Current collection through thermally sprayed tabs at the ends of a spirally wound electrochemical cell
First Claim
1. A method of making an electrochemical cell comprising the steps of:
- providing a first conductive sheet having a first end;
providing a layer of insulation on said first conductive sheet such that said layer of insulation covers less than the entire area of said first conductive sheet;
providing a second conductive sheet having a first end;
laying said second conductive sheet on said layer of insulation such that said first end of said second conductive sheet is substantially parallel to said first end of said first conductive sheet but is offset in a direction transverse to said first ends;
rolling said first conductive sheet, said layer of insulation, and said second conductive sheet together to form a jelly-roll stack having a longitudinal axis transverse to said first ends of said first and second conductive sheets such that the first end of said first conductive sheet forms a spiral space at a first end of the stack;
spraying a first conductive material along a first spray path onto said first end of said stack such that said conductive material does not contact said second conductive sheet, said first spray path forming an angle of between 20° and
80°
with respect to said longitudinal axis.
3 Assignments
0 Petitions

Accused Products

Abstract
A method of making an electrochemical cell, and an electrode stack made thereby. The method includes fabrication of a coating onto selected areas of the ends of the stack by a thermal spray coating process in which the coating is applied to one of the electrodes in the stack without the coating contacting the alternate edges of the other electrode in the stack. Suitable conductive strips, compatible with the substrate materials that make up the electrodes of the cell, can be attached to the thermally sprayed coating layers, or can be embedded into the sprayed materials as they are applied to the electrode stack.
374 Citations
Analyte monitoring device and methods of use | ||
Patent #
US 7,885,699 B2
Filed 08/06/2010
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Biointerface membranes incorporating bioactive agents | ||
Patent #
US 7,875,293 B2
Filed 05/10/2004
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Transcutaneous analyte sensor | ||
Patent #
US 7,885,697 B2
Filed 03/10/2005
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Optimized sensor geometry for an implantable glucose sensor | ||
Patent #
US 7,881,763 B2
Filed 05/02/2006
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Transcutaneous analyte sensor | ||
Patent #
US 7,905,833 B2
Filed 06/21/2005
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Dual electrode system for a continuous analyte sensor | ||
Patent #
US 7,896,809 B2
Filed 11/03/2008
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 7,869,853 B1
Filed 08/06/2010
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Transcutaneous analyte sensor | ||
Patent #
US 7,946,984 B2
Filed 03/10/2005
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
SYSTEMS AND METHODS FOR REPLACING SIGNAL ARTIFACTS IN A GLUCOSE SENSOR DATA STREAM | ||
Patent #
US 20110137601A1
Filed 02/09/2011
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Transcutaneous analyte sensor | ||
Patent #
US 7,949,381 B2
Filed 04/11/2008
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
SYSTEM AND METHODS FOR REPLACING SIGNAL ARTIFACTS IN A GLUCOSE SENSOR DATA STREAM | ||
Patent #
US 20110124997A1
Filed 01/27/2011
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring system and method | ||
Patent #
US 7,920,907 B2
Filed 06/07/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
SYSTEMS AND METHODS FOR REPLACING SIGNAL ARTIFACTS IN A GLUCOSE SENSOR DATA STREAM | ||
Patent #
US 20110118579A1
Filed 01/27/2011
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
SYSTEMS AND METHODS FOR REPLACING SIGNAL ARTIFACTS IN A GLUCOSE SENSOR DATA STREAM | ||
Patent #
US 20110130971A1
Filed 02/09/2011
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
SYSTEMS AND METHODS FOR REPLACING SIGNAL ARTIFACTS IN A GLUCOSE SENSOR DATA STREAM | ||
Patent #
US 20110118580A1
Filed 01/27/2011
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
SYSTEMS AND METHODS FOR REPLACING SIGNAL ARTIFACTS IN A GLUCOSE SENSOR DATA STREAM | ||
Patent #
US 20110130970A1
Filed 02/09/2011
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
SYSTEM AND METHODS FOR PROCESSING ANALYTE SENSOR DATA | ||
Patent #
US 20110231141A1
Filed 05/31/2011
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
SYSTEMS AND METHODS FOR PROCESSING ANALYTE SENSOR DATA | ||
Patent #
US 20110218414A1
Filed 04/05/2011
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
SYSTEM AND METHODS FOR PROCESSING ANALYTE SENSOR DATA | ||
Patent #
US 20110231140A1
Filed 05/31/2011
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Blood glucose tracking apparatus | ||
Patent #
US 7,976,778 B2
Filed 06/22/2005
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Transcutaneous analyte sensor | ||
Patent #
US 8,000,901 B2
Filed 08/09/2010
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
TRANSCUTANEOUS ANALYTE SENSOR | ||
Patent #
US 20110231107A1
Filed 05/26/2011
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
SYSTEM AND METHODS FOR PROCESSING ANALYTE SENSOR DATA | ||
Patent #
US 20110231142A1
Filed 05/31/2011
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Techniques to improve polyurethane membranes for implantable glucose sensors | ||
Patent #
US 8,053,018 B2
Filed 01/15/2010
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
System and methods for processing analyte sensor data | ||
Patent #
US 8,060,173 B2
Filed 08/01/2003
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Techniques to improve polyurethane membranes for implantable glucose sensors | ||
Patent #
US 8,050,731 B2
Filed 11/16/2005
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 7,860,544 B2
Filed 03/07/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
MEMBRANE FOR USE WITH IMPLANTABLE DEVICES | ||
Patent #
US 20100087724A1
Filed 12/08/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
SYSTEMS AND METHODS FOR PROCESSING ANALYTE SENSOR DATA | ||
Patent #
US 20100179408A1
Filed 03/25/2010
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
SIGNAL PROCESSING FOR CONTINUOUS ANALYTE SENSOR | ||
Patent #
US 20100030038A1
Filed 10/12/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
SIGNAL PROCESSING FOR CONTINUOUS ANALYTE SENSOR | ||
Patent #
US 20100016687A1
Filed 09/23/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Transcutaneous analyte sensor | ||
Patent #
US 7,774,145 B2
Filed 01/18/2006
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
SYSTEM AND METHODS FOR PROCESSING ANALYTE SENSOR DATA | ||
Patent #
US 20100217557A1
Filed 01/20/2010
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
INTEGRATED RECEIVER FOR CONTINUOUS ANALYTE SENSOR | ||
Patent #
US 20100016698A1
Filed 09/23/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
TRANSCUTANEOUS ANALYTE SENSOR | ||
Patent #
US 20100305869A1
Filed 08/09/2010
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
TRANSCUTANEOUS ANALYTE SENSOR | ||
Patent #
US 20100223013A1
Filed 05/14/2010
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
SIGNAL PROCESSING FOR CONTINUOUS ANALYTE SENSOR | ||
Patent #
US 20100030485A1
Filed 10/12/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
SIGNAL PROCESSING FOR CONTINUOUS ANALYTE SENSOR | ||
Patent #
US 20100010324A1
Filed 09/23/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
SIGNAL PROCESSING FOR CONTINUOUS ANALYTE SENSOR | ||
Patent #
US 20100045465A1
Filed 10/12/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
TRANSCUTANEOUS ANALYTE SENSOR | ||
Patent #
US 20100179404A1
Filed 03/23/2010
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
SIGNAL PROCESSING FOR CONTINUOUS ANALYTE SENSOR | ||
Patent #
US 20100030484A1
Filed 09/23/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
SYSTEM AND METHODS FOR PROCESSING ANALYTE SENSOR DATA | ||
Patent #
US 20100217555A1
Filed 12/16/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
TECHNIQUES TO IMPROVE POLYURETHANE MEMBRANES FOR IMPLANTABLE GLUCOSE SENSORS | ||
Patent #
US 20100119693A1
Filed 01/15/2010
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
TRANSCUTANEOUS ANALYTE SENSOR | ||
Patent #
US 20100223023A1
Filed 05/14/2010
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
TRANSCUTANEOUS ANALYTE SENSOR | ||
Patent #
US 20100185075A1
Filed 03/29/2010
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Transcutaneous analyte sensor | ||
Patent #
US 7,713,574 B2
Filed 03/10/2005
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
SIGNAL PROCESSING FOR CONTINUOUS ANALYTE SENSOR | ||
Patent #
US 20100022855A1
Filed 09/23/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
SIGNAL PROCESSING FOR CONTINUOUS ANALYTE SENSOR | ||
Patent #
US 20100010332A1
Filed 09/23/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
SIGNAL PROCESSING FOR CONTINUOUS ANALYTE SENSOR | ||
Patent #
US 20100010331A1
Filed 09/23/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Transcutaneous analyte sensor | ||
Patent #
US 7,654,956 B2
Filed 03/10/2005
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Device and method for determining analyte levels | ||
Patent #
US 7,711,402 B2
Filed 12/22/2004
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
TRANSCUTANEOUS ANALYTE SENSOR | ||
Patent #
US 20100174158A1
Filed 03/22/2010
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
INTEGRATED RECEIVER FOR CONTINUOUS ANALYTE SENSOR | ||
Patent #
US 20100179401A1
Filed 03/25/2010
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
SYSTEMS AND METHODS FOR REPLACING SIGNAL ARTIFACTS IN A GLUCOSE SENSOR DATA STREAM | ||
Patent #
US 20100179409A1
Filed 03/25/2010
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
TRANSCUTANEOUS ANALYTE SENSOR | ||
Patent #
US 20100212583A1
Filed 05/06/2010
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Transcutaneous medical device with variable stiffness | ||
Patent #
US 7,783,333 B2
Filed 03/10/2005
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
TRANSCUTANEOUS ANALYTE SENSOR | ||
Patent #
US 20100223022A1
Filed 05/14/2010
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Electrochemical device and method for producing the same | ||
Patent #
US 7,833,656 B2
Filed 12/09/2003
|
Current Assignee
Panasonic Corporation
|
Original Assignee
Panasonic Corporation
|
Analyte sensor | ||
Patent #
US 7,857,760 B2
Filed 02/22/2006
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte measuring device | ||
Patent #
US 7,860,545 B2
Filed 02/26/2008
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Transcutaneous analyte sensor | ||
Patent #
US 7,494,465 B2
Filed 06/21/2005
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
SIGNAL PROCESSING FOR CONTINUOUS ANALYTE SENSOR | ||
Patent #
US 20090043542A1
Filed 10/16/2008
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
SIGNAL PROCESSING FOR CONTINUOUS ANALYTE SENSOR | ||
Patent #
US 20090043182A1
Filed 10/16/2008
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
SIGNAL PROCESSING FOR CONTINUOUS ANALYTE SENSOR | ||
Patent #
US 20090043525A1
Filed 10/16/2008
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
SIGNAL PROCESSING FOR CONTINUOUS ANALYTE SENSOR | ||
Patent #
US 20090043181A1
Filed 10/16/2008
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
TRANSCUTANEOUS ANALYTE SENSOR | ||
Patent #
US 20090076361A1
Filed 11/18/2008
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Transcutaneous analyte sensor | ||
Patent #
US 7,497,827 B2
Filed 03/10/2005
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
DUAL ELECTRODE SYSTEM FOR A CONTINUOUS ANALYTE SENSOR | ||
Patent #
US 20090076356A1
Filed 11/03/2008
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
SIGNAL PROCESSING FOR CONTINUOUS ANALYTE SENSOR | ||
Patent #
US 20090062635A1
Filed 11/03/2008
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
TRANSCUTANEOUS ANALYTE SENSOR | ||
Patent #
US 20090124879A1
Filed 01/14/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
TRANSCUTANEOUS ANALYTE SENSOR | ||
Patent #
US 20090143660A1
Filed 12/05/2008
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
TRANSCUTANEOUS ANALYTE SENSOR | ||
Patent #
US 20090163791A1
Filed 02/23/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
TRANSCUTANEOUS ANALYTE SENSOR | ||
Patent #
US 20090192724A1
Filed 02/03/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
SIGNAL PROCESSING FOR CONTINUOUS ANALYTE SENSOR | ||
Patent #
US 20090203981A1
Filed 04/15/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
SYSTEMS AND METHODS FOR CUSTOMIZING DELIVERY OF SENSOR DATA | ||
Patent #
US 20090240193A1
Filed 02/20/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
SYSTEMS AND METHODS FOR PROCESSING, TRANSMITTING AND DISPLAYING SENSOR DATA | ||
Patent #
US 20090240120A1
Filed 02/20/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
SYSTEMS AND METHODS FOR BLOOD GLUCOSE MONITORING AND ALERT DELIVERY | ||
Patent #
US 20090240128A1
Filed 02/20/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Hair styling composition | ||
Patent #
US 20090252689A1
Filed 03/31/2009
|
Current Assignee
Rohm and Haas Company
|
Original Assignee
Rohm and Haas Company
|
Membrane for use with implantable devices | ||
Patent #
US 7,632,228 B2
Filed 01/29/2004
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte sensor | ||
Patent #
US 7,640,048 B2
Filed 02/22/2006
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
SIGNAL PROCESSING FOR CONTINUOUS ANALYTE SENSOR | ||
Patent #
US 20090299162A1
Filed 07/24/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
SYSTEM AND METHODS FOR PROCESSING ANALYTE SENSOR DATA | ||
Patent #
US 20080021666A1
Filed 10/01/2007
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
SYSTEMS AND METHODS FOR REPLACING SIGNAL DATA ARTIFACTS IN A GLUCOSE SENSOR DATA STREAM | ||
Patent #
US 20080033254A1
Filed 06/13/2007
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
TRANSCUTANEOUS ANALYTE SENSOR | ||
Patent #
US 20080071156A1
Filed 10/26/2007
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
TRANSCUTANEOUS ANALYTE SENSOR | ||
Patent #
US 20080194935A1
Filed 04/11/2008
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
TRANSCUTANEOUS ANALYTE SENSOR | ||
Patent #
US 20080188731A1
Filed 04/11/2008
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
INTEGRATED RECEIVER FOR CONTINUOUS ANALYTE SENSOR | ||
Patent #
US 20080287765A1
Filed 07/29/2008
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
INTEGRATED RECEIVER FOR CONTINUOUS ANALYTE SENSOR | ||
Patent #
US 20080287764A1
Filed 07/29/2008
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
SYSTEM AND METHODS FOR PROCESSING ANALYTE SENSOR DATA | ||
Patent #
US 20080306368A1
Filed 08/21/2008
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Sensor head for use with implantable devices | ||
Patent #
US 7,471,972 B2
Filed 12/22/2004
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Systems and methods for processing analyte sensor data | ||
Patent #
US 20070016381A1
Filed 09/01/2006
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Systems and methods for replacing signal artifacts in a glucose sensor data stream | ||
Patent #
US 20070032706A1
Filed 08/02/2006
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte sensor | ||
Patent #
US 20070027370A1
Filed 08/10/2006
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Porous membranes for use with implantable devices | ||
Patent #
US 7,192,450 B2
Filed 08/22/2003
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Systems and methods for processing analyte sensor data | ||
Patent #
US 20070066873A1
Filed 09/01/2006
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Techniques to improve polyurethane membranes for implantable glucose sensors | ||
Patent #
US 7,226,978 B2
Filed 05/22/2002
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
ANALYTE SENSOR | ||
Patent #
US 20070163880A1
Filed 03/01/2007
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
TRANSCUTANEOUS ANALYTE SENSOR | ||
Patent #
US 20070203966A1
Filed 03/23/2007
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
TRANSCUTANEOUS ANALYTE SENSOR | ||
Patent #
US 20070208246A1
Filed 04/11/2007
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Transcutaneous analyte sensor | ||
Patent #
US 20070232879A1
Filed 05/03/2007
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Transcutaneous analyte sensor | ||
Patent #
US 20070265515A1
Filed 05/03/2007
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Methods and systems for inserting a transcutaneous analyte sensor | ||
Patent #
US 7,310,544 B2
Filed 03/10/2005
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Prismatic battery and method of manufacturing same | ||
Patent #
US 6,544,684 B2
Filed 04/05/2001
|
Current Assignee
Ibaraki Toyota Jidosha Kabushiki Kaisha, Matsushita Electric Industrial Company Limited
|
Original Assignee
Ibaraki Toyota Jidosha Kabushiki Kaisha, Matsushita Electric Industrial Company Limited
|
Electrode plate unit for rechargeable battery and manufacturing method thereof | ||
Patent #
US 6,475,667 B1
Filed 10/24/2000
|
Current Assignee
Ibaraki Toyota Jidosha Kabushiki Kaisha, Matsushita Electric Industrial Company Limited
|
Original Assignee
Ibaraki Toyota Jidosha Kabushiki Kaisha, Matsushita Electric Industrial Company Limited
|
All-solid-state electrochemical device and method of manufacturing | ||
Patent #
US 6,664,006 B1
Filed 09/02/1999
|
Current Assignee
Government of the United States of America, Alfred J. Longhi Jr
|
Original Assignee
Lithium Werks Technology BV
|
Consecutively wound or stacked battery cells | ||
Patent #
US 6,923,837 B2
Filed 02/26/2002
|
Current Assignee
Government of the United States of America
|
Original Assignee
Lithium Werks Technology BV
|
Optimized sensor geometry for an implantable glucose sensor | ||
Patent #
US 7,134,999 B2
Filed 08/22/2003
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Electrode tab for a nonaqueous electrolyte secondary battery and method of forming the same | ||
Patent #
US 6,432,574 B1
Filed 06/28/2000
|
Current Assignee
Envision AESC Energy Devices Ltd.
|
Original Assignee
NEC Corporation
|
Transcutaneous medical device with variable stiffness | ||
Patent #
US 20060015024A1
Filed 03/10/2005
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
TRANSCUTANEOUS ANALYTE SENSOR | ||
Patent #
US 20060019327A1
Filed 03/10/2005
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
TRANSCUTANEOUS ANALYTE SENSOR | ||
Patent #
US 20060020188A1
Filed 03/10/2005
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
TRANSCUTANEOUS ANALYTE SENSOR | ||
Patent #
US 20060020190A1
Filed 03/10/2005
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
TRANSCUTANEOUS ANALYTE SENSOR | ||
Patent #
US 20060020187A1
Filed 03/10/2005
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
TRANSCUTANEOUS ANALYTE SENSOR | ||
Patent #
US 20060016700A1
Filed 06/21/2005
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
TRANSCUTANEOUS ANALYTE SENSOR | ||
Patent #
US 20060036145A1
Filed 06/21/2005
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
TRANSCUTANEOUS ANALYTE SENSOR | ||
Patent #
US 20060036144A1
Filed 06/21/2005
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
TRANSCUTANEOUS ANALYTE SENSOR | ||
Patent #
US 20060036143A1
Filed 03/10/2005
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
TRANSCUTANEOUS ANALYTE SENSOR | ||
Patent #
US 20060036142A1
Filed 03/10/2005
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
TRANSCUTANEOUS ANALYTE SENSOR | ||
Patent #
US 20060036139A1
Filed 03/10/2005
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
TRANSCUTANEOUS ANALYTE SENSOR | ||
Patent #
US 20060036141A1
Filed 03/10/2005
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Techniques to improve polyurethane membranes for implantable glucose sensors | ||
Patent #
US 20060086624A1
Filed 11/16/2005
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte sensor | ||
Patent #
US 20060142651A1
Filed 02/22/2006
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte sensor | ||
Patent #
US 20060155180A1
Filed 02/22/2006
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Negative electrode plate for nickel-metal hydride storage battery, method for producing the same and nickel-metal hydride storage battery using the same | ||
Patent #
US 20060194106A1
Filed 04/28/2006
|
Current Assignee
Matsushita Electric Industrial Company Limited
|
Original Assignee
Matsushita Electric Industrial Company Limited
|
Analyte sensor | ||
Patent #
US 20060183984A1
Filed 02/22/2006
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Biointerface membranes incorporating bioactive agents | ||
Patent #
US 20060198864A1
Filed 05/03/2006
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Optimized sensor geometry for an implantable glucose sensor | ||
Patent #
US 20060200022A1
Filed 05/02/2006
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Oxygen enhancing membrane systems for implantable devices | ||
Patent #
US 20060200019A1
Filed 04/25/2006
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Biointerface membranes incorporating bioactive agents | ||
Patent #
US 20060204536A1
Filed 05/03/2006
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Optimized sensor geometry for an implantable glucose sensor | ||
Patent #
US 20060224108A1
Filed 05/02/2006
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Silicone based membranes for use in implantable glucose sensors | ||
Patent #
US 20060258761A1
Filed 04/14/2006
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Rolled electrode array and its method for manufacture | ||
Patent #
US 20050051427A1
Filed 07/21/2004
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Increasing bias for oxygen production in an electrode system | ||
Patent #
US 20050056552A1
Filed 07/21/2004
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Silicone composition for biocompatible membrane | ||
Patent #
US 20050090607A1
Filed 10/28/2003
|
Current Assignee
DECOM INC.
|
Original Assignee
DexCom Incorporated
|
Porous membranes for use with implantable devices | ||
Patent #
US 20050112169A1
Filed 08/22/2003
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Sensor head for use with implantable devices | ||
Patent #
US 20050103625A1
Filed 12/22/2004
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Device and method for determining analyte levels | ||
Patent #
US 20050177036A1
Filed 12/22/2004
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
SIGNAL PROCESSING FOR CONTINUOUS ANALYTE SENSOR | ||
Patent #
US 20050203360A1
Filed 12/08/2004
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
IMPLANTABLE ANALYTE SENSOR | ||
Patent #
US 20050242479A1
Filed 05/03/2004
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Tabs for electrochemical cells | ||
Patent #
US 20040185332A1
Filed 03/21/2003
|
Current Assignee
Moltech Corporation
|
Original Assignee
Moltech Corporation
|
Membrane for use with implantable devices | ||
Patent #
US 20040186362A1
Filed 01/29/2004
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Optimized sensor geometry for an implantable glucose sensor | ||
Patent #
US 20040199059A1
Filed 08/22/2003
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Consecutively wound or stacked battery cells | ||
Patent #
US 20030162086A1
Filed 02/26/2002
|
Current Assignee
Government of the United States of America
|
Original Assignee
LITHIUM POWER
|
Techniques to improve polyurethane membranes for implantable glucose sensors | ||
Patent #
US 20030217966A1
Filed 05/22/2002
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Porous membranes for use with implantable devices | ||
Patent #
US 8,118,877 B2
Filed 01/17/2007
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Transcutaneous analyte sensor | ||
Patent #
US 8,160,669 B2
Filed 04/11/2007
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,162,829 B2
Filed 03/30/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Systems and methods for replacing signal artifacts in a glucose sensor data stream | ||
Patent #
US 8,167,801 B2
Filed 03/25/2010
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Transcutaneous analyte sensor | ||
Patent #
US 8,170,803 B2
Filed 03/10/2005
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,175,673 B2
Filed 11/09/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,177,716 B2
Filed 12/21/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Systems and methods for replacing signal artifacts in a glucose sensor data stream | ||
Patent #
US 8,195,265 B2
Filed 02/09/2011
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
System and methods for processing analyte sensor data | ||
Patent #
US 8,206,297 B2
Filed 12/16/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Signal processing for continuous analyte sensor | ||
Patent #
US 8,216,139 B2
Filed 09/23/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,224,413 B2
Filed 10/10/2008
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,226,558 B2
Filed 09/27/2010
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,226,557 B2
Filed 12/28/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,226,555 B2
Filed 03/18/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Transcutaneous analyte sensor | ||
Patent #
US 8,229,534 B2
Filed 10/26/2007
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Systems and methods for blood glucose monitoring and alert delivery | ||
Patent #
US 8,229,535 B2
Filed 02/20/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte sensor | ||
Patent #
US 8,231,531 B2
Filed 06/01/2006
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,231,532 B2
Filed 04/30/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Systems and methods for processing analyte sensor data | ||
Patent #
US 8,233,959 B2
Filed 09/01/2006
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Signal processing for continuous analyte sensor | ||
Patent #
US 8,233,958 B2
Filed 10/12/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Blood glucose tracking apparatus and methods | ||
Patent #
US 8,236,242 B2
Filed 02/12/2010
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,235,896 B2
Filed 12/21/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Signal processing for continuous analyte sensor | ||
Patent #
US 8,251,906 B2
Filed 04/15/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,255,031 B2
Filed 03/17/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Oxygen enhancing membrane systems for implantable devices | ||
Patent #
US 8,255,033 B2
Filed 04/25/2006
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Signal processing for continuous analyte sensor | ||
Patent #
US 8,257,259 B2
Filed 10/16/2008
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,260,392 B2
Filed 06/09/2008
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Systems and methods for replacing signal data artifacts in a glucose sensor data stream | ||
Patent #
US 8,260,393 B2
Filed 06/13/2007
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,265,726 B2
Filed 11/09/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Signal processing for continuous analyte sensor | ||
Patent #
US 8,265,725 B2
Filed 10/12/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Blood glucose tracking apparatus and methods | ||
Patent #
US 8,268,243 B2
Filed 12/28/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,273,022 B2
Filed 02/13/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,275,439 B2
Filed 11/09/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Transcutaneous analyte sensor | ||
Patent #
US 8,275,437 B2
Filed 03/23/2007
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Implantable analyte sensor | ||
Patent #
US 8,277,713 B2
Filed 05/03/2004
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Transcutaneous analyte sensor | ||
Patent #
US 8,280,475 B2
Filed 02/23/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Integrated receiver for continuous analyte sensor | ||
Patent #
US 8,282,550 B2
Filed 07/29/2008
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Signal processing for continuous analyte sensor | ||
Patent #
US 8,282,549 B2
Filed 12/08/2004
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,287,454 B2
Filed 09/27/2010
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Transcutaneous analyte sensor | ||
Patent #
US 8,290,560 B2
Filed 11/18/2008
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Signal processing for continuous analyte sensor | ||
Patent #
US 8,290,561 B2
Filed 09/23/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Systems and methods for replacing signal artifacts in a glucose sensor data stream | ||
Patent #
US 8,292,810 B2
Filed 01/27/2011
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,306,598 B2
Filed 11/09/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Transcutaneous analyte sensor | ||
Patent #
US 8,311,749 B2
Filed 05/26/2011
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte sensor inserter system | ||
Patent #
US 8,313,434 B2
Filed 03/01/2007
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Transcutaneous analyte sensor | ||
Patent #
US 8,321,149 B2
Filed 06/29/2011
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,346,336 B2
Filed 03/18/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,346,337 B2
Filed 06/30/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
System and methods for replacing signal artifacts in a glucose sensor data stream | ||
Patent #
US 8,346,338 B2
Filed 01/27/2011
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,353,829 B2
Filed 12/21/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,357,091 B2
Filed 12/21/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,366,614 B2
Filed 03/30/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,372,005 B2
Filed 12/21/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Signal processing for continuous analyte sensor | ||
Patent #
US 8,374,667 B2
Filed 10/16/2008
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,380,273 B2
Filed 04/11/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Calibration techniques for a continuous analyte sensor | ||
Patent #
US 8,386,004 B2
Filed 09/07/2011
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,391,945 B2
Filed 03/17/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
System and methods for processing analyte sensor data | ||
Patent #
US 8,394,021 B2
Filed 10/01/2007
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,409,131 B2
Filed 03/07/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Systems and methods for replacing signal artifacts in a glucose sensor data stream | ||
Patent #
US 8,412,301 B2
Filed 02/09/2011
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Systems and methods for processing sensor data | ||
Patent #
US 8,423,113 B2
Filed 10/24/2008
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Systems and methods for replacing signal artifacts in a glucose sensor data stream | ||
Patent #
US 8,435,179 B2
Filed 01/27/2011
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
System and methods for processing analyte sensor data | ||
Patent #
US 8,442,610 B2
Filed 08/21/2008
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Transcutaneous analyte sensor | ||
Patent #
US 8,452,368 B2
Filed 01/14/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Transcutaneous analyte sensor | ||
Patent #
US 8,457,708 B2
Filed 12/05/2008
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Transcutaneous analyte sensor | ||
Patent #
US 8,463,350 B2
Filed 05/14/2010
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,465,425 B2
Filed 06/30/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Signal processing for continuous analyte sensor | ||
Patent #
US 8,469,886 B2
Filed 09/23/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,473,021 B2
Filed 07/31/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Transcutaneous analyte sensor | ||
Patent #
US 8,474,397 B2
Filed 05/06/2010
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Transcutaneous analyte sensor | ||
Patent #
US 8,475,373 B2
Filed 07/17/2008
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,480,580 B2
Filed 04/19/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Transcutaneous analyte sensor | ||
Patent #
US 8,483,791 B2
Filed 04/11/2008
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Dual electrode system for a continuous analyte sensor | ||
Patent #
US 8,483,793 B2
Filed 10/29/2010
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Systems and methods for replacing signal artifacts in a glucose sensor data stream | ||
Patent #
US 8,491,474 B2
Filed 01/27/2011
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Sensor head for use with implantable devices | ||
Patent #
US 8,509,871 B2
Filed 10/28/2008
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Transcutaneous analyte sensor | ||
Patent #
US 8,515,519 B2
Filed 02/26/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Transcutaneous analyte sensor | ||
Patent #
US 8,515,516 B2
Filed 03/10/2005
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Transcutaneous analyte sensor | ||
Patent #
US 8,548,551 B2
Filed 05/14/2010
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
System and methods for processing analyte sensor data | ||
Patent #
US 8,548,553 B2
Filed 06/22/2012
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Transcutaneous analyte sensor | ||
Patent #
US 8,565,849 B2
Filed 05/14/2010
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Transcutaneous analyte sensor | ||
Patent #
US 8,565,848 B2
Filed 05/07/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Transcutaneous analyte sensor | ||
Patent #
US 8,571,625 B2
Filed 05/14/2010
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Systems and methods for customizing delivery of sensor data | ||
Patent #
US 8,591,455 B2
Filed 02/20/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,597,189 B2
Filed 03/03/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,612,159 B2
Filed 02/16/2004
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte sensor | ||
Patent #
US 8,615,282 B2
Filed 02/22/2006
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,617,071 B2
Filed 06/21/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,622,906 B2
Filed 12/21/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Dual electrode system for a continuous analyte sensor | ||
Patent #
US RE44,695 E1
Filed 05/01/2012
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,641,619 B2
Filed 12/21/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,649,841 B2
Filed 04/03/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,652,043 B2
Filed 07/20/2012
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Signal processing for continuous analyte sensor | ||
Patent #
US 8,657,745 B2
Filed 10/16/2008
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Systems and methods for processing analyte sensor data | ||
Patent #
US 8,657,747 B2
Filed 04/05/2011
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,660,627 B2
Filed 03/17/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Transcutaneous analyte sensor | ||
Patent #
US 8,663,109 B2
Filed 03/29/2010
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,666,469 B2
Filed 11/16/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,668,645 B2
Filed 01/03/2003
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,670,815 B2
Filed 04/30/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,672,844 B2
Filed 02/27/2004
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Systems and methods for processing analyte sensor data | ||
Patent #
US 8,672,845 B2
Filed 03/25/2010
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Device and method for determining analyte levels | ||
Patent #
US 8,676,288 B2
Filed 06/22/2011
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,688,188 B2
Filed 06/30/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Transcutaneous analyte sensor | ||
Patent #
US 8,690,775 B2
Filed 04/11/2008
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Transcutaneous analyte sensor | ||
Patent #
US 8,731,630 B2
Filed 03/22/2010
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,734,348 B2
Filed 03/17/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,734,346 B2
Filed 04/30/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,738,109 B2
Filed 03/03/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,744,545 B2
Filed 03/03/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Signal processing for continuous analyte sensor | ||
Patent #
US 8,747,315 B2
Filed 09/23/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte sensor | ||
Patent #
US 8,750,955 B2
Filed 11/02/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
System and methods for processing analyte sensor data | ||
Patent #
US 8,761,856 B2
Filed 04/27/2012
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Blood glucose tracking apparatus | ||
Patent #
US 8,765,059 B2
Filed 10/27/2010
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
System and methods for processing analyte sensor data | ||
Patent #
US 8,771,187 B2
Filed 05/31/2011
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
System and methods for processing analyte sensor data | ||
Patent #
US 8,774,888 B2
Filed 01/20/2010
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,774,887 B2
Filed 03/24/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Systems and methods for replacing signal artifacts in a glucose sensor data stream | ||
Patent #
US 8,777,853 B2
Filed 04/04/2012
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
System and methods for processing analyte sensor data | ||
Patent #
US 8,788,008 B2
Filed 05/31/2011
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Transcutaneous analyte sensor | ||
Patent #
US 8,788,007 B2
Filed 03/08/2012
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Transcutaneous analyte sensor | ||
Patent #
US 8,792,953 B2
Filed 03/19/2010
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
System and methods for processing analyte sensor data | ||
Patent #
US 8,801,612 B2
Filed 04/27/2012
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Signal processing for continuous analyte sensor | ||
Patent #
US 8,801,610 B2
Filed 07/24/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
System and methods for processing analyte sensor data | ||
Patent #
US 8,808,182 B2
Filed 04/27/2012
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Transcutaneous medical device with variable stiffness | ||
Patent #
US 8,812,072 B2
Filed 04/17/2008
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Systems and methods for replacing signal artifacts in a glucose sensor data stream | ||
Patent #
US 8,821,400 B2
Filed 02/09/2011
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Transcutaneous analyte sensor | ||
Patent #
US 8,825,127 B2
Filed 05/14/2010
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Membrane for use with implantable devices | ||
Patent #
US 8,840,552 B2
Filed 12/08/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,840,553 B2
Filed 02/26/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Transcutaneous analyte sensor | ||
Patent #
US 8,845,536 B2
Filed 04/11/2007
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Transcutaneous analyte sensor | ||
Patent #
US 8,858,434 B2
Filed 03/10/2005
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Techniques to improve polyurethane membranes for implantable glucose sensors | ||
Patent #
US 8,865,249 B2
Filed 09/28/2012
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,880,137 B2
Filed 04/18/2003
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte sensor | ||
Patent #
US 8,886,272 B2
Filed 02/22/2006
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Oxygen enhancing membrane systems for implantable devices | ||
Patent #
US 8,909,314 B2
Filed 07/20/2011
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Transcutaneous analyte sensor | ||
Patent #
US 8,915,849 B2
Filed 02/03/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,915,850 B2
Filed 03/28/2014
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,920,319 B2
Filed 12/28/2012
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,974,386 B2
Filed 11/01/2005
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Transcutaneous analyte sensor | ||
Patent #
US 8,986,209 B2
Filed 07/13/2012
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Transcutaneous analyte sensor | ||
Patent #
US 8,989,833 B2
Filed 03/10/2005
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 9,011,332 B2
Filed 10/30/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 9,011,331 B2
Filed 12/29/2004
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 9,014,773 B2
Filed 03/07/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Systems and methods for processing, transmitting and displaying sensor data | ||
Patent #
US 9,020,572 B2
Filed 09/10/2010
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 9,042,953 B2
Filed 03/02/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Transcutaneous analyte sensor | ||
Patent #
US 9,044,199 B2
Filed 03/10/2005
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Transcutaneous analyte sensor | ||
Patent #
US 9,055,901 B2
Filed 09/14/2012
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 9,066,695 B2
Filed 04/12/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 9,066,697 B2
Filed 10/27/2011
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 9,066,694 B2
Filed 04/03/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 9,072,477 B2
Filed 06/21/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 9,078,607 B2
Filed 06/17/2013
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Signal processing for continuous analyte sensor | ||
Patent #
US 9,107,623 B2
Filed 04/15/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Systems and methods for processing, transmitting and displaying sensor data | ||
Patent #
US 9,143,569 B2
Filed 02/20/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Systems and methods for replacing signal artifacts in a glucose sensor data stream | ||
Patent #
US 9,149,219 B2
Filed 02/09/2011
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Techniques to improve polyurethane membranes for implantable glucose sensors | ||
Patent #
US 9,179,869 B2
Filed 09/10/2014
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Signal processing for continuous analyte sensor | ||
Patent #
US 9,192,328 B2
Filed 09/23/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte sensor | ||
Patent #
US 9,247,900 B2
Filed 06/04/2013
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Systems and methods for replacing signal artifacts in a glucose sensor data stream | ||
Patent #
US 9,247,901 B2
Filed 08/02/2006
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Systems and methods for replacing signal artifacts in a glucose sensor data stream | ||
Patent #
US 9,282,925 B2
Filed 03/25/2010
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 9,326,716 B2
Filed 12/05/2014
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Sensor head for use with implantable devices | ||
Patent #
US 9,328,371 B2
Filed 07/16/2013
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 9,326,714 B2
Filed 06/29/2010
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Signal processing for continuous analyte sensor | ||
Patent #
US 9,351,668 B2
Filed 10/12/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Signal processing for continuous analyte sensor | ||
Patent #
US 9,364,173 B2
Filed 09/23/2009
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Transcutaneous analyte sensor | ||
Patent #
US 9,414,777 B2
Filed 03/10/2005
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Signal processing for continuous analyte sensor | ||
Patent #
US 9,420,965 B2
Filed 07/01/2011
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Systems and methods for replacing signal artifacts in a glucose sensor data stream | ||
Patent #
US 9,420,968 B2
Filed 04/04/2012
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Systems and methods for replacing signal artifacts in a glucose sensor data stream | ||
Patent #
US 9,427,183 B2
Filed 07/12/2011
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte sensor | ||
Patent #
US 9,451,908 B2
Filed 12/19/2012
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Blood glucose tracking apparatus and methods | ||
Patent #
US 9,477,811 B2
Filed 06/23/2005
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 9,498,159 B2
Filed 10/30/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Signal processing for continuous analyte sensor | ||
Patent #
US 9,498,155 B2
Filed 10/16/2008
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Systems and methods for replacing signal artifacts in a glucose sensor data stream | ||
Patent #
US 9,510,782 B2
Filed 04/04/2012
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Membrane for use with implantable devices | ||
Patent #
US 9,532,741 B2
Filed 07/25/2014
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Integrated receiver for continuous analyte sensor | ||
Patent #
US 9,538,946 B2
Filed 03/25/2010
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Systems and methods for replacing signal artifacts in a glucose sensor data stream | ||
Patent #
US 9,585,607 B2
Filed 04/04/2012
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Oxygen enhancing membrane systems for implantable devices | ||
Patent #
US 9,597,027 B2
Filed 10/30/2014
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Transcutaneous analyte sensor | ||
Patent #
US 9,603,557 B2
Filed 05/13/2013
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 9,610,034 B2
Filed 11/09/2015
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Systems and methods for replacing signal artifacts in a glucose sensor data stream | ||
Patent #
US 9,649,069 B2
Filed 06/29/2016
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte sensor | ||
Patent #
US 9,668,677 B2
Filed 10/26/2015
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Systems and methods for processing sensor data | ||
Patent #
US 9,717,449 B2
Filed 01/15/2013
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Systems and methods for replacing signal artifacts in a glucose sensor data stream | ||
Patent #
US 9,724,045 B1
Filed 04/06/2017
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Signal processing for continuous analyte sensor | ||
Patent #
US 9,750,441 B2
Filed 08/15/2016
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Systems and methods for replacing signal artifacts in a glucose sensor data stream | ||
Patent #
US 9,750,460 B2
Filed 04/14/2017
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Transcutaneous analyte sensor | ||
Patent #
US 9,775,543 B2
Filed 12/30/2013
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Techniques to improve polyurethane membranes for implantable glucose sensors | ||
Patent #
US 9,801,574 B2
Filed 10/05/2015
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Sensor head for use with implantable devices | ||
Patent #
US 9,804,114 B2
Filed 03/02/2016
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Transcutaneous analyte sensor | ||
Patent #
US 9,833,176 B2
Filed 07/12/2012
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
System and methods for processing analyte sensor data | ||
Patent #
US 9,895,089 B2
Filed 05/20/2014
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte sensor | ||
Patent #
US 9,986,942 B2
Filed 08/10/2006
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Oxygen enhancing membrane systems for implantable devices | ||
Patent #
US 9,993,186 B2
Filed 02/09/2017
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte sensor | ||
Patent #
US 10,022,078 B2
Filed 05/23/2006
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Membrane for use with implantable devices | ||
Patent #
US 10,039,480 B2
Filed 02/11/2015
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Techniques to improve polyurethane membranes for implantable glucose sensors | ||
Patent #
US 10,154,807 B2
Filed 09/27/2017
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Systems and methods for processing sensor data | ||
Patent #
US 10,182,751 B2
Filed 06/26/2017
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 10,201,301 B2
Filed 04/18/2016
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 10,231,654 B2
Filed 06/23/2015
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
METHOD FOR COATING BY THERMAL SPRAYING WITH AN INCLINED PARTICLE JET | ||
Patent #
US 20150240364A1
Filed 09/17/2013
|
Current Assignee
Siemens AG
|
Original Assignee
Siemens AG
|
Analyte sensor | ||
Patent #
US 10,314,525 B2
Filed 01/06/2015
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte sensor | ||
Patent #
US 10,349,873 B2
Filed 04/27/2016
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 10,478,108 B2
Filed 02/05/2016
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Transcutaneous analyte sensor | ||
Patent #
US 10,524,703 B2
Filed 01/24/2014
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
System and methods for processing analyte sensor data for sensor calibration | ||
Patent #
US 10,610,137 B2
Filed 06/28/2019
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
System and methods for processing analyte sensor data for sensor calibration | ||
Patent #
US 10,610,136 B2
Filed 06/28/2019
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Oxygen enhancing membrane systems for implantable devices | ||
Patent #
US 10,610,140 B2
Filed 05/11/2018
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
System and methods for processing analyte sensor data for sensor calibration | ||
Patent #
US 10,610,135 B2
Filed 06/28/2019
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
System and methods for processing analyte sensor data for sensor calibration | ||
Patent #
US 10,617,336 B2
Filed 06/28/2019
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Integrated insulin delivery system with continuous glucose sensor | ||
Patent #
US 10,653,835 B2
Filed 10/24/2017
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
System and methods for processing analyte sensor data for sensor calibration | ||
Patent #
US 10,709,364 B2
Filed 11/21/2019
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte sensor | ||
Patent #
US 10,709,362 B2
Filed 11/21/2019
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte sensor | ||
Patent #
US 10,709,363 B2
Filed 11/21/2019
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
System and methods for processing analyte sensor data for sensor calibration | ||
Patent #
US 10,716,498 B2
Filed 11/21/2019
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte sensor | ||
Patent #
US 10,722,152 B2
Filed 11/05/2019
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
System and methods for processing analyte sensor data for sensor calibration | ||
Patent #
US 10,743,801 B2
Filed 11/21/2019
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
System and methods for processing analyte sensor data | ||
Patent #
US 10,786,185 B2
Filed 01/05/2018
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte sensor | ||
Patent #
US 10,799,158 B2
Filed 11/21/2019
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte sensor | ||
Patent #
US 10,799,159 B2
Filed 02/13/2020
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte sensor | ||
Patent #
US 10,813,577 B2
Filed 02/13/2020
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Analyte sensor | ||
Patent #
US 10,813,576 B2
Filed 11/21/2019
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Integrated insulin delivery system with continuous glucose sensor | ||
Patent #
US 10,835,672 B2
Filed 05/05/2020
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
System and methods for processing analyte sensor data for sensor calibration | ||
Patent #
US 10,856,787 B2
Filed 07/31/2019
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
System and methods for processing analyte sensor data for sensor calibration | ||
Patent #
US 10,898,114 B2
Filed 11/21/2019
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Signal processing for continuous analyte sensor | ||
Patent #
US 10,898,113 B2
Filed 06/05/2018
|
Current Assignee
DexCom Incorporated
|
Original Assignee
DexCom Incorporated
|
Current collection through the ends of a spirally wound electrochemical cell | ||
Patent #
US 5,972,532 A
Filed 05/04/1998
|
Current Assignee
Saft Finance Sarl
|
Original Assignee
Saft America Inc.
|
Electrical contact outlet for anodes | ||
Patent #
US 5,415,954 A
Filed 04/27/1993
|
Current Assignee
Avestor
|
Original Assignee
Hydro-Quebec
|
Capacitor | ||
Patent #
US 4,480,285 A
Filed 12/15/1982
|
Current Assignee
General Electric Company
|
Original Assignee
General Electric Company
|
Capacitors with sprayed electrode terminals | ||
Patent #
US 3,891,901 A
Filed 08/05/1971
|
Current Assignee
YOSEMITE INVESTMENTS INC.
|
Original Assignee
P R Mallory Company Incorporated
|
25 Claims
-
1. A method of making an electrochemical cell comprising the steps of:
-
providing a first conductive sheet having a first end;
providing a layer of insulation on said first conductive sheet such that said layer of insulation covers less than the entire area of said first conductive sheet;
providing a second conductive sheet having a first end;
laying said second conductive sheet on said layer of insulation such that said first end of said second conductive sheet is substantially parallel to said first end of said first conductive sheet but is offset in a direction transverse to said first ends;
rolling said first conductive sheet, said layer of insulation, and said second conductive sheet together to form a jelly-roll stack having a longitudinal axis transverse to said first ends of said first and second conductive sheets such that the first end of said first conductive sheet forms a spiral space at a first end of the stack;
spraying a first conductive material along a first spray path onto said first end of said stack such that said conductive material does not contact said second conductive sheet, said first spray path forming an angle of between 20° and
80°
with respect to said longitudinal axis.- View Dependent Claims (2, 3, 4, 5, 6, 7, 8, 9)
-
-
10. A method of making an electrochemical cell comprising the steps of:
-
providing a first conductive sheet having a first end;
providing a layer of insulation on said first conductive sheet such that said layer of insulation covers less than the entire area of said first conductive sheet;
providing a second conductive sheet having a first end;
laying said second conductive sheet on said layer of insulation such that said first end of said second conductive sheet is substantially parallel to said first end of said first conductive sheet but is offset in a direction transverse to said first ends;
rolling said first conductive sheet, said layer of insulation, and said second conductive sheet together to form a jelly-roll stack having a longitudinal axis transverse to said first ends of said first and second conductive sheets such that the first end of said first conductive sheet forms a spiral space at a first end of the stack; and
spraying a first conductive material along a first spray path onto said first end of said stack such that said conductive material does not contact said second conductive sheet, said first spray path forming an angle of between 20° and
80°
with respect to said longitudinal axis, further comprising the step of placing a conductive strip on the first end of said first conductive sheet before said spraying step.- View Dependent Claims (11, 12, 13, 14, 15)
-
-
16. A method of making an electrochemical cell having first and second electrodes extending substantially parallel to one another and separated by an insulating material, said electrodes being arranged in a rolled stack having a longitudinal axis, said first electrode extending farther along said longitudinal axis than said second electrode at a first end of said stack to form a first end face having a spiral space therein, said method comprising the step of:
-
disposing a mask over said first end of said stack to expose only a portion of said first end face; and
spraying conductive material along a first spray path onto said first end of said stack such that said conductive material enters said spiral space only at said exposed portion of said first end face, said first spray path forming an angle of between 20° and
80°
with respect to said longitudinal axis.- View Dependent Claims (17, 18, 19, 20, 21, 22, 23)
-
-
24. A method of making an electrochemical cell comprising the steps of:
-
providing a first conductive sheet having a first end;
providing a layer of insulation on said first conductive sheet such that said layer of insulation covers less than the entire area of said first conductive sheet;
providing a second conductive sheet having a first end;
laving said second conductive sheet on said layer of insulation such that said first end of said second conductive sheet is substantially parallel to said first end of said first conductive sheet but is offset in a direction transverse to said first ends;
rolling said first conductive sheet, said layer of insulation, and said second conductive sheet together to form a jelly-roll stack having a longitudinal axis transverse to said first ends of said first and second conductive sheets such that the first end of said first conductive sheet forms a spiral space at a first end of the stack; and
spraying a first conductive material along a first spray path onto said first end of said stack such that said conductive material does not contact said second conductive sheet, said first spray path forming an angle of between 20° and
80°
with respect to said longitudinal axis, further comprising the step of spraying a second material onto said first end along a second spray path which is at an angle with respect to said first spray path.- View Dependent Claims (25)
-
1 Specification
In general, this invention is directed to a technique for improving the current collection capability in an electrochemical cell by depositing a connection coating onto the exposed ends of the electrodes in a spirally wound electrochemical cell.
In a typical spirally wound electrochemical cell, a first conductive layer and a second conductive layer are separated by insulating layers which alternate with the conductive layers. The conductive layers are offset from one another, so that the first conductive layer extends beyond the insulating layers and the second conductive layer in one direction. The second conductive layer extends beyond the insulating layers and first conductive layer in an opposite direction. The layers are then rolled together to form a jelly-roll style electrode stack wherein the first conductive layer forms a positive electrode at one end of the stack, and the second conductive layer forms a negative electrode at a second end of the stack opposite the stack first end.
A first spiral space is defined in the first end of the jelly-roll by the portion of the first conductive sheet which is not layered with either insulation or the second conductive sheet. A second spiral space is defined in the second end of the jelly-roll by the portion of the second conductive sheet which is not layered with either insulation or the first conductive sheet. The electrodes are then connected to terminals of a fluid tight casing for use as a battery. Before the casing is sealed shut, an electrolyte is put into the casing, surrounding the electrodes. The electrolyte aids in the development of an electrical potential difference between the electrodes in the cell.
In the typical electrochemical cell, the electrodes are connected to the terminals of the battery by tabs extending from the electrode sheet itself, or by tap straps. Another method of connection is to edge weld the tabs to the spiral end of the electrodes. These methods, however, suffer the problem of only being capable of carrying a limited amount of current from the cell. The tabs do not connect to a sufficient area of the electrode to carry larger currents associated with bigger batteries. Moreover, welding additional tabs presents problems in manufacture of the batteries, such as limiting the area by which electrolyte can be introduced into the electrode, and increasing the cost as well as production time of the battery.
One object of the present invention is to improve the current collection capacity from an electrochemical cell by overcoming the problems associated with the present current collection methods.
Another object of the present invention is to improve the current collection capacity from an electrochemical cell by providing an improved method of attaching a contact to a spirally wound electrode.
Yet another object of the present invention is to improve the current collection capacity from an electrochemical cell by providing increased contact area between the contact and a spirally wound electrode.
The present invention achieves these and other objects through a process of fabricating a conductive coating on the spirally wound electrode. The contact area is increased because the coating contacts the electrode over more than merely the spirally wound edge of the electrode sheet. The conductive coating can be formed onto selected areas of a spirally wound electrode by a thermal spray process.
The coating is deposited onto the spirally wound electrode in such a manner that it only coats one of the electrodes, without any of the coating particles contacting the insulating layer or the other electrode. This objective is accomplished by spraying the coating in a direction at an angle to the longitudinal axis of the electrode jelly-roll.
The angle of spray, with respect to the electrode stack longitudinal axis, depends upon the distance by which the two electrode substrates of the cell are offset. The angle of spray can be varied between about 20° and about 80°. Best results are achieved when the angle of spray is between about 45° and about 70°. By spraying at a suitable angle, the need for applying an insulating material to the jelly-roll ends, to protect against unwanted contact between the spray coating and the alternate electrode, is eliminated.
The conductive coating is made of metal particles or the like. Any metallic or cermet materials can be used for the spray coating including, but not limited to, aluminum, copper, zinc, zinc-aluminum alloy, and tin alloys. Conductive or loaded polymers can also be used. Zinc is an economical metal to use for the coating, and can be applied with either combustion wire or two wire arc thermal spray processes. The material of the conductive coating should be matched to that of the electrode onto which it is formed.
Any number of techniques can be used to deposit the conductive coating onto the spirally wound electrodes, including but not limited to, using a combustion wire thermal spray gun, using a two wire arc gun, or using an Arc Plasma thermal spray system. However, the spray coating must be applied in such a manner that the temperature of the cell ends remains below the thermal melting point of the insulating layer between the electrodes. If the temperature of the cell is raised above the insulating layer melting point, a short between electrode layers may result which can decrease the capacity of the battery or even make it inoperative.
Further, a mask or shield is used to cover areas of the electrode end so that the coating is applied to only a selected portion of the electrode. The mask can be flexible as for example when made of any suitable tape. Alternatively, the mask can be a rigid shell shaped to fit over one end of the electrode stack. The mask can be designed to allow any shaped coating to be applied to the electrode stack by covering any desired areas of the electrode to thus leave uncoated portions. Uncoated portions of the electrode are necessary for insertion of liquid, electrolyte, or chemical slurry, into the spiral space of the electrode for proper operation of the battery. The mask can be inserted into the spray path at any point between the spray outlet and the electrode surface.
Additionally, suitable electrically conductive wires, tabs strips, or the like, can be welded onto the thermally sprayed layers by laser welding, for example. Alternatively, the electrically conductive wires, tabs, strips, or the like, can be embedded into the coating during the thermal spray process for electrical connection to the spirally wound electrode substrate edges.
To improve the bond strength between the spray coating and the areas to be coated on the electrode ends, conductive wires, tabs, strips, or the like, the areas to be coated can be provided with a texture, either before or after arranging in a stack, e.g., by brushing with a wire brush, grit blasting, perforation, providing with a dimple or waffle pattern, etc. The material from which the electrically conductive wires, tabs, strips, or the like, are made is compatible with that of the electrode substrate to which they are attached and with the spray material with which they are attached so as to avoid formation of a galvanic cell.
The invention may be used in, but is not limited to, the production of lithium-ion cells. One example of a lithium-ion cell uses an aluminum foil substrate for the positive electrode, and a copper foil substrate for the negative electrode. The invention may be used in manufacturing other types of cells including, but not limited to, nickel metal hydride cells and nickel cadmium cells. The invention can be practiced on any size of cell, but is particularly useful in manufacturing cells for electric vehicles.
The foregoing objects of the present invention, together with the features and advantages thereof, will be made apparent from the following description, in which like reference characters designate the same or similar parts throughout the drawings.
FIG. 1 is a cut away view of a jelly-roll electrode having a wire tab connected thereto by the thermal spray process of the present invention.
FIG. 2 is a top view of a jelly-roll electrode having a mask of the present invention thereon.
FIG. 3 is a side view of a jelly-roll electrode having a mask of the present invention thereon.
FIG. 4 is a top view of a jelly-roll electrode, together with a wire connection tab, having a mask of the present invention thereon.
FIG. 5 is a top view of a rigid hard shell mask of the present invention.
FIG. 6 is a top view of a jelly-roll electrode having a wire connection tab and a rigid hard shell mask of the present invention thereon.
FIG. 7 is a top view of a jelly-roll electrode having a mandrel therein and a mask of the present invention thereon.
FIG. 8 is a partially cut away side view of the jelly-roll electrode shown in FIG. 7.
FIG. 9 is a top view of a jelly-roll electrode having a mandrel therein, as well as a wire strip and a mask of the present invention thereon.
FIG. 10, is a partial cut away view of the jelly-roll electrode shown in FIG. 9.
A jelly-roll electrode stack 1 includes a first electrode 4 and a second electrode 6, separated by insulation layers 8,10. The electrodes are offset from one another by a distance 8 (shown in FIG. 1) so that one end of the first electrode 4 extends from a first end 2 of the electrode stack 1 and is not covered by either insulation 8,10 or the second electrode 6. The second electrode 6 extends from a second end of the electrode stack 1 and is not covered by either insulation 8,10 or the first electrode 4. By forming the electrode stack in such a manner, a spiral space is formed at both the first and second ends of the electrode stack.
The present invention includes a process for connecting current collectors to the ends of spirally wound electrodes in a jelly-roll type electrode stack, and a spirally wound electrode stack formed thereby. The process for fabricating a coating 14 onto the electrodes is similar for both electrodes 4,6 and thus the process will only be described for the first electrode 4, with the understanding that it is similar for the second electrode 6 in the jelly-roll stack 1.
A thermal spray 12 is ejected from a spray nozzle 24. The nozzle 24 can be the outlet of, for example, a combustion wire thermal spray gun, a two wire arc gun, or an Arc Plasma thermal spray system. The axis of the nozzle 24 is set at an angle Θ to the longitudinal axis of the electrode stack 1. The angle Θ is set so that no coating particles contact the insulating layers, 8 and 10, or the second electrode 6. If the coating particles contact the insulation layers or the second electrode, a short between electrode layers may result which can decrease the capacity of the battery or even make it inoperative. The angle Θ can vary between about 20° and about 80°, depending on the amount of offset δ between the first and second electrodes. Angle Θ is preferably between about 45° and about 70°.
The thermal spray is made of metal particles or the like. Any metallic or cermet materials can be used, but the material of the spray is preferably matched to the material of the electrode onto which it is deposited. Thus, for example, if the electrode 4 is the copper electrode of a lithium-ion cell, the spray coating 14 would also be copper. The temperature of the thermal spray must be set so as to keep the end of the electrode stack below the melting temperature of the insulation layers. In a lithium-ion cell, for example, the temperature of the electrode stack should be kept below 110° F. One way to do so is to keep the temperature of the thermal spray 12 below 110° F.
As shown in FIG. 1, the coating 14 contacts not only the end of electrode 4, as in a typical connection, but also contacts portions of the sides of the electrode thereby increasing the area of current collection. The coating 14 can be of any desired thickness but is preferably 0.1″ (2.5 mm). Battery terminals can be directly connected to the coating 14, or a conductive wire, strip, tab, or the like, 22 can be connected between the coating 14 and the battery terminal. When a conductive wire, strip, tab, or the like 22 is used, it can be connected to the top of the coating 14, by laser welding for example, or can be embedded in the coating 14. The conductive wire, strip, tab, or the like 22 is electrically connected to both the coating 14 and the electrode 4,6 end.
The electrode can be masked off prior to being spray coated with thermal spray 12 to form a current collection area. Masking the electrode serves two functions. First, the portion of the electrode stack end 2 that is covered by the mask will not be coated with thermal spray 12, and thus leaves an open space for the introduction of an electrolyte into the electrode stack. Second, the portion of the electrode stack end 2 that is uncovered by the mask will be coated by thermal spray 12 which forms a coating 14 for current collection from the electrode. The size and shape of the current collection area formed by coating 14 is determined by the size and shape of the mask applied to the electrode stack end 2.
To improve the bond strength between the spray coating and the areas to be coated on the electrode ends, conductive wires, tabs, strips, or the like, the areas to be coated on the electrode ends, and optionally the wires, tabs, strips or the like as well, can be provided with a texture, either before or after arranging in a stack, e.g., by brushing with a wire brush, grit blasting, perforation, providing with a dimple or waffle pattern, etc.
FIG. 2 shows a top view of a spirally wound jelly-roll type electrode stack I which includes a first electrode 4, and a second electrode 6, separated by insulation layers 8,10. A portion of the electrode stack end 2 is masked off by a flexible type of mask 18. Flexible mask 18 has the advantage of being easy to use, and is inexpensive. The flexible mask 18 readily conforms to the end surface of the electrode 4,6 and can be easily shaped. The flexible mask 18 can be made of any suitable tape, for example.
FIG. 3 shows a side view of a jelly-roll electrode stack 1 having a flexible mask 18 thereon. When tape is used, for example, a first strip of tape can be applied to the end 2 of the electrode stack, and then bent down along the side of the stack. Then, a second strip of tape can be wound around the circumference of the electrode stack to hold the first strip of tape in place, and also to prevent any overspray from contacting the outside of the electrode stack 1. As can be seen in FIG. 3, when the electrode is properly masked off, the top of first electrode 4 is exposed together with the spiral space between the rolled layers of first electrode 4 which are not layered with insulation 8,10 or second electrode 6. Thermal spray 12 can then be deposited over the top of first electrode 4, and into a portion of the spiral space formed by electrode 4.
FIG. 4 shows the use of a flexible mask 18 in conjunction with a conductive wires strip, tab, or the like, 22. In this case, the mask 18 is used not only to form the desired coating shape, but also to hold the conductive wire, strip, tab, or the like, 22 in place on the end 2 of the jelly-roll electrode stack 1. When flexible mask 18 is used, the conductive wire, strip, tab, or the like 22 is shaped as a linear bar, for example. However, any shape desired can be used as long as a portion of the conductive wire, strip, tab, or the like, is inserted under the flexible mask so that it is held in place.
Alternatively, the mask can take the form of a rigid shell 20, as shown in FIG. 5. The rigid shell is formed as a cylinder closed at one end and has a diameter slightly larger than that of the cylindrical electrode stack 1 so that it snugly fits over the top of the electrode stack. The rigid shell 20 also includes a portion 26 cut out of the closed end. The cut out portion 26 defines the shape of the coating 14 formed on the electrode. The cut out portion 26 is shown as linear across the diameter of the electrode stack, but can be any shape desired. The rigid shell 20 can be made of any suitable plastic that has a melting temperature higher than the temperature of the thermal spray. Further, the rigid shell 20 can be made by any suitable process such as injection molding or extruding.
FIG. 6 shows a rigid shell mask 20 on the end 2 of a jelly-roll electrode stack. In this case, the mask 20 is used not only to form the desired shape of coating 14, but also to hold conductive wire, strip, tab, or the like 22 in place on the electrode stack. Again, the conductive wire, strip, tab, or the like 22 can have any shape desired as long as a part thereof fits under rigid shell 20 to hold the strip 22 in place. The shape of the conductive wire, strip, tab, or the like 22 can vary depending upon the shape of the cut out portion 26 of the rigid mask 20. One example, as shown in FIG. 6, is for the cut out portion 26 to be linear across the diameter of the electrode stack and for the conductive wire, strip, tab, or the like 22 to be in the shape of a cross having a long portion extend along the diameter of the electrode stack and a short portion extend under the rigid shell 20.
Once the electrode is properly masked off, a coating 14 is then deposited thereon, for example by spray coating with thermal spray 12 as described above, to form an area for current collection. The coating is deposited on the top of the electrode, as well as in a portion of the spiral space formed by the electrode. When the coating is deposited by thermal spray, it is usually sufficient to spray from only one direction. However, the coating can be deposited by thermal spray from more than one direction, for example, along arrows A and B as shown in FIGS. 3 and 10. FIG. 3 shows the use of more than one spray direction in conjunction with a flexible mask, whereas FIG. 10 shows more than one spray direction used in conjunction with a rigid mask 20 and a conductive wire, strip, tab, or the like 22. The angle α and B that each respective spray direction A and B, makes with the longitudinal axis of the electrode stack can be between about 20° and about 80° and is preferably between about 45° and about 70°. Angle α can either be the same as, or different from, the angle β.
As shown in FIGS. 7-10, the jelly-roll electrode stack 1 can be wound around a mandrel 28 which is a cylinder open at both ends. A mask 16 can be used in conjunction with a jelly-roll electrode stack 1 that includes a mandrel 28, as shown in FIGS. 7-8. Mask 16 includes arcuate portions near the center thereof to accommodate the mandrel 28. Further, a conductive wire, strip, tab, or the like 22 and mask 20 can be used together in conjunction with a jelly-roll electrode stack 1 that has a mandrel 28, as shown in FIGS. 9-10. Various combinations of mask, conductive wire, strip, tab, or the like, electrode stack, and spray parameters, can be used.
The foregoing description is merely exemplary and is not to be construed in a limiting sense. Modifications will be readily apparent to those of ordinary skill in the art, and are considered to be within the scope of the invention, which is to be limited only by the following claims.