at 1 is a voltage booster which embodies the invention. This booster comprises a charge transfer capacitor C1 which is switched, as by means of electronic switches controlled by two phases of a clock signal generator (not shown), for charging a charge storage capacitor C2 at a boosted voltage Vout with respect to the supply voltage Vbat.
The four transistors M1, M2, M3 and M4 serving as electronic switches are transistors of the MOS type, and have each a source terminal, a drain terminal, a gate or control terminal, and a substrate contact. In particular, the transistors M1 and M2 are p-channel MOS transistors, whereas the transistors M3 and M4 are n-channel MOS transistors.
A first one, M1, of the MOS transistors has its source terminal connected to the supply terminal 2 of the booster, its drain terminal and substrate contact connected to a first terminal of the charge transfer capacitor C1, and receives a first clock signal F1sur-- neg on its gate terminal. The first terminal of the capacitor C1 is also connected to the source of a second MOS transistor, M2, driven by a second clock signal F2sur-- neg. The second transistor M2 has its drain terminal and substrate contact connected to the output terminal 3 of the booster. Connected across the output terminal 3 and a ground reference GND of the circuit are the charge storage capacitor C2 and a voltage divider formed by the two resistors R1 and R2. The intermediate node between the two resistors, R1 and R2, is connected to an inverting terminal of an operational amplifier OA. A non-inverting input of the operational amplifier OA is connected, through a third transistor M3 driven by a third clock signal F1, to the ground reference GND, and through a fourth transistor M4 driven by a fourth clock signal F2, to a voltage reference Vrif. The output of the operational amplifier OA is connected to a second terminal of the charge transfer capacitor C1.
The clock signals F1, F2, F1sur-- neg and F2sur-- neg are generated by a non-overlapped phase clock signal generator of a conventional type, and are indicated on the timing diagram of FIG. 4. The signals F1 and F2 are non-overlapped signals because only one signal is active at any one time. The signals F1 and F2 are non-overlapped phase signals complementary of each other, the signal F1sur-- neg is a negated signal which is voltage-boosted with respect to the signal F1, and F2sur-- neg is a negated and voltage-boosted signal with respect to the signal F2. The logic level of the voltage-boosted signals is equal to the boosted voltage Vout present at the voltage booster output.
During the active phase of F1, the transistors M1 and M3 are in the conduction state, whereas the transistors M2 and M4 are in the cutoff state. The first terminal of the capacitor C1 is connected to the supply voltage, while its other terminal is forced to ground potential by the operational amplifier OA having its non-inverting input connected to ground. The capacitor C1 is, therefore, charged at the voltage Vbat during the active phase of F1.
During the active phase of F2, the transistors M1 and M3 are cut off, and the transistors M2 and M4 are conducting; the first terminal of the capacitor C1, disconnected from the supply terminal 2, is connected to the output terminal 3 of the booster, while the second terminal is brought to the potential present at the output of the operational amplifier OA. During this phase, the operational amplifier OA functions, in combination with the capacitor C1 and the resistors R1 and R2, as an error amplifier to integrate the difference between the reference voltage Vrif and the voltage Vx present at the center node of the divider R1-R2. In particular, with the transistor M2 in the conducting state, the capacitor C1 and resistor R2 form a feedback loop between the output and the inverting input of the amplifier OA. The conduction resistance of the transistor M2 is much lower than the resistance of R2, and therefore, negligible. The non-inverting input of the amplifier OA is connected, through the transistor M4, to the voltage reference Vrif.
The voltage Vrif is set by a conventional voltage generator (not shown) effective to supply a voltage which is stable versus temperature and independent of any variations in the supply voltage, while the voltage Vx is a duplicate of the output voltage Vout as given by the following formula:
Vx=Vout*R1/(R1+R2)).
The high value of the DC gain of the feedback loop of the operational amplifier OA forces the output voltage Vout to attain the value sought, namely:
Vout=Vrif*((R1+R2)/R1).
By suitably selecting the resistances of R1 and R2, the output voltage Vout can be regulated for the desired value. By virtue of the linearity and the simplicity of the regulating circuit, this output voltage value is attained, upon turning on the circuit, within a very short time period, as indicated by the timing diagram of FIG. 5. That diagram illustrates the pattern for the output voltage Vout over time, after the circuit is turned on.
In particular, it can be seen that the output voltage Vout rises to the desired value of 4.45 volts, from an initial voltage of 3 volts being the equal of the circuit supply voltage, within 50 microseconds, a far shorter time than the 500 microseconds required by the conventional booster previously discussed and shown in FIG. 1.
Another advantage of the inventive booster circuit over the foregoing conventional circuits comes from its simple construction, resulting in a significant saving of silicon area at the time of its integration. A comparison of this circuit with the booster circuit of FIG. 1 brings out that fewer components are used in the former: in particular, the integration capacitor CI, resistor RZ, and electronic switch formed of the transistors M7 and M8 have been eliminated. These components jointly accounted, in the previous integrated circuit, for approximately 50% of the overall area occupied by the voltage booster circuit. Accordingly, the integration area for the booster circuit of this invention can be greatly reduced.
Furthermore, compared to the conventional booster circuit of FIG. 1--which uses six different clock signals, as shown in FIG. 2--the circuit of this invention uses only four clock signals, F1, F2, F1sur-- neg and F2sur-- neg. This allows the circuitry employed for implementing the clock signal generator to be also simplified.
From the foregoing it will be appreciated that, although specific embodiments of the invention have been described herein for purposes of illustration, various modifications may be made without deviating from the spirit and scope of the invention. Accordingly, the invention is not limited except as by the appended claims.