Battery capacity detection system with temperature correction
First Claim
1. A battery capacity detection system comprising:
- a temperature sensor sensing a temperature of a battery;
a full-charge voltage calculation processing section for calculating a voltage of the battery in a fully charged state by using the temperature of the battery sensed by the temperature sensor; and
an SOC calculation section for calculating an SOC of the battery by using the voltage of the battery in the full charge state calculated by using the temperature by the full-charge voltage calculation section.
1 Assignment
0 Petitions

Accused Products

Abstract
A battery capacity detection system according to the invention is provided with: a temperature sensor for sensing a temperature of the battery; a full-charge voltage calculation section for calculating a voltage of the battery in a full charge state by using the temperature sensed by the temperature sensor; and an SOC calculation section for calculating an SOC of the battery by using the voltage of the battery in the full charge state calculated by using the temperature in the full-charge voltage calculation processing section.
123 Citations
Automotive vehicle battery test system | ||
Patent #
US 7,924,015 B2
Filed 05/06/2010
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Battery tester with promotion feature | ||
Patent #
US 7,940,053 B2
Filed 05/25/2010
|
Current Assignee
Interstate Battery Systems Of America Incorporated, Midtronics Incorporated
|
Original Assignee
Interstate Battery Systems Of America Incorporated, Midtronics Incorporated
|
Electronic battery test based upon battery requirements | ||
Patent #
US 7,940,052 B2
Filed 02/02/2010
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
In-vehicle battery monitor | ||
Patent #
US 7,999,505 B2
Filed 10/05/2004
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Battery maintenance tool with probe light | ||
Patent #
US 7,977,914 B2
Filed 10/31/2007
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Battery tester with promotion feature to promote use of the battery tester by providing the user with codes having redeemable value | ||
Patent #
US 7,791,348 B2
Filed 02/27/2007
|
Current Assignee
Interstate Battery Systems Of America Incorporated, Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Energy management system for automotive vehicle | ||
Patent #
US 7,688,074 B2
Filed 06/14/2004
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Wireless battery tester with information encryption means | ||
Patent #
US 7,772,850 B2
Filed 07/11/2005
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Electronic battery tester with vehicle type input | ||
Patent #
US 7,656,162 B2
Filed 07/22/2004
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Electronic battery tester with databus | ||
Patent #
US 7,728,597 B2
Filed 11/03/2008
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Battery tester that calculates its own reference values | ||
Patent #
US 7,710,119 B2
Filed 12/14/2005
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Automotive vehicle electrical system diagnostic device | ||
Patent #
US 7,642,787 B2
Filed 10/24/2006
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Automotive vehicle electrical system diagnostic device | ||
Patent #
US 7,705,602 B2
Filed 08/29/2006
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Battery tester capable of identifying faulty battery post adapters | ||
Patent #
US 7,642,786 B2
Filed 05/31/2005
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Alternator tester | ||
Patent #
US 7,706,991 B2
Filed 06/11/2007
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Wireless battery monitor | ||
Patent #
US 7,774,151 B2
Filed 12/21/2004
|
Current Assignee
Franklin Grid Solutions LLC
|
Original Assignee
Midtronics Incorporated
|
Theft prevention device for automotive vehicle service centers | ||
Patent #
US 7,777,612 B2
Filed 08/03/2006
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Battery run down indicator | ||
Patent #
US 7,808,375 B2
Filed 04/09/2008
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Apparatus and method for counteracting self discharge in a storage battery | ||
Patent #
US 7,479,763 B2
Filed 03/18/2004
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Battery charger with booster pack | ||
Patent #
US 7,501,795 B2
Filed 06/03/2004
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Centralized data storage of condition of a storage battery at its point of sale | ||
Patent #
US 7,498,767 B2
Filed 02/16/2006
|
Current Assignee
Interstate Battery Systems International Incorporated
|
Original Assignee
Midtronics Incorporated
|
Battery test module | ||
Patent #
US 7,505,856 B2
Filed 06/02/2005
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Apparatus and method for predicting battery capacity and fitness for service from a battery dynamic parameter and a recovery voltage differential | ||
Patent #
US 7,545,146 B2
Filed 12/09/2004
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Electronic battery tester | ||
Patent #
US 7,557,586 B1
Filed 05/19/2003
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Apparatus and method for simulating a battery tester with a fixed resistance load | ||
Patent #
US 7,595,643 B2
Filed 08/21/2006
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Replaceable clamp for electronic battery tester | ||
Patent #
US 7,598,699 B2
Filed 02/20/2004
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Scan tool for electronic battery tester | ||
Patent #
US 7,598,744 B2
Filed 06/07/2005
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Battery maintenance device having databus connection | ||
Patent #
US 7,598,743 B2
Filed 02/22/2005
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Battery monitoring system | ||
Patent #
US 7,619,417 B2
Filed 12/14/2006
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Shunt connection to a PCB of an energy management system employed in an automotive vehicle | ||
Patent #
US 7,319,304 B2
Filed 07/23/2004
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Method for Controlling and System for Charging a Battery Power Supply Unit | ||
Patent #
US 20080042621A1
Filed 07/02/2007
|
Current Assignee
Campagnolo S.R.L.
|
Original Assignee
Campagnolo S.R.L.
|
Method and apparatus for estimating remaining capacity of secondary battery | ||
Patent #
US 7,339,351 B2
Filed 12/02/2002
|
Current Assignee
Panasonic EV Energy Company Limited
|
Original Assignee
Panasonic EV Energy Company Limited
|
Query based electronic battery tester | ||
Patent #
US 7,363,175 B2
Filed 04/24/2006
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Method and System for Supplying Electrical Energy from a Battery Power Supply Unit | ||
Patent #
US 20080124616A1
Filed 07/02/2007
|
Current Assignee
Campagnolo S.R.L.
|
Original Assignee
Campagnolo S.R.L.
|
State detecting system and device employing the same | ||
Patent #
US 7,406,389 B2
Filed 06/22/2006
|
Current Assignee
Hitachi Automotive Systems Limited
|
Original Assignee
Shin-Kobe Electric Machinery Company Limited, Hitachi America Limited
|
Battery testers with secondary functionality | ||
Patent #
US 7,398,176 B2
Filed 02/13/2006
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Electronic battery tester having a user interface to configure a printer | ||
Patent #
US 7,408,358 B2
Filed 06/16/2003
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Broad-band low-inductance cables for making Kelvin connections to electrochemical cells and batteries | ||
Patent #
US 7,425,833 B2
Filed 09/12/2006
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Scan tool for electronic battery tester | ||
Patent #
US 7,446,536 B2
Filed 10/05/2004
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Apparatus and method for predicting the remaining discharge time of a battery | ||
Patent #
US 7,208,914 B2
Filed 12/30/2003
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Calculation of state of charge offset using a closed integral method | ||
Patent #
US 7,233,128 B2
Filed 07/30/2004
|
Current Assignee
Ford Global Technologies LLC
|
Original Assignee
Ford Global Technologies LLC
|
Alternator tester | ||
Patent #
US 7,246,015 B2
Filed 06/09/2004
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Electronic battery tester with relative test output | ||
Patent #
US 7,295,936 B2
Filed 02/16/2006
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Automotive vehicle electrical system diagnostic device | ||
Patent #
US 7,126,341 B2
Filed 07/19/2002
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Cable for electronic battery tester | ||
Patent #
US 6,913,483 B2
Filed 06/23/2003
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Theft prevention device for automotive vehicle service centers | ||
Patent #
US 7,119,686 B2
Filed 04/13/2004
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Query based electronic battery tester | ||
Patent #
US 7,034,541 B2
Filed 05/17/2005
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Method and apparatus for auditing a battery test | ||
Patent #
US 6,885,195 B2
Filed 03/14/2002
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Electronic battery tester cable | ||
Patent #
US 6,933,727 B2
Filed 06/23/2003
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
In-vehicle battery monitor | ||
Patent #
US 6,850,037 B2
Filed 10/15/2002
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Electronic battery tester with automotive scan tool communication | ||
Patent #
US 6,967,484 B2
Filed 06/12/2003
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Alternator tester with encoded output | ||
Patent #
US 6,914,413 B2
Filed 09/05/2003
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Electronic battery tester with data bus for removable module | ||
Patent #
US 6,998,847 B2
Filed 07/01/2004
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Method and apparatus for measuring a parameter of a vehicle electrical system | ||
Patent #
US 7,154,276 B2
Filed 09/05/2003
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Electronic battery tester | ||
Patent #
US 6,806,716 B2
Filed 01/29/2004
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Jamey Butteris, Kevin I. Bertness
|
Broad-band low-inductance cables for making Kelvin connections to electrochemical cells and batteries | ||
Patent #
US 7,106,070 B2
Filed 07/22/2004
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Method and apparatus for testing cells and batteries embedded in series/parallel systems | ||
Patent #
US 6,906,523 B2
Filed 04/09/2002
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Electronic battery tester with network communication | ||
Patent #
US 7,003,411 B2
Filed 08/09/2004
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Electronic battery tester with relative test output | ||
Patent #
US 7,003,410 B2
Filed 06/17/2004
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Query based electronic battery tester | ||
Patent #
US 6,941,234 B2
Filed 09/30/2003
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Calculation of state of charge offset using a closed integral method | ||
Patent #
US 20060022643A1
Filed 07/30/2004
|
Current Assignee
Ford Global Technologies LLC
|
Original Assignee
Ford Global Technologies LLC
|
Battery control apparatus | ||
Patent #
US 7,015,676 B2
Filed 03/18/2003
|
Current Assignee
Mitsubishi Jidosha Kogyo Kabushiki Kaisha
|
Original Assignee
Mitsubishi Jidosha Kogyo Kabushiki Kaisha
|
Battery state monitoring device and its method, and dischargeable capacity detecting method | ||
Patent #
US 20060197503A1
Filed 03/23/2004
|
Current Assignee
Yazaki Corporation
|
Original Assignee
Yazaki Corporation
|
State detecting system and device employing the same | ||
Patent #
US 20060247871A1
Filed 06/22/2006
|
Current Assignee
Hitachi Automotive Systems Limited
|
Original Assignee
Hitachi America Limited
|
Method and device for estimating remaining capacity of secondary cell battery pack system and electric vehicle | ||
Patent #
US 20050017725A1
Filed 12/02/2002
|
Current Assignee
Panasonic EV Energy Company Limited
|
Original Assignee
Panasonic EV Energy Company Limited
|
Capacity indicating device and method thereof | ||
Patent #
US 6,932,174 B2
Filed 10/16/2002
|
Current Assignee
Nissan Motor Co. Ltd.
|
Original Assignee
Nissan Motor Co. Ltd.
|
Method and unit for computing voltage drop divided along factors for battery | ||
Patent #
US 6,677,729 B2
Filed 08/02/2002
|
Current Assignee
Yazaki Corporation
|
Original Assignee
Yazaki Corporation
|
Daytime running light control using an intelligent power management system | ||
Patent #
US 20040113494A1
Filed 06/18/2002
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Energy management system for automotive vehicle | ||
Patent #
US 20030025481A1
Filed 10/29/2001
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Kevin I. Bertness
|
Capacity indicating device and method thereof | ||
Patent #
US 20030094321A1
Filed 10/16/2002
|
Current Assignee
Nissan Motor Co. Ltd.
|
Original Assignee
Nissan Motor Co. Ltd.
|
In-vehicle battery monitor | ||
Patent #
US 20030090272A1
Filed 10/15/2002
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Current measuring circuit suited for batteries | ||
Patent #
US 20030155930A1
Filed 04/09/2003
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Degradation degree computing method and unit for battery | ||
Patent #
US 6,661,202 B2
Filed 08/02/2002
|
Current Assignee
Yazaki Corporation
|
Original Assignee
Yazaki Corporation
|
Battery control apparatus | ||
Patent #
US 20030231005A1
Filed 03/18/2003
|
Current Assignee
Mitsubishi Jidosha Kogyo Kabushiki Kaisha
|
Original Assignee
Mitsubishi Jidosha Kogyo Kabushiki Kaisha
|
Method and apparatus for measuring a parameter of a vehicle electrical system | ||
Patent #
US 8,164,343 B2
Filed 10/30/2008
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Automotive battery charging system tester | ||
Patent #
US 8,198,900 B2
Filed 03/02/2004
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Battery testers with secondary functionality | ||
Patent #
US 8,237,448 B2
Filed 07/07/2008
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Battery tester for electric vehicle | ||
Patent #
US 8,306,690 B2
Filed 07/17/2008
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
System for automatically gathering battery information | ||
Patent #
US 8,344,685 B2
Filed 04/01/2009
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
CHARGING/DISCHARGING DETERMINATION APPARATUS AND COMPUTER-READABLE NON-TRANSITORY MEDIUM STORING CHARGING/DISCHARGING DETERMINATION PROGRAM | ||
Patent #
US 20120249152A1
Filed 03/27/2012
|
Current Assignee
Toshiba Corporation
|
Original Assignee
Toshiba Corporation
|
Integrated tag reader and environment sensor | ||
Patent #
US 8,436,619 B2
Filed 04/01/2009
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Simplification of inventory management | ||
Patent #
US 8,442,877 B2
Filed 04/01/2009
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Automotive vehicle electrical system diagnostic device | ||
Patent #
US 8,493,022 B2
Filed 04/22/2010
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Electronic battery tester or charger with databus connection | ||
Patent #
US 8,513,949 B2
Filed 09/04/2008
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
In-vehicle battery monitor | ||
Patent #
US 8,674,654 B2
Filed 08/09/2011
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Method and apparatus for measuring a parameter of a vehicle electrical system | ||
Patent #
US 8,674,711 B2
Filed 12/19/2006
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
System for automatically gathering battery information | ||
Patent #
US 8,704,483 B2
Filed 11/28/2012
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Storage battery and battery tester | ||
Patent #
US 8,203,345 B2
Filed 12/04/2008
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Battery pack maintenance for electric vehicles | ||
Patent #
US 8,738,309 B2
Filed 09/30/2010
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Electronic battery tester | ||
Patent #
US 8,754,653 B2
Filed 07/07/2009
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Electronic battery tester mounted in a vehicle | ||
Patent #
US 8,872,516 B2
Filed 02/28/2011
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Electronic battery tester with battery age input | ||
Patent #
US 8,872,517 B2
Filed 03/15/2011
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Electronic battery tester with network communication | ||
Patent #
US 8,958,998 B2
Filed 04/12/2010
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
System for automatically gathering battery information | ||
Patent #
US 8,963,550 B2
Filed 10/11/2011
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Method and apparatus for measuring a parameter of a vehicle electrical system | ||
Patent #
US 9,018,958 B2
Filed 10/19/2011
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Battery testers with secondary functionality | ||
Patent #
US 9,052,366 B2
Filed 08/06/2012
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Electronic battery tester for testing storage battery | ||
Patent #
US 9,201,120 B2
Filed 08/09/2011
|
Current Assignee
Franklin Grid Solutions LLC
|
Original Assignee
Midtronics Incorporated
|
Electronic storage battery diagnostic system | ||
Patent #
US 9,229,062 B2
Filed 05/23/2011
|
Current Assignee
Franklin Grid Solutions LLC
|
Original Assignee
Midtronics Incorporated
|
Current clamp with jaw closure detection | ||
Patent #
US 9,244,100 B2
Filed 03/11/2014
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Method and apparatus for measuring a parameter of a vehicle electrical system | ||
Patent #
US 9,255,955 B2
Filed 05/02/2011
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Battery tester for electric vehicle | ||
Patent #
US 9,274,157 B2
Filed 09/23/2010
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Battery testing system and method | ||
Patent #
US 9,312,575 B2
Filed 05/13/2014
|
Current Assignee
Franklin Grid Solutions LLC
|
Original Assignee
Midtronics Incorporated
|
Battery tester for electric vehicle | ||
Patent #
US 9,335,362 B2
Filed 11/05/2012
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Battery maintenance device with thermal buffer | ||
Patent #
US 9,419,311 B2
Filed 06/18/2010
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Monitor for front terminal batteries | ||
Patent #
US 9,425,487 B2
Filed 03/01/2011
|
Current Assignee
Franklin Grid Solutions LLC
|
Original Assignee
Midtronics Incorporated
|
Method for controlling and system for charging a battery power supply unit | ||
Patent #
US 9,469,202 B2
Filed 12/28/2015
|
Current Assignee
Campagnolo S.R.L.
|
Original Assignee
Campagnolo S.R.L.
|
System for automatically gathering battery information | ||
Patent #
US 9,496,720 B2
Filed 01/24/2012
|
Current Assignee
Franklin Grid Solutions LLC
|
Original Assignee
Midtronics Incorporated
|
Method and apparatus for detecting cell deterioration in an electrochemical cell or battery | ||
Patent #
US 9,588,185 B2
Filed 02/25/2010
|
Current Assignee
Keith S Champlin
|
Original Assignee
Keith S Champlin
|
Method and system for supplying electrical energy from a battery power supply unit to a heating element | ||
Patent #
US 9,634,518 B2
Filed 07/02/2007
|
Current Assignee
Campagnolo S.R.L.
|
Original Assignee
Campagnolo S.R.L.
|
Suppressing HF cable oscillations during dynamic measurements of cells and batteries | ||
Patent #
US 9,851,411 B2
Filed 03/12/2013
|
Current Assignee
Keith S Champlin
|
Original Assignee
Keith S Champlin
|
Battery clamp with endoskeleton design | ||
Patent #
US 9,923,289 B2
Filed 01/16/2015
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Kelvin connector adapter for storage battery | ||
Patent #
US 9,966,676 B2
Filed 09/27/2016
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Hybrid and electric vehicle battery pack maintenance device | ||
Patent #
US 10,046,649 B2
Filed 03/14/2013
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Cable connector for electronic battery tester | ||
Patent #
US 10,222,397 B2
Filed 09/22/2015
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Alternator tester | ||
Patent #
US 10,317,468 B2
Filed 01/26/2016
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Battery pack tester | ||
Patent #
US 10,429,449 B2
Filed 11/08/2012
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Automotive maintenance system | ||
Patent #
US 10,473,555 B2
Filed 07/14/2015
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Battery clamp | ||
Patent #
US 10,608,353 B2
Filed 06/27/2017
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Information supply device, information supply method, and storage medium | ||
Patent #
US 10,706,641 B2
Filed 08/08/2019
|
Current Assignee
Honda Motor Company
|
Original Assignee
Honda Motor Company
|
Calibration and programming of in-vehicle battery sensors | ||
Patent #
US 10,843,574 B2
Filed 04/28/2016
|
Current Assignee
Midtronics Incorporated
|
Original Assignee
Midtronics Incorporated
|
Batteries and battery systems | ||
Patent #
US 5,767,659 A
Filed 02/18/1997
|
Current Assignee
Texas Instruments Inc.
|
Original Assignee
Texas Instruments Inc.
|
Batterey discharge characteristics calculation method and remaining battery capacity measuring device | ||
Patent #
US 5,592,094 A
Filed 11/24/1995
|
Current Assignee
Yazaki Corporation
|
Original Assignee
Yazaki Corporation
|
Method for detecting remaining battery current, voltage, and temperature capacity by continuously monitoring | ||
Patent #
US 5,650,712 A
Filed 07/03/1995
|
Current Assignee
DENSO Corporation
|
Original Assignee
Nippon Soken Inc.
|
7 Claims
-
1. A battery capacity detection system comprising:
-
a temperature sensor sensing a temperature of a battery;
a full-charge voltage calculation processing section for calculating a voltage of the battery in a fully charged state by using the temperature of the battery sensed by the temperature sensor; and
an SOC calculation section for calculating an SOC of the battery by using the voltage of the battery in the full charge state calculated by using the temperature by the full-charge voltage calculation section. - View Dependent Claims (2, 3, 4, 5, 6, 7)
a voltage sensor sensing a voltage of the battery;
a current sensor sensing a current flowing from the battery to a load connected to the battery; and
a battery voltage estimation section calculating an estimated voltage of the battery by estimating a voltage of the battery from both an approximation line obtained on the basis of the current and the voltage and a reference current, wherein the SOC calculation section calculates the SOC of the battery by further using the estimated voltage calculated by the battery voltage estimation section.
-
-
3. An apparatus according to claim 2, wherein the battery voltage estimation section collects a predetermined number of values of each of the current and the voltage, and obtains averaged data by respectively averaging the predetermined number of values,
and wherein when a predetermined number of the averaged data is respectively collected and also the averaged data show a strong correlation, the battery voltage estimation section obtains an approximation line of the averaged data, and calculates the estimated voltage from the approximation line and the reference current. -
4. An apparatus according to claim 3, wherein the SOC calculation section further calculates the SOC of the battery by further using a discharge end voltage of the battery.
-
5. An apparatus according to claim 1, further comprising a chargeable capacity calculation section calculating a chargeable capacity of the battery in accordance with a difference between the present SOC of the battery and the SOC of the battery calculated by using the voltage of the battery in the full charge state calculated by using the temperature.
-
6. An apparatus according to claim 5, wherein a load connected to the battery includes a motor and, when there is an allowance in the chargeable capacity, the battery is charged with a power from the motor.
-
7. An apparatus according to claim 1, further comprising a data collecting section sampling the voltage sensed by the voltage sensor and the current sensed by the current sensor for sampling time in which a voltage drop caused by polarization of the battery can be ignored.
1 Specification
The present invention relates to a battery capacity detection system and, more particularly, to a battery capacity detection system with a chargeable capacity calculating function using a temperature sensor, for correcting a voltage in a full charge state by using an actually detected temperature and obtaining a chargeable capacity at the time point.
In recent years, an accurate prediction of a state of charge (SOC, also called dischargeable capacity) of a battery as a power source mounted on an electric vehicle has been being attempted.
Japanese Patent Application Laid-Open Publication No. 8-278351 discloses a battery SOC measuring apparatus.
In the battery SOC measuring apparatus, since calculation is easy, a battery controller calculates the SOC of a battery immediately after turning on an ignition by the following equation and displays the result.
where, Vn denotes an estimated voltage of the battery, Ve denotes a discharge end voltage (a fixed value) and Vs is a voltage of the battery in a fully charged state.
The voltage Vs in the fully charged state is a voltage when the battery is fully charged (substantially 100%) at the temperature of, for example, 20° C. in an initial state where degradation of the battery is not progressed yet. That is, the voltage Vs is a fixed value.
The estimated voltage Vn of the battery is obtained as follows. First, a predetermined number of values of each of a discharge current from the battery and a terminal voltage are collected and averaged. When a predetermined number of the averaged data is collected, a correlation coefficient (r) of the data is obtained. When the correlation coefficient (r) shows a strong negative correlation, a regression line (also called approximation line) is obtained by the method of least squares. From the approximation line Y (Y=aX+b) and a reference current Io, the present battery estimated voltage Vn is calculated.
The present SOC during driving is derived by the equation by using the estimated voltage Vn and the like and is properly displayed.
That is, in the battery SOC measuring apparatus, the SOC can be known without measuring the temperature.
In what is called a hybrid vehicle as well, the battery SOC measuring apparatus is used. Some battery SOC measuring apparatuses each for use in a hybrid vehicle obtain a regenerative energy to charge the battery. There is a case such that the SOC of the battery during driving is calculated, a chargeable capacity is obtained from the difference between the SOC and the SOC in the full charge state and, if it is chargeable, the battery is charged.
The inventors of the present invention have, however, examined and found that, even if the battery is in a fully charged state, the capacity tends to be calculated and displayed lower than the actual capacity when the temperature is low.
Specifically, as shown in FIG. 6, although the battery is in a fully charged state, when the temperature is low (for example, in winter), the voltage of the battery drops and the SOC characteristic is calculated and displayed lower than that at the time of high temperature (for example, in summer). Even when the electric vehicle is driven and a drive distance D becomes longer, such a state occurs.
For example, when the temperature is 20 (° C.) and the SOC is calculated as 90 (%), a chargeable state is determined and the battery is charged. When the temperature is 0 (° C.) and the SOC is 90 (%), there is a case such that the battery is already in a fully charged state.
Consequently, when it is calculated that the battery is not fully charged or the like, the battery is re-charged. At the time of low temperature, however, there is a case that the SOC is not calculated as 100 (%). In such a case, unnecessary charging is continuously performed and even a case such that it degrades the battery can be assumed.
The invention has been achieved on the basis of the above examinations and its object is to provide a battery capacity measurement apparatus with a chargeable capacity calculating function using a temperature sensor, which actually detects the temperature and can accurately calculate the chargeable capacity of the battery by using the detected temperature.
A battery capacity detection system according to the present invention comprises: a temperature sensor sensing a temperature of a battery; a full-charge voltage calculation processing section for calculating a voltage of the battery in a fully charged state by using the temperature of the battery sensed by the temperature sensor; and an SOC calculation section for calculating an SOC of the battery by using the voltage of the battery in the full-charge state calculated by using the temperature by the full-charge voltage calculation section.
FIG. 1 is a schematic block diagram of a battery capacity detection system according to an embodiment of the present invention.
FIG. 2 is a diagram for explaining an equivalent circuit of the battery according to the embodiment.
FIG. 3 is a diagram for explaining the relation between an open circuit voltage and temperature according to the embodiment.
FIG. 4 is a flowchart of processes of the battery capacity detection system according to the embodiment.
FIG. 5 is a schematic block diagram of another example of collecting temperature data.
FIG. 6 is a diagram showing the temperature characteristic of the battery capacity examined by the inventors of the present invention.
An embodiment of a battery capacity detection system of the invention will be described in detail hereinbelow by properly referring to FIGS. 1 to 5.
A battery controller 1 shown in FIG. 1 calculates the SOC and a chargeable capacity of a battery 5 used for a hybrid mechanism section 4 driven by an engine 2 and a motor (alternator) 3. Charging and discharging operations between the motor 3 and the battery 5 are performed via a converter 6.
A current sensor 10 is provided between the battery 5 and the converter 6.
A voltage sensor 11 is connected to the battery 5 in parallel.
Further, a temperature sensor 12 is provided near the battery 5 and the temperature of the battery 5 is sent to the battery controller 1 via a buffer 13.
According to the embodiment, the battery controller 1, current sensor 10, voltage sensor 11, temperature sensor 12, and buffer 13 constitute a battery capacity detection system.
The battery controller 1 is provided with: an input circuit 16 for performing waveform shaping on each of data signals of a detected current I from the current sensor 10, a detected voltage V from the voltage sensor 11 and temperature T from the temperature sensor 12 to thereby obtain a predetermined signal; and a battery capacity calculating section 15 for correcting the voltage Vs in the fully charged state on the basis of the temperature T and obtaining the accurate SOC and a chargeable capacity. The battery capacity calculating section 15 takes the form of a microcomputer.
As shown in FIG. 1, the battery capacity calculating section 15 comprises a collection processing section 20, a battery voltage estimation processing section 21, an SOC calculation processing section 22, a full-charge voltage calculation processing section 23, and a chargeable capacity calculation processing section 24.
The collection processing section 20 is provided between the input circuit 16 and the battery voltage estimation processing section 21 and collects data of the current I and the voltage V from the input circuit 16 for a sampling period t0 in which a voltage drop Vf caused by activation polarization and concentration polarization of the battery 5 can be ignored. That is, the data of the current I and the data of the voltage V is read only for the predetermined time t0 and is sent to the battery voltage estimation processing section 21.
The battery voltage estimation processing section 21 collects a predetermined number of values of each of the current I and the voltage V of the battery 5 and obtains averaged data by respectively averaging the predetermined number of values. When a predetermined number of the averaged data is respectively collected, the correlation coefficient (r) of the averaged data is calculated, as setting the voltage and current as coordinate axes. When the correlation coefficient (r) shows a strong negative correlation, the regression line (approximation line) of the data is obtained by the method of least squares, and the estimated voltage Vn of the present battery is calculated from the approximation line Y (Y=aX+b) and the reference current Io.
The SOC calculation processing section 22 reads the estimated voltage Vn of the battery, a preset discharge end voltage Ve and a voltage Vs in a full-charge state set by the full-charge voltage calculation processing section 23 which will be described hereinafter each time the estimated voltage Vn (or Vno) is calculated by the battery voltage estimation processing section 21. The SOC calculation processing section 22 obtains the SOC by the following equation and displays the SOC on a display (not shown).
The full-charge voltage calculation processing section 23 clears a register 25 to which the voltage Vs in the full charge state is stored upon turn-on of the ignition (IGN ON).
The section 23 reads the detected temperature T, calculates the voltage Vs in the full charge state by substituting the temperature T for a predetermined equation, and sets the obtained voltage Vs in the full charge state into the register 25.
The chargeable capacity calculation processing section 24 obtains a difference between the present SOC calculated by the SOC calculation processing section 22 and the SOC (capacity in the full charge state in which the temperature T is considered) based on the voltage Vs in the full charge state as the present chargeable capacity Ca. The chargeable capacity is sent to a charging/discharging circuit (not shown) in the converter 6 and the battery is charged.
The operation of the battery capacity detection system of the embodiment configurated as mentioned above will now be described in detail.
First, the reason of performing the correction by using the temperature T and obtaining the voltage Vs in the full charge state will be explained.
Generally, as shown in FIG. 2, main components of the equivalent circuit of a lead battery are a power source Eo, a resister R as an ohmic resistor of fast response, a capacitor C, and an activation polarization and concentration polarization Z (parallel circuit). A terminal voltage V of the battery 5 is obtained by the following equation.
where, Vf denotes a voltage drop due to an influence of the activation polarization and concentration polarization of which response is slower than the resistor R.
Eo is given by the following Nernst'"'"'s equation.
where, Ru is a gas constant (8.206×10−5(m3. atm/K·mol)), T is a temperature (K), F is the Faraday constant (9.6485×104(C/mol)), αH2SO4 is the activity of sulphuric acid and αH2O is the activity of water.
That is, the voltage drop Vf is caused by the activation polarization and the concentration polarization. When the current I and the voltage V are sampled so as to ignore Vf, V is equal to Eo at the time of RI=0 (at the time of no load). An open circuit voltage Vo (at the time of no load) at the terminal voltage V of the battery 5 is obtained.
The terminal voltage V includes R and T components and it shows that the open circuit voltage has a temperature dependent characteristic.
For example, when it is set so that the open circuit voltage at the temperature of 1 (° C.) is +0.2 (mV/° C..cell) and the open circuit voltage at the temperature of 25 (° C.) is 2.15 (V/cell), and the operating temperature range of the battery 5 is plus or minus 40° C. with respect to 25° C., a low temperature side open circuit voltage VL and a high temperature side open circuit voltage VH when the number of cells is 6 are as follows.
The relation of the temperature T and the open circuit voltage Vo is obtained as a result of the calculation. It is understood from FIG. 3 that the open circuit voltage Vo changes in accordance with a change in temperature T and is specifically expressed by the following expression.
Consequently, it is understood that when the temperature T of the battery 5 can be detected, the open circuit voltage Vo can be accurately detected.
Further, the open circuit voltage Vo is a value at the time of no load. When RI=0, Vo=Eo. When the open circuit voltage Vo is set as the voltage Vs in the full charge state, the accurate voltage Vs in the full charge state in which the temperature T is considered can be calculated by the following equation.
The operation of the battery capacity detection system of the embodiment is shown in the flowchart of FIG. 4. A program for executing a series of processes corresponding to the flowchart is stored in a ROM (not shown) in the battery capacity calculating section 15.
First, in association with the turn-on of the ignition, the series of processes is started and the full-charge voltage calculation processing section 23 clears the register 25 in which the voltage Vs in the full charge state is set (S401).
Then, the temperature T measured by the temperature sensor 12 is read (S403).
The collection processing section 20 sends the current I and voltage V sampled for the time t0 in which Vf can be ignored to the battery voltage estimation processing section 21. The battery voltage estimation processing section 21 collects the predetermined number of values of each of the current I and voltage V and respectively averages the predetermined number of values. When the predetermined number of averaged data is respectively collected, the correlation coefficient (r) of the data is calculated. When the correlation coefficient (r) shows a strong negative correlation, the approximation line of the data is calculated by the method of least squares. From the approximation line Y (Y=aX+b) and the reference current Io, the estimated voltage Vn of the present battery is obtained (S405). That is, the estimated voltage Vn corresponding to the open circuit voltage is obtained.
The details of the calculation of the estimated voltage Vn is specifically described in Japanese Unexamined Patent Application Laid-Open Publication Nos. 8-62310 and 8-240647 and also Japanese Patent Application Nos. 11-147201 and 11-147202.
The full-charge voltage calculation processing section 23 substitutes the temperature T of the battery 5 obtained in step S403 for the following equation to thereby calculate, that is, substantially correct the voltage Vs in the full charge state (S407).
For example, when the temperature T is −10° C., T is substituted as follows.
The full-charge voltage calculation processing section 23 sets the voltage Vs in the full charge state in which the temperature obtained in step S407 is considered into the register 25 (S409).
Subsequently, in association with the setting, the SOC calculation processing section 22 calculates the present SOC and the chargeable capacity calculation processing section 24 calculates the present chargeable capacity Ca (S411).
The SOC calculation processing section 22 calculates the SOC by the following equation by using the estimated voltage Vn of the battery 5, the preset discharge end voltage Ve and the voltage Vs in the full charge state in which the temperature T of the battery 5 is considered (S411). After that, the program is returned to the first processing step.
The chargeable capacity calculation processing section 24 calculates the difference between the present SOC calculated by the SOC calculation processing section 22 and the SOC based on the voltage Vs in the full charge state (SOC when the battery is fully charged in which the temperature T is considered) as the present chargeable capacity Ca. The chargeable capacity Ca is sent to the charging/discharging circuit (not shown) in the converter 6. When there is an allowance in the chargeable capacity Ca, the converter 6 charges the battery 5 via the charging/discharging circuit.
As described above, in the embodiment, an influence by the temperature of the battery is considered and the chargeable capacity at the temperature is calculated. Consequently, the calculated chargeable capacity becomes more accurate.
Even if the battery is charged when the temperature is low and the chargeable capacity is less than 100%, since the chargeable capacity is a reliable value, overcharge is effectively suppressed.
Although the temperature sensor is provided near the battery 5 and the voltage in the full charge state is calculated on the basis of the temperature in the embodiment, as shown in FIG. 5, a temperature from another sensor unit for sensing a vehicle atmosphere temperature may be used by multiplexing communication (such as CAN, SAE J1850, JEVS G104).
Obviously, the invention can be variously modified without departing from the technical idea of the invention.