Method of manufacturing and testing an electronic device, and an electronic device
First Claim
1. A method of manufacturing and testing an electronic circuit, the method comprising:
- forming a plurality of conductive traces on a substrate and providing a gap in one of the conductive traces;
attaching a circuit component to the substrate and coupling the circuit component to at least one of the conductive traces;
supporting a battery on the substrate, and coupling the battery to at least one of the conductive traces, wherein a completed circuit would be defined, including the traces, circuit component, and battery, but for the gap;
verifying electrical connections by performing an in circuit test, after the circuit component is attached and the battery is supported; and
employing a jumper to electrically close the gap, and complete the circuit, after verifying electrical connections.
4 Assignments
0 Petitions

Accused Products

Abstract
A method of manufacturing and testing an electronic circuit, the method comprising forming a plurality of conductive traces on a substrate and providing a gap in one of the conductive traces; attaching a circuit component to the substrate and coupling the circuit component to at least one of the conductive traces; supporting a battery on the substrate, and coupling the battery to at least one of the conductive traces, wherein a completed circuit would be defined, including the traces, circuit component, and battery, but for the gap; verifying electrical connections by performing an in circuit test, after the circuit component is attached and the battery is supported; and employing a jumper to electrically close the gap, and complete the circuit, after verifying electrical connections. An electronic circuit comprising a substrate; a plurality of conductive traces on the substrate, with a gap in one of the conductive traces; a circuit component attached to the substrate and coupled to at least one of the conductive traces; a battery supported on the substrate and coupled to at least one of the conductive traces, wherein a completed circuit would be defined, including the traces, circuit component, and battery, but for the gap; and a jumper electrically closing the gap and completing the circuit, the jumper comprising conductive epoxy.
367 Citations
Analyte monitoring device and methods of use | ||
Patent #
US 7,885,699 B2
Filed 08/06/2010
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Biointerface membranes incorporating bioactive agents | ||
Patent #
US 7,875,293 B2
Filed 05/10/2004
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
System and methods for processing analyte sensor data | ||
Patent #
US 7,914,450 B2
Filed 05/03/2010
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte Monitoring Device and Methods of Use | ||
Patent #
US 20110015510A1
Filed 09/27/2010
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 7,869,853 B1
Filed 08/06/2010
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte Monitoring Device and Methods of Use | ||
Patent #
US 20110011399A1
Filed 09/27/2010
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
System and methods for processing analyte sensor data | ||
Patent #
US 7,955,261 B2
Filed 03/23/2010
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
SYSTEMS AND METHODS FOR REPLACING SIGNAL ARTIFACTS IN A GLUCOSE SENSOR DATA STREAM | ||
Patent #
US 20110137601A1
Filed 02/09/2011
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
SYSTEM AND METHODS FOR REPLACING SIGNAL ARTIFACTS IN A GLUCOSE SENSOR DATA STREAM | ||
Patent #
US 20110124997A1
Filed 01/27/2011
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
System and methods for processing analyte sensor data | ||
Patent #
US 7,933,639 B2
Filed 03/23/2010
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring system and method | ||
Patent #
US 7,920,907 B2
Filed 06/07/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
System and methods for processing analyte sensor data | ||
Patent #
US 7,925,321 B2
Filed 03/23/2010
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
SYSTEMS AND METHODS FOR REPLACING SIGNAL ARTIFACTS IN A GLUCOSE SENSOR DATA STREAM | ||
Patent #
US 20110118579A1
Filed 01/27/2011
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
System and methods for processing analyte sensor data | ||
Patent #
US 7,959,569 B2
Filed 03/23/2010
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Systems and methods for replacing signal artifacts in a glucose sensor data stream | ||
Patent #
US 7,935,057 B2
Filed 01/14/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
SYSTEMS AND METHODS FOR REPLACING SIGNAL ARTIFACTS IN A GLUCOSE SENSOR DATA STREAM | ||
Patent #
US 20110130971A1
Filed 02/09/2011
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
SYSTEMS AND METHODS FOR REPLACING SIGNAL ARTIFACTS IN A GLUCOSE SENSOR DATA STREAM | ||
Patent #
US 20110118580A1
Filed 01/27/2011
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
SYSTEMS AND METHODS FOR REPLACING SIGNAL ARTIFACTS IN A GLUCOSE SENSOR DATA STREAM | ||
Patent #
US 20110130970A1
Filed 02/09/2011
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Systems and methods for replacing signal artifacts in a glucose sensor data stream | ||
Patent #
US 8,010,174 B2
Filed 08/22/2003
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
SYSTEM AND METHODS FOR PROCESSING ANALYTE SENSOR DATA | ||
Patent #
US 20110231141A1
Filed 05/31/2011
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
SYSTEMS AND METHODS FOR PROCESSING ANALYTE SENSOR DATA | ||
Patent #
US 20110218414A1
Filed 04/05/2011
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
SYSTEM AND METHODS FOR PROCESSING ANALYTE SENSOR DATA | ||
Patent #
US 20110231140A1
Filed 05/31/2011
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Blood glucose tracking apparatus | ||
Patent #
US 7,976,778 B2
Filed 06/22/2005
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Systems and methods for replacing signal artifacts in a glucose sensor data stream | ||
Patent #
US 7,998,071 B2
Filed 10/14/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Systems and methods for replacing signal artifacts in a glucose sensor data stream | ||
Patent #
US 8,005,525 B2
Filed 10/14/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Transcutaneous analyte sensor | ||
Patent #
US 8,000,901 B2
Filed 08/09/2010
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
System and methods for processing analyte sensor data | ||
Patent #
US 7,986,986 B2
Filed 03/23/2010
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
TRANSCUTANEOUS ANALYTE SENSOR | ||
Patent #
US 20110231107A1
Filed 05/26/2011
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
System and methods for processing analyte sensor data | ||
Patent #
US 7,979,104 B2
Filed 05/26/2010
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
SYSTEM AND METHODS FOR PROCESSING ANALYTE SENSOR DATA | ||
Patent #
US 20110231142A1
Filed 05/31/2011
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
System and methods for processing analyte sensor data | ||
Patent #
US 8,052,601 B2
Filed 08/20/2008
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
System and methods for processing analyte sensor data | ||
Patent #
US 8,060,173 B2
Filed 08/01/2003
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte Monitoring Device and Methods of Use | ||
Patent #
US 20100268044A1
Filed 06/28/2010
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 7,860,544 B2
Filed 03/07/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
MEMBRANE FOR USE WITH IMPLANTABLE DEVICES | ||
Patent #
US 20100087724A1
Filed 12/08/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Blood Glucose Tracking Apparatus and Methods | ||
Patent #
US 20100145733A1
Filed 02/12/2010
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte Monitoring Device and Methods of Use | ||
Patent #
US 20100234709A1
Filed 12/21/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte Monitoring Device and Methods of Use | ||
Patent #
US 20100168659A1
Filed 12/21/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
SYSTEMS AND METHODS FOR PROCESSING ANALYTE SENSOR DATA | ||
Patent #
US 20100179408A1
Filed 03/25/2010
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
SYSTEMS AND METHODS FOR REPLACING SIGNAL ARTIFACTS IN A GLUCOSE SENSOR DATA STREAM | ||
Patent #
US 20100036223A1
Filed 10/14/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte Monitoring Device And Methods Of Use | ||
Patent #
US 20100069729A1
Filed 11/09/2009
|
Current Assignee
Fredric C. Colman, Adam Heller, Ephraim Heller, James Say, Yoram Gal, Behrad Aria, Mark S. Vreeke, Keith A. Friedman, Michael F. Tomasco, Phillip John Plante
|
Original Assignee
Fredric C. Colman, Adam Heller, Ephraim Heller, James Say, Yoram Gal, Behrad Aria, Mark S. Vreeke, Keith A. Friedman, Michael F. Tomasco, Phillip John Plante
|
SYSTEMS AND METHODS FOR REPLACING SIGNAL ARTIFACTS IN A GLUCOSE SENSOR DATA STREAM | ||
Patent #
US 20100030053A1
Filed 10/14/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
SIGNAL PROCESSING FOR CONTINUOUS ANALYTE SENSOR | ||
Patent #
US 20100030038A1
Filed 10/12/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte Monitoring Device and Methods of Use | ||
Patent #
US 20100168658A1
Filed 12/21/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
SIGNAL PROCESSING FOR CONTINUOUS ANALYTE SENSOR | ||
Patent #
US 20100016687A1
Filed 09/23/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
SYSTEMS AND METHODS FOR REPLACING SIGNAL ARTIFACTS IN A GLUCOSE SENSOR DATA STREAM | ||
Patent #
US 20100036222A1
Filed 10/14/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
SYSTEMS AND METHODS FOR REPLACING SIGNAL ARTIFACTS IN A GLUCOSE SENSOR DATA STREAM | ||
Patent #
US 20100240976A1
Filed 06/01/2010
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
SYSTEM AND METHODS FOR PROCESSING ANALYTE SENSOR DATA | ||
Patent #
US 20100214104A1
Filed 05/03/2010
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Transcutaneous analyte sensor | ||
Patent #
US 7,774,145 B2
Filed 01/18/2006
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
SYSTEM AND METHODS FOR PROCESSING ANALYTE SENSOR DATA | ||
Patent #
US 20100168657A1
Filed 12/11/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
SYSTEM AND METHODS FOR PROCESSING ANALYTE SENSOR DATA | ||
Patent #
US 20100179406A1
Filed 03/23/2010
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DesCom Inc.
|
SYSTEM AND METHODS FOR PROCESSING ANALYTE SENSOR DATA | ||
Patent #
US 20100217557A1
Filed 01/20/2010
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
SYSTEMS AND METHODS FOR REPLACING SIGNAL ARTIFACTS IN A GLUCOSE SENSOR DATA STREAM | ||
Patent #
US 20100240975A1
Filed 06/01/2010
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
INTEGRATED RECEIVER FOR CONTINUOUS ANALYTE SENSOR | ||
Patent #
US 20100016698A1
Filed 09/23/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
TRANSCUTANEOUS ANALYTE SENSOR | ||
Patent #
US 20100305869A1
Filed 08/09/2010
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
SYSTEM AND METHODS FOR PROCESSING ANALYTE SENSOR DATA | ||
Patent #
US 20100185065A1
Filed 03/26/2010
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
COMPOSITE MATERIAL FOR IMPLANTABLE DEVICE | ||
Patent #
US 20100049024A1
Filed 10/30/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
SIGNAL PROCESSING FOR CONTINUOUS ANALYTE SENSOR | ||
Patent #
US 20100030485A1
Filed 10/12/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
SIGNAL PROCESSING FOR CONTINUOUS ANALYTE SENSOR | ||
Patent #
US 20100010324A1
Filed 09/23/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
SIGNAL PROCESSING FOR CONTINUOUS ANALYTE SENSOR | ||
Patent #
US 20100045465A1
Filed 10/12/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
SYSTEM AND METHODS FOR PROCESSING ANALYTE SENSOR DATA | ||
Patent #
US 20100217106A1
Filed 05/03/2010
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
SIGNAL PROCESSING FOR CONTINUOUS ANALYTE SENSOR | ||
Patent #
US 20100030484A1
Filed 09/23/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
SYSTEM AND METHODS FOR PROCESSING ANALYTE SENSOR DATA | ||
Patent #
US 20100168543A1
Filed 12/11/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
SYSTEM AND METHODS FOR PROCESSING ANALYTE SENSOR DATA | ||
Patent #
US 20100217555A1
Filed 12/16/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
SYSTEMS AND METHODS FOR REPLACING SIGNAL ARTIFACTS IN A GLUCOSE SENSOR DATA STREAM | ||
Patent #
US 20100036216A1
Filed 10/14/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Implantable analyte sensor | ||
Patent #
US 7,657,297 B2
Filed 05/03/2004
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
SYSTEM AND METHODS FOR PROCESSING ANALYTE SENSOR DATA | ||
Patent #
US 20100168542A1
Filed 12/11/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
System and methods for processing analyte sensor data | ||
Patent #
US 7,797,028 B2
Filed 04/14/2008
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Blood Glucose Tracking Apparatus and Methods | ||
Patent #
US 20100100580A1
Filed 12/28/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
SYSTEM AND METHODS FOR PROCESSING ANALYTE SENSOR DATA | ||
Patent #
US 20100168541A1
Filed 12/11/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
SIGNAL PROCESSING FOR CONTINUOUS ANALYTE SENSOR | ||
Patent #
US 20100022855A1
Filed 09/23/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
SIGNAL PROCESSING FOR CONTINUOUS ANALYTE SENSOR | ||
Patent #
US 20100010332A1
Filed 09/23/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
SIGNAL PROCESSING FOR CONTINUOUS ANALYTE SENSOR | ||
Patent #
US 20100010331A1
Filed 09/23/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
SYSTEMS AND METHODS FOR REPLACING SIGNAL ARTIFACTS IN A GLUCOSE SENSOR DATA STREAM | ||
Patent #
US 20100036215A1
Filed 10/14/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
SYSTEMS AND METHODS FOR REPLACING SIGNAL ARTIFACTS IN A GLUCOSE SENSOR DATA STREAM | ||
Patent #
US 20100036225A1
Filed 10/14/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
SYSTEMS AND METHODS FOR REPLACING SIGNAL ARTIFACTS IN A GLUCOSE SENSOR DATA STREAM | ||
Patent #
US 20100036224A1
Filed 10/14/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DecCom Inc.
|
Blood Glucose Tracking Apparatus and Methods | ||
Patent #
US 20100068796A1
Filed 11/19/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte Monitoring Device and Methods of Use | ||
Patent #
US 20100094111A1
Filed 06/30/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Blood Glucose Tracking Apparatus and Methods | ||
Patent #
US 20100098583A1
Filed 12/28/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Device and method for determining analyte levels | ||
Patent #
US 7,711,402 B2
Filed 12/22/2004
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
SYSTEM AND METHODS FOR PROCESSING ANALYTE SENSOR DATA | ||
Patent #
US 20100168544A1
Filed 12/11/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
INTEGRATED RECEIVER FOR CONTINUOUS ANALYTE SENSOR | ||
Patent #
US 20100179401A1
Filed 03/25/2010
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
SYSTEM AND METHODS FOR PROCESSING ANALYTE SENSOR DATA | ||
Patent #
US 20100168540A1
Filed 12/11/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
SYSTEM AND METHODS FOR PROCESSING ANALYTE SENSOR DATA | ||
Patent #
US 20100185072A1
Filed 03/23/2010
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
SYSTEMS AND METHODS FOR REPLACING SIGNAL ARTIFACTS IN A GLUCOSE SENSOR DATA STREAM | ||
Patent #
US 20100179409A1
Filed 03/25/2010
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
System and methods for processing analyte sensor data | ||
Patent #
US 7,778,680 B2
Filed 08/01/2003
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
SYSTEMS AND METHODS FOR REPLACING SIGNAL ARTIFACTS IN A GLUCOSE SENSOR DATA STREAM | ||
Patent #
US 20100235106A1
Filed 05/25/2010
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte Monitoring Device and Methods of Use | ||
Patent #
US 20100268050A1
Filed 06/28/2010
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte Monitoring Device and Methods of Use | ||
Patent #
US 20100268046A1
Filed 06/28/2010
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte Monitoring Device and Methods of Use | ||
Patent #
US 20100268045A1
Filed 06/28/2010
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Blood Glucose Tracking Apparatus and Methods | ||
Patent #
US 20100311151A1
Filed 08/18/2010
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
ANALYTE MONITORING DEVICE AND METHODS OF USE | ||
Patent #
US 20100324399A1
Filed 08/06/2010
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte measuring device | ||
Patent #
US 7,860,545 B2
Filed 02/26/2008
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
SYSTEM AND METHODS FOR PROCESSING ANALYTE SENSOR DATA | ||
Patent #
US 20090012379A1
Filed 08/20/2008
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
SIGNAL PROCESSING FOR CONTINUOUS ANALYTE SENSOR | ||
Patent #
US 20090043542A1
Filed 10/16/2008
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
SIGNAL PROCESSING FOR CONTINUOUS ANALYTE SENSOR | ||
Patent #
US 20090043182A1
Filed 10/16/2008
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
SIGNAL PROCESSING FOR CONTINUOUS ANALYTE SENSOR | ||
Patent #
US 20090043525A1
Filed 10/16/2008
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
SIGNAL PROCESSING FOR CONTINUOUS ANALYTE SENSOR | ||
Patent #
US 20090043181A1
Filed 10/16/2008
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
SIGNAL PROCESSING FOR CONTINUOUS ANALYTE SENSOR | ||
Patent #
US 20090062635A1
Filed 11/03/2008
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
SYSTEMS AND METHODS FOR REPLACING SIGNAL ARTIFACTS IN A GLUCOSE SENSOR DATA STREAM | ||
Patent #
US 20090124878A1
Filed 01/14/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
SYSTEMS AND METHODS FOR REPLACING SIGNAL ARTIFACTS IN A GLUCOSE SENSOR DATA STREAM | ||
Patent #
US 20090124877A1
Filed 01/14/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
ANALYTE SENSOR | ||
Patent #
US 20090143659A1
Filed 11/07/2008
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
TRANSCUTANEOUS ANALYTE SENSOR | ||
Patent #
US 20090192724A1
Filed 02/03/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte Monitoring Device and Methods of Use | ||
Patent #
US 20090173628A1
Filed 03/17/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte Monitoring Device and Methods of Use | ||
Patent #
US 20090182215A1
Filed 03/18/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte Monitoring Device and Methods of Use | ||
Patent #
US 20090187090A1
Filed 03/30/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
SYSTEMS AND METHODS FOR PROCESSING SENSOR DATA | ||
Patent #
US 20090192745A1
Filed 10/24/2008
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte Monitoring Device and Methods of Use | ||
Patent #
US 20090216101A1
Filed 02/13/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
SIGNAL PROCESSING FOR CONTINUOUS ANALYTE SENSOR | ||
Patent #
US 20090203981A1
Filed 04/15/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
SYSTEMS AND METHODS FOR CUSTOMIZING DELIVERY OF SENSOR DATA | ||
Patent #
US 20090240193A1
Filed 02/20/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
System and methods for processing analyte sensor data | ||
Patent #
US 7,583,990 B2
Filed 04/14/2008
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
SYSTEMS AND METHODS FOR PROCESSING, TRANSMITTING AND DISPLAYING SENSOR DATA | ||
Patent #
US 20090240120A1
Filed 02/20/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
SYSTEMS AND METHODS FOR BLOOD GLUCOSE MONITORING AND ALERT DELIVERY | ||
Patent #
US 20090240128A1
Filed 02/20/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
System and methods for processing analyte sensor data | ||
Patent #
US 7,599,726 B2
Filed 04/14/2008
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Hair styling composition | ||
Patent #
US 20090252689A1
Filed 03/31/2009
|
Current Assignee
Rohm and Haas Company
|
Original Assignee
Rohm and Haas Company
|
Analyte Monitoring Device and Methods of Use | ||
Patent #
US 20090292189A1
Filed 07/31/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Membrane for use with implantable devices | ||
Patent #
US 7,632,228 B2
Filed 01/29/2004
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Composite material for implantable device | ||
Patent #
US 7,637,868 B2
Filed 01/11/2005
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
SIGNAL PROCESSING FOR CONTINUOUS ANALYTE SENSOR | ||
Patent #
US 20090299162A1
Filed 07/24/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
SYSTEM AND METHODS FOR PROCESSING ANALYTE SENSOR DATA | ||
Patent #
US 20080021666A1
Filed 10/01/2007
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte Monitoring Device and Methods of Use | ||
Patent #
US 20080021436A1
Filed 04/19/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
ANALYTE MONITORING SYSTEM AND METHOD | ||
Patent #
US 20080064937A1
Filed 06/07/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
ANALYTE MONITORING SYSTEM AND METHOD | ||
Patent #
US 20080058625A1
Filed 06/07/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte Monitoring Device And Methods Of Use | ||
Patent #
US 20080086043A1
Filed 10/30/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte Monitoring Device And Methods Of Use | ||
Patent #
US 20080091095A1
Filed 10/30/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte Monitoring Device And Methods Of Use | ||
Patent #
US 20080086041A1
Filed 10/30/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte Monitoring Device And Methods Of Use | ||
Patent #
US 20080091094A1
Filed 10/30/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte Monitoring Device And Methods Of Use | ||
Patent #
US 20080086040A1
Filed 10/30/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte Monitoring Device And Methods Of Use | ||
Patent #
US 20080167543A1
Filed 03/20/2008
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
SYSTEM AND METHODS FOR PROCESSING ANALYTE SENSOR DATA | ||
Patent #
US 20080195967A1
Filed 04/14/2008
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
SYSTEM AND METHODS FOR PROCESSING ANALYTE SENSOR DATA | ||
Patent #
US 20080194937A1
Filed 04/14/2008
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte Monitoring Device and Methods of Use | ||
Patent #
US 20080262329A1
Filed 06/09/2008
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
INTEGRATED RECEIVER FOR CONTINUOUS ANALYTE SENSOR | ||
Patent #
US 20080287765A1
Filed 07/29/2008
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
INTEGRATED RECEIVER FOR CONTINUOUS ANALYTE SENSOR | ||
Patent #
US 20080287764A1
Filed 07/29/2008
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
SYSTEM AND METHODS FOR PROCESSING ANALYTE SENSOR DATA | ||
Patent #
US 20080306368A1
Filed 08/21/2008
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Sensor head for use with implantable devices | ||
Patent #
US 7,471,972 B2
Filed 12/22/2004
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Porous membranes for use with implantable devices | ||
Patent #
US 7,192,450 B2
Filed 08/22/2003
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte Monitoring Device and Methods of Use | ||
Patent #
US 20070149873A1
Filed 03/07/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte Monitoring Device and Methods of Use | ||
Patent #
US 20070161879A1
Filed 03/07/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte Monitoring Device and Methods of Use | ||
Patent #
US 20070161880A1
Filed 03/24/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
TRANSCUTANEOUS ANALYTE SENSOR | ||
Patent #
US 20070203966A1
Filed 03/23/2007
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte Monitoring Device and Methods of Use | ||
Patent #
US 20070191700A1
Filed 04/12/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte Monitoring Device and Methods of Use | ||
Patent #
US 20070179372A1
Filed 04/03/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte Monitoring Device and Methods of Use | ||
Patent #
US 20070213610A1
Filed 03/02/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
TRANSCUTANEOUS ANALYTE SENSOR | ||
Patent #
US 20070208246A1
Filed 04/11/2007
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
System and methods for processing analyte sensor data | ||
Patent #
US 7,276,029 B2
Filed 08/01/2003
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Biointerface membranes incorporating bioactive agents | ||
Patent #
US 20060198864A1
Filed 05/03/2006
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Biointerface membranes incorporating bioactive agents | ||
Patent #
US 20060204536A1
Filed 05/03/2006
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
System and methods for processing analyte sensor data | ||
Patent #
US 20050027181A1
Filed 08/01/2003
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
System and methods for processing analyte sensor data | ||
Patent #
US 20050027463A1
Filed 08/01/2003
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Increasing bias for oxygen production in an electrode system | ||
Patent #
US 20050056552A1
Filed 07/21/2004
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Silicone composition for biocompatible membrane | ||
Patent #
US 20050090607A1
Filed 10/28/2003
|
Current Assignee
DECOM INC.
|
Original Assignee
DexCom Incorporated
|
Porous membranes for use with implantable devices | ||
Patent #
US 20050112169A1
Filed 08/22/2003
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Implantable device with improved radio frequency capabilities | ||
Patent #
US 20050182451A1
Filed 01/11/2005
|
Current Assignee
Sean Saint, Adam Griffin, Mark Brister
|
Original Assignee
Sean Saint, Adam Griffin, Mark Brister
|
Device and method for determining analyte levels | ||
Patent #
US 20050177036A1
Filed 12/22/2004
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
SIGNAL PROCESSING FOR CONTINUOUS ANALYTE SENSOR | ||
Patent #
US 20050203360A1
Filed 12/08/2004
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 20050199494A1
Filed 12/29/2004
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
BLOOD GLUCOSE TRACKING APPARATUS AND METHODS | ||
Patent #
US 20050239156A1
Filed 06/23/2005
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Therasense Incorporated
|
IMPLANTABLE ANALYTE SENSOR | ||
Patent #
US 20050245795A1
Filed 05/03/2004
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
BLOOD GLUCOSE TRACKING APPARATUS AND METHODS | ||
Patent #
US 20050277164A1
Filed 06/22/2005
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Therasense Incorporated
|
Membrane for use with implantable devices | ||
Patent #
US 20040186362A1
Filed 01/29/2004
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 20030100821A1
Filed 01/03/2003
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Therasense Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 20030187338A1
Filed 04/18/2003
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Therasense Incorporated
|
Systems and methods for replacing signal artifacts in a glucose sensor data stream | ||
Patent #
US 8,073,519 B2
Filed 10/14/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Systems and methods for replacing signal artifacts in a glucose sensor data stream | ||
Patent #
US 8,073,520 B2
Filed 05/25/2010
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Porous membranes for use with implantable devices | ||
Patent #
US 8,118,877 B2
Filed 01/17/2007
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Systems and methods for replacing signal artifacts in a glucose sensor data stream | ||
Patent #
US 8,128,562 B2
Filed 10/14/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Systems and methods for replacing signal artifacts in a glucose sensor data stream | ||
Patent #
US 8,150,488 B2
Filed 10/14/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Transcutaneous analyte sensor | ||
Patent #
US 8,160,669 B2
Filed 04/11/2007
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,162,829 B2
Filed 03/30/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Systems and methods for replacing signal artifacts in a glucose sensor data stream | ||
Patent #
US 8,167,801 B2
Filed 03/25/2010
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,175,673 B2
Filed 11/09/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,177,716 B2
Filed 12/21/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Systems and methods for replacing signal artifacts in a glucose sensor data stream | ||
Patent #
US 8,195,265 B2
Filed 02/09/2011
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
System and methods for processing analyte sensor data | ||
Patent #
US 8,206,297 B2
Filed 12/16/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Signal processing for continuous analyte sensor | ||
Patent #
US 8,216,139 B2
Filed 09/23/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,224,413 B2
Filed 10/10/2008
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,226,558 B2
Filed 09/27/2010
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,226,557 B2
Filed 12/28/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,226,555 B2
Filed 03/18/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Systems and methods for replacing signal artifacts in a glucose sensor data stream | ||
Patent #
US 8,229,536 B2
Filed 05/27/2010
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Systems and methods for blood glucose monitoring and alert delivery | ||
Patent #
US 8,229,535 B2
Filed 02/20/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,231,532 B2
Filed 04/30/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Signal processing for continuous analyte sensor | ||
Patent #
US 8,233,958 B2
Filed 10/12/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Blood glucose tracking apparatus and methods | ||
Patent #
US 8,236,242 B2
Filed 02/12/2010
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,235,896 B2
Filed 12/21/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Signal processing for continuous analyte sensor | ||
Patent #
US 8,251,906 B2
Filed 04/15/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,255,031 B2
Filed 03/17/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Signal processing for continuous analyte sensor | ||
Patent #
US 8,257,259 B2
Filed 10/16/2008
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,260,392 B2
Filed 06/09/2008
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,265,726 B2
Filed 11/09/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Signal processing for continuous analyte sensor | ||
Patent #
US 8,265,725 B2
Filed 10/12/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Blood glucose tracking apparatus and methods | ||
Patent #
US 8,268,243 B2
Filed 12/28/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,273,022 B2
Filed 02/13/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,275,439 B2
Filed 11/09/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Transcutaneous analyte sensor | ||
Patent #
US 8,275,437 B2
Filed 03/23/2007
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Integrated receiver for continuous analyte sensor | ||
Patent #
US 8,282,550 B2
Filed 07/29/2008
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Signal processing for continuous analyte sensor | ||
Patent #
US 8,282,549 B2
Filed 12/08/2004
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
System and methods for processing analyte sensor data | ||
Patent #
US 8,285,354 B2
Filed 03/23/2010
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,287,454 B2
Filed 09/27/2010
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Signal processing for continuous analyte sensor | ||
Patent #
US 8,290,561 B2
Filed 09/23/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
System and methods for processing analyte sensor data | ||
Patent #
US 8,290,562 B2
Filed 05/03/2010
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Systems and methods for replacing signal artifacts in a glucose sensor data stream | ||
Patent #
US 8,292,810 B2
Filed 01/27/2011
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,306,598 B2
Filed 11/09/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Transcutaneous analyte sensor | ||
Patent #
US 8,311,749 B2
Filed 05/26/2011
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Transcutaneous analyte sensor | ||
Patent #
US 8,321,149 B2
Filed 06/29/2011
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
System and methods for processing analyte sensor data | ||
Patent #
US 8,332,008 B2
Filed 03/23/2010
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,346,336 B2
Filed 03/18/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,346,337 B2
Filed 06/30/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
System and methods for replacing signal artifacts in a glucose sensor data stream | ||
Patent #
US 8,346,338 B2
Filed 01/27/2011
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,353,829 B2
Filed 12/21/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,357,091 B2
Filed 12/21/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,366,614 B2
Filed 03/30/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Systems and methods for processing sensor data | ||
Patent #
US 8,369,919 B2
Filed 10/24/2008
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,372,005 B2
Filed 12/21/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Signal processing for continuous analyte sensor | ||
Patent #
US 8,374,667 B2
Filed 10/16/2008
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,380,273 B2
Filed 04/11/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Calibration techniques for a continuous analyte sensor | ||
Patent #
US 8,386,004 B2
Filed 09/07/2011
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,391,945 B2
Filed 03/17/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
System and methods for processing analyte sensor data | ||
Patent #
US 8,394,021 B2
Filed 10/01/2007
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,409,131 B2
Filed 03/07/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Systems and methods for replacing signal artifacts in a glucose sensor data stream | ||
Patent #
US 8,412,301 B2
Filed 02/09/2011
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
System and methods for processing analyte sensor data | ||
Patent #
US 8,428,679 B2
Filed 03/26/2010
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Systems and methods for replacing signal artifacts in a glucose sensor data stream | ||
Patent #
US 8,435,179 B2
Filed 01/27/2011
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
System and methods for processing analyte sensor data | ||
Patent #
US 8,442,610 B2
Filed 08/21/2008
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,465,425 B2
Filed 06/30/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Signal processing for continuous analyte sensor | ||
Patent #
US 8,469,886 B2
Filed 09/23/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,473,021 B2
Filed 07/31/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,480,580 B2
Filed 04/19/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Systems and methods for replacing signal artifacts in a glucose sensor data stream | ||
Patent #
US 8,491,474 B2
Filed 01/27/2011
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Sensor head for use with implantable devices | ||
Patent #
US 8,509,871 B2
Filed 10/28/2008
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
System and methods for processing analyte sensor data | ||
Patent #
US 8,548,553 B2
Filed 06/22/2012
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
System and methods for processing analyte sensor data | ||
Patent #
US 8,588,882 B2
Filed 12/16/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Systems and methods for customizing delivery of sensor data | ||
Patent #
US 8,591,455 B2
Filed 02/20/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,597,189 B2
Filed 03/03/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,612,159 B2
Filed 02/16/2004
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,617,071 B2
Filed 06/21/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
System and methods for processing analyte sensor data | ||
Patent #
US 8,622,905 B2
Filed 12/11/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,622,906 B2
Filed 12/21/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,641,619 B2
Filed 12/21/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,649,841 B2
Filed 04/03/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,652,043 B2
Filed 07/20/2012
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Signal processing for continuous analyte sensor | ||
Patent #
US 8,657,745 B2
Filed 10/16/2008
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Systems and methods for processing analyte sensor data | ||
Patent #
US 8,657,747 B2
Filed 04/05/2011
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,660,627 B2
Filed 03/17/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,666,469 B2
Filed 11/16/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,668,645 B2
Filed 01/03/2003
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,670,815 B2
Filed 04/30/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,672,844 B2
Filed 02/27/2004
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Systems and methods for processing analyte sensor data | ||
Patent #
US 8,672,845 B2
Filed 03/25/2010
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
System and methods for processing analyte sensor data | ||
Patent #
US 8,676,287 B2
Filed 12/11/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,688,188 B2
Filed 06/30/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
System and methods for processing analyte sensor data | ||
Patent #
US 8,700,117 B2
Filed 12/08/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,734,348 B2
Filed 03/17/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,734,346 B2
Filed 04/30/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,738,109 B2
Filed 03/03/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,744,545 B2
Filed 03/03/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Signal processing for continuous analyte sensor | ||
Patent #
US 8,747,315 B2
Filed 09/23/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
System and methods for processing analyte sensor data | ||
Patent #
US 8,761,856 B2
Filed 04/27/2012
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Blood glucose tracking apparatus | ||
Patent #
US 8,765,059 B2
Filed 10/27/2010
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
System and methods for processing analyte sensor data | ||
Patent #
US 8,771,187 B2
Filed 05/31/2011
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
System and methods for processing analyte sensor data | ||
Patent #
US 8,774,888 B2
Filed 01/20/2010
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,774,887 B2
Filed 03/24/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Systems and methods for replacing signal artifacts in a glucose sensor data stream | ||
Patent #
US 8,777,853 B2
Filed 04/04/2012
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
System and methods for processing analyte sensor data | ||
Patent #
US 8,788,006 B2
Filed 12/11/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
System and methods for processing analyte sensor data | ||
Patent #
US 8,788,008 B2
Filed 05/31/2011
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Transcutaneous analyte sensor | ||
Patent #
US 8,788,007 B2
Filed 03/08/2012
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Systems and methods for replacing signal artifacts in a glucose sensor data stream | ||
Patent #
US 8,790,260 B2
Filed 10/14/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Transcutaneous analyte sensor | ||
Patent #
US 8,792,955 B2
Filed 06/09/2011
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Systems and methods for replacing signal artifacts in a glucose sensor data stream | ||
Patent #
US 8,795,177 B2
Filed 01/14/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
System and methods for processing analyte sensor data | ||
Patent #
US 8,801,612 B2
Filed 04/27/2012
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Signal processing for continuous analyte sensor | ||
Patent #
US 8,801,610 B2
Filed 07/24/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
System and methods for processing analyte sensor data | ||
Patent #
US 8,808,182 B2
Filed 04/27/2012
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Systems and methods for replacing signal artifacts in a glucose sensor data stream | ||
Patent #
US 8,812,073 B2
Filed 06/01/2010
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Systems and methods for replacing signal artifacts in a glucose sensor data stream | ||
Patent #
US 8,821,400 B2
Filed 02/09/2011
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Membrane for use with implantable devices | ||
Patent #
US 8,840,552 B2
Filed 12/08/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,840,553 B2
Filed 02/26/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Systems and methods for replacing signal artifacts in a glucose sensor data stream | ||
Patent #
US 8,843,187 B2
Filed 06/01/2010
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Transcutaneous analyte sensor | ||
Patent #
US 8,845,536 B2
Filed 04/11/2007
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,880,137 B2
Filed 04/18/2003
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte sensor | ||
Patent #
US 8,886,273 B2
Filed 11/07/2008
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Transcutaneous analyte sensor | ||
Patent #
US 8,915,849 B2
Filed 02/03/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,915,850 B2
Filed 03/28/2014
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,920,319 B2
Filed 12/28/2012
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,974,386 B2
Filed 11/01/2005
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Transcutaneous analyte sensor | ||
Patent #
US 8,986,209 B2
Filed 07/13/2012
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 9,011,332 B2
Filed 10/30/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 9,011,331 B2
Filed 12/29/2004
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 9,014,773 B2
Filed 03/07/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Systems and methods for processing, transmitting and displaying sensor data | ||
Patent #
US 9,020,572 B2
Filed 09/10/2010
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 9,042,953 B2
Filed 03/02/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 9,066,695 B2
Filed 04/12/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 9,066,697 B2
Filed 10/27/2011
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 9,066,694 B2
Filed 04/03/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 9,072,477 B2
Filed 06/21/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 9,078,607 B2
Filed 06/17/2013
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Signal processing for continuous analyte sensor | ||
Patent #
US 9,107,623 B2
Filed 04/15/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Systems and methods for processing, transmitting and displaying sensor data | ||
Patent #
US 9,143,569 B2
Filed 02/20/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Systems and methods for replacing signal artifacts in a glucose sensor data stream | ||
Patent #
US 9,149,219 B2
Filed 02/09/2011
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Signal processing for continuous analyte sensor | ||
Patent #
US 9,192,328 B2
Filed 09/23/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Systems and methods for replacing signal artifacts in a glucose sensor data stream | ||
Patent #
US 9,282,925 B2
Filed 03/25/2010
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 9,326,716 B2
Filed 12/05/2014
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Sensor head for use with implantable devices | ||
Patent #
US 9,328,371 B2
Filed 07/16/2013
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 9,326,714 B2
Filed 06/29/2010
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Signal processing for continuous analyte sensor | ||
Patent #
US 9,351,668 B2
Filed 10/12/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Signal processing for continuous analyte sensor | ||
Patent #
US 9,364,173 B2
Filed 09/23/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Signal processing for continuous analyte sensor | ||
Patent #
US 9,420,965 B2
Filed 07/01/2011
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Systems and methods for replacing signal artifacts in a glucose sensor data stream | ||
Patent #
US 9,420,968 B2
Filed 04/04/2012
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Systems and methods for replacing signal artifacts in a glucose sensor data stream | ||
Patent #
US 9,427,183 B2
Filed 07/12/2011
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte sensor | ||
Patent #
US 9,451,908 B2
Filed 12/19/2012
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Blood glucose tracking apparatus and methods | ||
Patent #
US 9,477,811 B2
Filed 06/23/2005
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 9,498,159 B2
Filed 10/30/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Signal processing for continuous analyte sensor | ||
Patent #
US 9,498,155 B2
Filed 10/16/2008
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Systems and methods for replacing signal artifacts in a glucose sensor data stream | ||
Patent #
US 9,510,782 B2
Filed 04/04/2012
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Membrane for use with implantable devices | ||
Patent #
US 9,532,741 B2
Filed 07/25/2014
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Integrated receiver for continuous analyte sensor | ||
Patent #
US 9,538,946 B2
Filed 03/25/2010
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Systems and methods for replacing signal artifacts in a glucose sensor data stream | ||
Patent #
US 9,585,607 B2
Filed 04/04/2012
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 9,610,034 B2
Filed 11/09/2015
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Systems and methods for replacing signal artifacts in a glucose sensor data stream | ||
Patent #
US 9,649,069 B2
Filed 06/29/2016
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Systems and methods for processing sensor data | ||
Patent #
US 9,717,449 B2
Filed 01/15/2013
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Systems and methods for replacing signal artifacts in a glucose sensor data stream | ||
Patent #
US 9,724,045 B1
Filed 04/06/2017
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Signal processing for continuous analyte sensor | ||
Patent #
US 9,750,441 B2
Filed 08/15/2016
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Systems and methods for replacing signal artifacts in a glucose sensor data stream | ||
Patent #
US 9,750,460 B2
Filed 04/14/2017
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Sensor head for use with implantable devices | ||
Patent #
US 9,804,114 B2
Filed 03/02/2016
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Transcutaneous analyte sensor | ||
Patent #
US 9,833,143 B2
Filed 06/05/2014
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
System and methods for processing analyte sensor data | ||
Patent #
US 9,895,089 B2
Filed 05/20/2014
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Membrane for use with implantable devices | ||
Patent #
US 10,039,480 B2
Filed 02/11/2015
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Systems and methods for processing sensor data | ||
Patent #
US 10,182,751 B2
Filed 06/26/2017
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 10,201,301 B2
Filed 04/18/2016
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 10,231,654 B2
Filed 06/23/2015
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Transcutaneous analyte sensor | ||
Patent #
US 10,327,638 B2
Filed 10/30/2017
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte sensor | ||
Patent #
US 10,349,873 B2
Filed 04/27/2016
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 10,478,108 B2
Filed 02/05/2016
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Transcutaneous analyte sensor | ||
Patent #
US 10,524,703 B2
Filed 01/24/2014
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
System and methods for processing analyte sensor data for sensor calibration | ||
Patent #
US 10,610,137 B2
Filed 06/28/2019
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
System and methods for processing analyte sensor data for sensor calibration | ||
Patent #
US 10,610,136 B2
Filed 06/28/2019
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
System and methods for processing analyte sensor data for sensor calibration | ||
Patent #
US 10,610,135 B2
Filed 06/28/2019
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
System and methods for processing analyte sensor data for sensor calibration | ||
Patent #
US 10,617,336 B2
Filed 06/28/2019
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Integrated insulin delivery system with continuous glucose sensor | ||
Patent #
US 10,653,835 B2
Filed 10/24/2017
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
System and methods for processing analyte sensor data for sensor calibration | ||
Patent #
US 10,709,364 B2
Filed 11/21/2019
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte sensor | ||
Patent #
US 10,709,362 B2
Filed 11/21/2019
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte sensor | ||
Patent #
US 10,709,363 B2
Filed 11/21/2019
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
System and methods for processing analyte sensor data for sensor calibration | ||
Patent #
US 10,716,498 B2
Filed 11/21/2019
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte sensor | ||
Patent #
US 10,722,152 B2
Filed 11/05/2019
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
System and methods for processing analyte sensor data for sensor calibration | ||
Patent #
US 10,743,801 B2
Filed 11/21/2019
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
System and methods for processing analyte sensor data | ||
Patent #
US 10,786,185 B2
Filed 01/05/2018
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte sensor | ||
Patent #
US 10,799,158 B2
Filed 11/21/2019
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte sensor | ||
Patent #
US 10,799,159 B2
Filed 02/13/2020
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte sensor | ||
Patent #
US 10,813,577 B2
Filed 02/13/2020
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte sensor | ||
Patent #
US 10,813,576 B2
Filed 11/21/2019
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Integrated insulin delivery system with continuous glucose sensor | ||
Patent #
US 10,835,672 B2
Filed 05/05/2020
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
System and methods for processing analyte sensor data for sensor calibration | ||
Patent #
US 10,856,787 B2
Filed 07/31/2019
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
System and methods for processing analyte sensor data for sensor calibration | ||
Patent #
US 10,898,114 B2
Filed 11/21/2019
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Signal processing for continuous analyte sensor | ||
Patent #
US 10,898,113 B2
Filed 06/05/2018
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Full duplex modulated backscatter system | ||
Patent #
US 5,649,296 A
Filed 06/19/1995
|
Current Assignee
Lucent Technologies Inc.
|
Original Assignee
Lucent Technologies Inc.
|
Battery mounting and testing apparatuses, methods of forming battery mounting and testing apparatuses, battery-powered test configured electronic devices, and methods of forming battery-powered test configured electronic devices | ||
Patent #
US 6,025,087 A
Filed 02/19/1998
|
Current Assignee
Round Rock Research LLC
|
Original Assignee
Micron Technology Inc.
|
Multi-stage transponder wake-up, method and structure | ||
Patent #
US 5,621,412 A
Filed 06/07/1995
|
Current Assignee
Texas Instruments Inc.
|
Original Assignee
Texas Instruments Inc.
|
Method for mounting integrated circuits onto printed circuit boards and testing | ||
Patent #
US 5,479,694 A
Filed 04/13/1993
|
Current Assignee
Micron Technology Inc.
|
Original Assignee
Micron Technology Inc.
|
Injection molded printed circuits | ||
Patent #
US 5,220,488 A
Filed 04/27/1992
|
Current Assignee
UFE INCORPORATED
|
Original Assignee
UFE INCORPORATED
|
Circuit writer | ||
Patent #
US 5,099,090 A
Filed 01/11/1990
|
Current Assignee
SOPHIA SYSTEMS CO. LTD. A JAPANESE CORPORATION
|
Original Assignee
ARIEL ELECTRONICS INC.
|
Circuit writer materials | ||
Patent #
US 5,156,772 A
Filed 05/11/1988
|
Current Assignee
SOPHIA SYSTEMS CO. LTD. A JAPANESE CORPORATION
|
Original Assignee
ARIEL ELECTRONICS INC.
|
Microwave data transmission apparatus | ||
Patent #
US 4,926,182 A
Filed 05/29/1987
|
Current Assignee
Sharp Corporation
|
Original Assignee
Sharp Electronics Corporation
|
Flexible flat multiconductor cable | ||
Patent #
US 4,659,872 A
Filed 04/30/1985
|
Current Assignee
AMP Limited
|
Original Assignee
AMP Limited
|
Method of making an electrical circuit package | ||
Patent #
US 4,675,989 A
Filed 04/07/1986
|
Current Assignee
AMP Limited
|
Original Assignee
AMP Limited
|
Asymmetric digital watch module | ||
Patent #
US 4,157,007 A
Filed 12/22/1976
|
Current Assignee
National Semiconductor Corporation
|
Original Assignee
National Semiconductor Corporation
|
Interrogation, and detection system | ||
Patent #
US 4,075,632 A
Filed 05/24/1976
|
Current Assignee
AMTECH CORPORATION 536 PAUL PLACE WHITE ROCK NEW MEXICO A CORP OF NEW MEXICO
|
Original Assignee
United States Department of Energy
|
Multilayer flexible printed circuit tape | ||
Patent #
US 4,064,552 A
Filed 02/03/1976
|
Current Assignee
Joseph L. Angelucci, Thomas L. Angelucci
|
Original Assignee
Joseph L. Angelucci, Thomas L. Angelucci
|
21 Claims
-
1. A method of manufacturing and testing an electronic circuit, the method comprising:
-
forming a plurality of conductive traces on a substrate and providing a gap in one of the conductive traces;
attaching a circuit component to the substrate and coupling the circuit component to at least one of the conductive traces;
supporting a battery on the substrate, and coupling the battery to at least one of the conductive traces, wherein a completed circuit would be defined, including the traces, circuit component, and battery, but for the gap;
verifying electrical connections by performing an in circuit test, after the circuit component is attached and the battery is supported; and
employing a jumper to electrically close the gap, and complete the circuit, after verifying electrical connections. - View Dependent Claims (2, 3, 4, 5, 6, 7)
-
-
8. A method of manufacturing and testing an electronic circuit, the method comprising:
-
forming first and second traces on a substrate such that the first trace has a first portion and the second trace has a second portion spaced apart from the first portion;
attaching a circuit component to the substrate and coupling the circuit component to at least one of the conductive traces;
supporting a battery on the substrate, and coupling the battery to at least one of the conductive traces, wherein a complete circuit would be defined including the traces, circuit component, and battery, if the first portion was coupled to the second portion;
verifying electrical connections between the traces and the circuit component, and between the traces and the battery, after the circuit component is attached and the battery is supported; and
coupling the first portion to the second portion to complete the circuit after verifying electrical connections. - View Dependent Claims (9, 10, 11, 12)
-
-
13. A method of manufacturing and testing an electronic circuit, the method comprising:
-
forming first and second traces on a substrate such that the first trace has a first portion and the second trace has a second portion spaced apart from the first portion;
attaching a circuit component to the substrate and coupling the circuit component to at least one of the conductive traces;
supporting a battery on the substrate, and coupling the battery to at least one of the conductive traces, wherein a completed circuit would be defined including the traces, circuit component, and battery, if the first portion was coupled to the second portion;
verifying electrical connections by performing an in circuit test, after the circuit component is attached and the battery is supported; and
coupling the first portion to the second portion using conductive epoxy to complete the circuit after verifying electrical connections. - View Dependent Claims (14, 15, 16, 17, 18, 19)
-
-
20. A method of manufacturing and testing an electronic circuit, the method comprising:
-
forming first and second traces on a substrate such that the first trace has a first portion and the second trace has a second portion spaced apart from the first portion;
attaching an integrated circuit to the substrate and coupling the integrated circuit to at least one of the conductive traces the integrated circuit defining a wireless identification device and including a receiver, a modulator, a microprocessor and a memory;
both supporting a battery on the substrate and coupling the battery to at least one of the conductive traces using conductive epoxy, wherein a completed circuit would be defined including the traces, circuit component, and battery, if the first portion was coupled to the second portion;
verifying electrical connections by performing an in circuit test, after the circuit component is attached and the battery is supported; and
coupling the first portion to the second portion using conductive epoxy to complete the circuit after verifying electrical connections. - View Dependent Claims (21)
-
1 Specification
This is a Division of U.S. patent application Ser. No. 08/954,551, filed Oct. 20, 1997, and titled “A Method of Manufacturing and Testing an Electronic Device, and an Electronic Device”.
This invention relates to techniques for manufacturing circuitry. The invention also relates to methods of testing circuitry.
When manufacturing circuitry, after attaching components to a substrate, such as to a circuit board or flexible material, it is desirable to perform testing. These tests, among other things, are to make sure that circuit connections have been properly made, are sufficiently conductive, and are not cold connections. Such testing is known in the art as “in-circuit” testing. It is difficult to perform such testing while power is supplied to the circuitry, such as by an on board cell or battery.
In circuit testing is performed for a wide variety of types of circuitry. Just one example of circuitry for which in circuit testing is performed is in identification circuitry.
As large numbers of objects are moved in inventory, product manufacturing, and merchandising operations, there is a continuous challenge to accurately monitor the location and flow of objects. Additionally, there is a continuing goal to interrogate the location of objects in an inexpensive and streamlined manner. One way of tracking objects is with an electronic identification system.
Some such systems generally include an identification device including circuitry provided with a unique identification code in order to distinguish between a number of different devices. Typically, the identification devices are entirely passive (have no power supply). However, this identification system is only capable of operation over a relatively short range, limited by the size of a magnetic field used to supply power to the devices and to communicate with the devices.
Another type of electronic identification system, and various applications for such systems are described in detail in commonly assigned U.S. patent application Ser. No. 08/705,043, filed Aug. 29, 1996, and incorporated herein by reference. The system includes an active transponder device affixed to an object to be monitored which receives a signal from an interrogator. The device receives the signal, then generates and transmits a responsive signal. Because active devices have their own power sources, they do not need to be in close proximity to an interrogator or reader to receive power via magnetic coupling. Therefore, active transponder devices tend to be more suitable for applications requiring tracking of a tagged device that may not be in close proximity to an interrogator. For example, active transponder devices tend to be more suitable for inventory control or tracking.
Electronic identification systems can also be used for remote payment. For example, when a radio frequency identification device passes an interrogator at a toll booth, the toll booth can determine the identity of the radio frequency identification device, and thus of the owner of the device, and debit an account held by the owner for payment of toll or can receive a credit card number against which the toll can be charged. Similarly, remote payment is possible for a variety of other goods or services.
Testing of battery powered circuitry of this or other types typically requires delaying connection of the battery to the circuit until in circuit testing is completed. Then, another in circuit test must be performed to verify the battery connections.
The invention provides a method of manufacturing and testing an electronic circuit. A plurality of conductive traces are formed on a substrate and a gap is provided in one of the conductive traces. A circuit component is attached to the substrate and coupled to at least one of the conductive traces. A battery is supported on the substrate and coupled the battery to at least one of the conductive traces, wherein a completed circuit would be defined, including the traces, circuit component, and battery, but for the gap. Electrical connections are verified by performing an in circuit test, after the circuit component is attached and the battery is supported. A jumper is employed to electrically close the gap, and complete the circuit, after the electrical connections are verified.
In one aspect of the invention, employing the jumper comprises employing conductive epoxy.
In another aspect of the invention, employing a jumper comprises placing a conductor across the gap and coupling the conductor to traces on either side of the gap with conductive epoxy.
In another aspect of the invention, employing a jumper comprises placing a resistor across the gap and coupling the resistor to traces on either side of the gap with conductive epoxy.
In one aspect of the invention, a jumper is formed by wire bonding; e.g., by ultrasonically bonding a wire loop to traces on either side of the gap.
In one aspect of the invention, the battery is mechanically supported from the substrate by epoxy. In another aspect of the invention, the battery is electrically coupled to at least one of the traces by conductive epoxy.
Another aspect of the invention provides an electronic circuit comprising a substrate, and a plurality of conductive traces on the substrate, with a gap in one of the conductive traces. A circuit component is attached to the substrate and coupled to at least one of the conductive traces. A battery is supported on the substrate and coupled to at least one of the conductive traces, wherein a completed circuit would be defined, including the traces, circuit component, and battery, but for the gap. A jumper electrically closes the gap and completes the circuit. The jumper comprises conductive epoxy.
In one aspect of the invention, the jumper comprises conductive epoxy having a resistance of less than 1000 ohms prior to curing.
In another aspect of the invention, the jumper comprises a conductor across the gap and the conductive epoxy couples the conductor to the conductive traces on either side of the gap.
In another aspect of the invention, the jumper comprises a resistor across the gap and the conductive epoxy couples the resistor to the conductive traces on either side of the gap.
In another aspect of the invention, the size of the gap is approximately 30 thousandths of an inch.
In another aspect of the invention, the circuit component comprises an integrated circuit. In one aspect of the invention, the circuit component comprises an integrated circuit defining a wireless identification device including a receiver, a transponder, a microprocessor, and a memory.
Preferred embodiments of the invention are described below with reference to the following accompanying drawings.
FIG. 1 is a plan view showing construction details of an electronic device embodying the invention prior to completing or closing a housing thereof.
FIG. 2 is a plan view of a substrate employed in a method of manufacturing the device of FIG. 1.
FIG. 3 is a plan view of the substrate of FIG. 2 after further processing in accordance with the method of manufacturing the device of FIG. 1.
FIG. 4 is a plan view showing further processing in accordance with the method of manufacturing the device of FIG. 1.
FIG. 5 is a plan view showing further processing in accordance with the method of manufacturing the device of FIG. 1.
FIG. 6 is a plan view showing further processing in accordance with the method of manufacturing the device of FIG. 1.
FIG. 7 is a plan view illustrating an alternative embodiment of the invention at a processing stage similar to the stage illustrated in FIG. 6.
FIG. 8 is a plan view illustrating another alternative embodiment of the invention at a processing stage similar to the stage illustrated in FIG. 6.
FIG. 9 is a plan view illustrating processing after the stage shown in FIGS. 6, 7, or 8.
This disclosure of the invention is submitted in furtherance of the constitutional purposes of the U.S. Patent Laws “to promote the progress of science and useful arts” (Article 1, Section 8).
FIG. 1 illustrates an electronic device 10 in accordance with one embodiment of the invention. In the illustrated embodiment, the device 10 includes a substrate 12. The substrate 12 can be a printed circuit board or a substrate appropriate for a flex circuit.
The device 10 further includes circuitry 14 including circuit components 16 on the substrate. The invention has application to circuitry including any of various types of circuit components. For example, the circuit components 16 can include one or more integrated circuits. In the embodiment shown in FIG. 1, the circuit components 16 include an integrated circuit 18 as described in U.S. patent application Ser. No. 08/705,043, filed Aug. 29, 1996 and incorporated herein by reference. In the illustrated embodiment, the integrated circuit 18 comprises a receiver, a transmitter or backscatter modulator, a microprocessor, and a memory, and is useful for inventory monitoring or RFID (radio frequency identification device) or RIC (remote intelligent communications) applications. In the illustrated embodiment, the circuit components 16 further include a capacitor 20. Other types of circuit components, such as different types of integrated circuits, resistors, capacitors, inductors, etc. are employed in alternative embodiments.
The circuitry 14 further includes conductors or circuit traces 22 on the substrate 12 connecting together the circuit components 16. The circuit traces 22 are typically copper if the substrate 12 is a printed circuit board, and are typically copper or Printed Thick Film (PTF) in a flex circuit. Printed Thick Film comprises a polymer filled with flecks of metal such as silver or copper. The circuitry 14 includes a first or negative battery connection or terminal 23 (see FIG. 3). In the illustrated embodiment, the negative battery connection 23 is defined by a plurality of radially spaced apart contact points which provide an enhanced connection. In alternative embodiments a single, continuous, or central contact point is provided. Other forms of battery connections, such as metal clip connections can be employed. The circuitry 14 further includes a second or positive battery connection or terminal 25 defined by the conductive traces.
In an embodiment there the circuit components are used for communications, the circuit traces 22 connect at least one antenna to the integrated circuit 18 for electromagnetic transmission and reception. More particularly, in the illustrated embodiment, the integrated circuit 18 receives and sends microwave frequencies, and one of the circuit traces 22 defines a loop antenna 24 appropriately sized to receive microwave transmissions of a selected frequency, and other traces 22 define a dipole antenna 26 appropriately sized for responding at a selected microwave frequency, such as by backscatter reflection.
The device 10 further includes a power source 28. In the illustrated embodiment, the power source 28 is a battery. In one embodiment, the battery is a thin profile or button-type cell forming a small, thin energy cell more commonly utilized in watches and small electronic devices requiring a thin profile. Such battery cells have a pair of terminals or electrodes: a lid or negative terminal, and a can or positive terminal. In an alternative embodiment, multiple batteries are provided (e.g., coupled together in series or parallel).
The device 10 can be included in any appropriate housing or packaging. Various methods of manufacturing housings are described in commonly assigned U.S. patent application Ser. No. 08/800,037, filed Feb. 13, 1997, and incorporated herein by reference. In the illustrated embodiment, the device 10 includes a housing defined in part by the substrate.
A method of manufacturing the device 10 will now be described, reference being made to FIGS. 2-9.
As shown in FIG. 2, the substrate 12 is provided. The term “substrate” as used herein refers to any supporting or supportive structure, including, but not limited to, a supportive single layer of material or multiple layer constructions. In the illustrated flex circuit embodiment, the substrate 12 comprises a polyester film. Other materials are possible. As discussed above, the substrate can be a printed circuit board.
The circuit traces 22 are then defined, as shown in FIG. 3. The circuit traces 22 are typically copper if the substrate 12 is a printed circuit board, and are typically copper or Printed Thick Film (PTF) in a flex circuit. In one embodiment, PTF is formed or applied over the substrate 12 to define the circuit traces 22. The circuit traces 22 interconnect the circuit components 16. The circuit traces 22 define, among other things, the first or negative battery connection 23 and the second or positive battery connection 25.
One manner of forming or applying the conductive ink on the substrate is to screen print the ink on the substrate through conventional screen printing techniques.
A gap 30 is provided along a trace 22 or spaced apart portions are defined in the traces which cause an open circuit unless they are electrically coupled together. After the battery and integrated circuit are coupled to the traces 22, a complete circuit would be formed, including the circuit traces, the integrated circuit 16 (see FIG. 1), and the battery, but for the gap. The size of the gap is approximately 30 mils (thousandths of an inch). In one embodiment, the size of the gap is 30 mils or less. In another embodiment, the size of the gap is between 10 and 50 mils. In a more particular embodiment, the size of the gap is between 20 and 40 mils. In another embodiment, the size of the gap is sufficiently small that it can be bridged by a drop of conductive epoxy.
Conductive epoxy 32 is applied over desired areas (e.g., under the battery, under the integrated circuit, etc.) using a stencil printer to assist in material application, as shown in FIG. 4. The conductive epoxy is used to assist in component attachment. The battery 28 is provided and mounted on the substrate 12 using the conductive epoxy on the connection 23 to secure the battery 28 to the substrate 12, as shown in FIG. 5.
In the illustrated embodiment, the battery 28 is placed lid down such that the conductive epoxy makes electrical contact between the negative terminal of the battery and at least a portion of the first battery connection 23 that extends underneath the lid of the battery in the view shown in FIG. 1.
Conductive epoxy is dispensed relative to the battery perimetral edge using a syringe dispenser, after the battery 28 is mounted. The conductive epoxy electrically connects the perimetral edge of the battery 28 with an adjacent arcuate portion of the second battery connection 25. In the illustrated embodiment, the perimetral edge defines the can of the battery, such that the conductive epoxy connects the positive terminal of the battery to the battery connection terminal 25.
The integrated circuit 18 is provided and mounted on the substrate 12 using the conductive epoxy (e.g., picked and placed using surface mounting techniques), to produce the device shown in FIG. 6. An exemplary and preferred integrated circuitry is described in U.S. patent application Ser. No. 08/705,043 incorporated by reference above. The integrated circuit 18 has pins, and the pins are coupled to appropriate conductive traces (e.g., using conductive epoxy) for connection of the integrated circuit 18 to the battery 28. If the integrated circuit 18 is used for communications, as is the case for the illustrated embodiment, pins of the integrated circuit 18 are coupled to conductive traces 22 defining one or more antennas 24 and 26. In the illustrated embodiment, the integrated circuit 18 defines a wireless identification device including a receiver, a modulator, a microprocessor and a memory. The receiver receives microwave frequencies and the modulator is a backscatter modulator. The capacitor 20 is similarly provided and mounted.
The integrated circuit 18, capacitor 20 and battery 28 can be provided and mounted to the substrate 12 in any order, or can occur simultaneously.
In circuit testing is then performed to verify the electrical connections.
After the in-circuit testing is performed to verify the electrical connections, a jumper 34 is employed to electrically close or repair the gap 30 (see FIG. 3) and complete the circuit defined by the circuitry 14, shown in FIG. 1. In one embodiment, shown in FIG. 1 employing a jumper 34 comprises employing conductive epoxy 36. More particularly, employing a jumper 34 comprises dispensing conductive epoxy 36 over the gap 30. In one embodiment, employing a jumper 34 comprises dispensing conductive epoxy having a resistance of less than 1000 ohms within, for example, 500 milliseconds (or less) of being dispensed. In a more particular embodiment, the conductive epoxy has a resistance of less than 1000 ohms within 200 milliseconds of being dispensed. One exemplary conductive epoxy that could by used is Quick Connect Silver, EXPFDA-4118-D/4107 produced by International Micro Electronics Research Corporation, 8010 Dearborne Rd., Nampa, Id. 83686. This is in contrast to the conductive epoxy used to connect the battery 28 to the circuit traces 22. The conductive epoxy 32 used to connect the battery to the circuit traces 22 is typically isotropic conductive epoxy that has a low and unstable conductivity until partially cured. This epoxy 22 performs dual functions of forming electrical connections and mechanically supporting the battery 28 from the substrate 12. If the gap 30 is not employed, this slow curing may not allow the circuitry 14 to power up properly. For example, the integrated circuit 18 may lock up.
Previously, the battery 28 was not connected until the in circuit testing was completed. Then, the battery 28 was connected and another in circuit test would have to be performed to test the battery connections. Also, a reboot of the circuitry 14 had to be performed because conductive epoxy used to connect the battery 28 to the integrated circuit 18 does not have an uncured conductivity that is sufficiently high. Provision of the gap 30 and a sufficiently conductive material solves all these problems.
In another embodiment, shown in FIG. 7, employing a jumper 34 comprises placing a conductor 38 across the gap 30 and coupling the conductor 38 to traces 40 and 42 on either side of the gap 30 with conductive epoxy 43 (e.g., conductive epoxy having a resistance of less than 1000 ohms within 500 milliseconds of being dispensed) or by wire bonding (ultrasonic bonding). In another embodiment, shown in FIG. 8, employing a jumper 34 comprises placing a resistor 44 across the gap 30 and coupling the resistor to traces on either side of the gap 30 with conductive liquid such as conductive epoxy (e.g., conductive epoxy having a resistance of less than 1000 ohms within 500 milliseconds of being dispensed). In such embodiments, the gap 30 would typically be larger than 30 mils and may be, for example, a distance less than or approximating the length of a resistor.
If a conductive epoxy is employed for the conductive liquid, the conductive epoxy is then cured.
Subsequently (see FIG. 9), encapsulating epoxy material 46 is flowed or provided to encapsulate the substrate 12, to cover the integrated circuit 18, battery 28, and conductive traces 22 and to define a second housing portion.
Thus, the invention allows in circuit testing to be performed after a battery has been electrically and mechanically coupled using conductive epoxy. Two step in circuit testing, before and after inserting a battery, is avoided. In circuit testing can be performed after the battery is supported from the housing by conductive epoxy. Lock up of circuitry is avoided because connecting the battery to the circuitry now involves using only a small amount of conductive epoxy, that does not need to mechanically support the battery from the housing. Conductive epoxy used to mechanically support the battery from the housing and to electrically connect the battery to circuit traces is allowed to cure before the gap is closed with conductive epoxy. The connection made between the battery and the circuit traces, with conductive epoxy, can also be tested during the in circuit test.
In compliance with the statute, the invention has been described in language more or less specific as to structural and methodical features. It is to be understood, however, that the invention is not limited to the specific features shown and described, since the means herein disclosed comprise preferred forms of putting the invention into effect. The invention is, therefore, claimed in any of its forms or modifications within the proper scope of the appended claims appropriately interpreted in accordance with the doctrine of equivalents.