Camera-based precrash detection system
First Claim
1. A method for detecting road users and obstacles as a function of camera images so as to determine their distance from an observer and to classify them, comprising the steps of:
- identifying regions within a two-dimensional camera image that is not resolved with respect to distance using a classifier designed for detecting road users and obstacles;
marking and ranging, in a subsequent step, the identified regions using a distance-measuring sensor with respect to their distance from the observer; and
subsequently type classifying the identified regions using a type classifier.
2 Assignments
0 Petitions

Accused Products

Abstract
A method and a device for detecting road users and obstacles on the basis of camera images, in order to determine their distance from the observer and to classify them. In a two-step classification, potential other parties involved in a collision are detected and identified. In so doing, in a first step, potential other parties involved in a collision are marked in the image data of a mono-image camera; their distance and relative velocity are subsequently determined so that endangering objects can be selectively subjected to a type classification in real time. By breaking down the detection activity into a plurality of steps, the real-time capability of the system is also rendered possible using conventional sensors already present in the vehicle.
153 Citations
Enhanced vision road detection system | ||
Patent #
US 7,898,400 B2
Filed 04/15/2008
|
Current Assignee
Veoneer US Inc.
|
Original Assignee
Autoliv ASP Incorporated
|
VEHICLE INFORMATION DISPLAY | ||
Patent #
US 20110109746A1
Filed 01/14/2011
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Vehicle information display | ||
Patent #
US 8,019,505 B2
Filed 01/14/2011
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
VEHICULAR INTERIOR REARVIEW MIRROR SYSTEM | ||
Patent #
US 20110181727A1
Filed 03/28/2011
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
INTERIOR REARVIEW MIRROR ASSEMBLY FOR VEHICLE | ||
Patent #
US 20110176323A1
Filed 03/30/2011
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Method and apparatus for determining a classification boundary for an object classifier | ||
Patent #
US 8,041,115 B2
Filed 11/14/2007
|
Current Assignee
Alpine Electronics Incorporated
|
Original Assignee
Alpine Electronics Incorporated
|
Vehicular interior rearview mirror system | ||
Patent #
US 8,047,667 B2
Filed 03/28/2011
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Vision system for deploying safety systems | ||
Patent #
US 8,060,280 B2
Filed 04/15/2008
|
Current Assignee
Veoneer US Inc.
|
Original Assignee
Autoliv ASP Incorporated
|
Method and apparatus for object tracking prior to imminent collision detection | ||
Patent #
US 7,660,438 B2
Filed 01/22/2009
|
Current Assignee
SRI International Inc.
|
Original Assignee
Sarnoff Corporation
|
Method and apparatus for object tracking prior to imminent collision detection | ||
Patent #
US 7,486,803 B2
Filed 12/15/2004
|
Current Assignee
SRI International Inc.
|
Original Assignee
Sarnoff Corporation
|
Method and Apparatus for Object Tracking Prior to Imminent Collision Detection | ||
Patent #
US 20090195371A1
Filed 01/22/2009
|
Current Assignee
SRI International Inc.
|
Original Assignee
Sarnoff Corporation
|
ENHANCED VISION ROAD DETECTION SYSTEM | ||
Patent #
US 20090256692A1
Filed 04/15/2008
|
Current Assignee
Veoneer US Inc.
|
Original Assignee
Autoliv ASP Incorporated
|
VISION SYSTEM FOR DEPLOYING SAFETY SYSTEMS | ||
Patent #
US 20090259368A1
Filed 04/15/2008
|
Current Assignee
Veoneer US Inc.
|
Original Assignee
Autoliv ASP Incorporated
|
METHOD AND APPARATUS FOR DETERMINING A CLASSIFICATION BOUNDARY FOR AN OBJECT CLASSIFIER | ||
Patent #
US 20080118161A1
Filed 11/14/2007
|
Current Assignee
Alpine Electronics Incorporated
|
Original Assignee
Alpine Electronics Incorporated
|
Cooking method and apparatus | ||
Patent #
US 20070181008A1
Filed 02/05/2007
|
Current Assignee
ConAgra Foods
|
Original Assignee
ConAgra Foods
|
Camera arrangement | ||
Patent #
US 20060050927A1
Filed 12/19/2002
|
Current Assignee
Autoliv AB
|
Original Assignee
Autoliv AB
|
Pre-crash sensing system and method for detecting and classifying objects | ||
Patent #
US 7,069,130 B2
Filed 12/09/2003
|
Current Assignee
Ford Global Technologies LLC
|
Original Assignee
Ford Global Technologies LLC
|
Method and apparatus for object tracking prior to imminent collision detection | ||
Patent #
US 20050131646A1
Filed 12/15/2004
|
Current Assignee
SRI International Inc.
|
Original Assignee
Sarnoff Corporation
|
PRE-CRASH SENSING SYSTEM AND METHOD FOR DETECTING AND CLASSIFYING OBJECTS | ||
Patent #
US 20050125126A1
Filed 12/09/2003
|
Current Assignee
Ford Global Technologies LLC
|
Original Assignee
Ford Global Technologies LLC
|
Interior rearview mirror system for a vehicle | ||
Patent #
US 8,100,568 B2
Filed 03/24/2011
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Vehicle information display | ||
Patent #
US 8,095,260 B1
Filed 09/12/2011
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Vehicular video mirror system | ||
Patent #
US 8,121,787 B2
Filed 08/15/2011
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Vehicular having a camera, a rain sensor and a single-ball interior electrochromic mirror assembly attached at an attachment element | ||
Patent #
US 8,134,117 B2
Filed 07/27/2011
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Interior rearview mirror assembly for vehicle | ||
Patent #
US 8,162,493 B2
Filed 03/30/2011
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Vehicle information display system | ||
Patent #
US 8,170,748 B1
Filed 01/06/2012
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Vehicular interior rearview mirror system | ||
Patent #
US 8,177,376 B2
Filed 10/28/2011
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
ADAPTATION FOR CLEAR PATH DETECTION USING RELIABLE LOCAL MODEL UPDATING | ||
Patent #
US 20120147189A1
Filed 12/08/2010
|
Current Assignee
GM Global Technology Operations LLC
|
Original Assignee
GM Global Technology Operations LLC
|
Interior rearview mirror assembly for a vehicle | ||
Patent #
US 8,267,559 B2
Filed 01/20/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Vehicular video mirror system | ||
Patent #
US 8,271,187 B2
Filed 02/17/2012
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Mirror reflective element sub-assembly for exterior rearview mirror of a vehicle | ||
Patent #
US 8,282,253 B2
Filed 12/22/2011
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Donnelly Corporation
|
Interior rearview mirror system with forwardly-viewing camera and a control | ||
Patent #
US 8,288,711 B2
Filed 03/02/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Vehicle rearview mirror system | ||
Patent #
US 8,304,711 B2
Filed 01/20/2012
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Interior rearview mirror system | ||
Patent #
US 8,325,028 B2
Filed 01/06/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Vehicle vision system with night vision function | ||
Patent #
US 8,355,839 B2
Filed 04/24/2012
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Rearview mirror assembly for vehicle | ||
Patent #
US 8,379,289 B2
Filed 05/14/2012
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
FORWARD FACING SENSING SYSTEM FOR VEHICLE | ||
Patent #
US 20130044021A1
Filed 10/22/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Interior rearview mirror system for a vehicle | ||
Patent #
US 8,400,704 B2
Filed 07/23/2012
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Rear vision system for a vehicle | ||
Patent #
US 8,427,288 B2
Filed 10/21/2011
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Vehicular interior rearview mirror system | ||
Patent #
US 8,465,162 B2
Filed 05/14/2012
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Interior rearview mirror system | ||
Patent #
US 8,465,163 B2
Filed 10/08/2012
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Rearview mirror element assembly for vehicle | ||
Patent #
US 8,503,062 B2
Filed 08/27/2012
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Donnelly Corporation
|
Interior rearview mirror system | ||
Patent #
US 8,508,383 B2
Filed 03/26/2012
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Magna Mirrors of America Incorporated
|
Driver assist system for vehicle | ||
Patent #
US 8,543,330 B2
Filed 09/17/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Electrochromic mirror reflective element for vehicular rearview mirror assembly | ||
Patent #
US 8,559,093 B2
Filed 04/20/2012
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Information display system for a vehicle | ||
Patent #
US 8,577,549 B2
Filed 01/14/2013
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Imaging system for vehicle | ||
Patent #
US 8,593,521 B2
Filed 11/30/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular vision system | ||
Patent #
US 8,599,001 B2
Filed 11/19/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Automatic compass system for vehicle | ||
Patent #
US 8,608,327 B2
Filed 06/17/2013
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Variable transmission window | ||
Patent #
US 8,610,992 B2
Filed 10/22/2012
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Forward facing sensing system for vehicle | ||
Patent #
US 8,614,640 B2
Filed 10/22/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assistance system for vehicle | ||
Patent #
US 8,636,393 B2
Filed 05/06/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assistance system for a vehicle | ||
Patent #
US 8,637,801 B2
Filed 07/08/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Video mirror system for a vehicle | ||
Patent #
US 8,653,959 B2
Filed 12/02/2011
|
Current Assignee
Niall R. Lynam, John O. Lindahl, Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Rearview mirror assembly for vehicle | ||
Patent #
US 8,654,433 B2
Filed 08/05/2013
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Magna Mirrors of America Incorporated
|
Vision system for vehicle | ||
Patent #
US 8,665,079 B2
Filed 10/15/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assist system for vehicle | ||
Patent #
US 8,676,491 B2
Filed 09/23/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
FORWARD FACING SENSING SYSTEM FOR VEHICLE | ||
Patent #
US 20140104095A1
Filed 12/16/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Method of manufacturing a reflective element for a vehicular rearview mirror assembly | ||
Patent #
US 8,705,161 B2
Filed 02/14/2013
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Adaptation for clear path detection using reliable local model updating | ||
Patent #
US 8,773,535 B2
Filed 12/08/2010
|
Current Assignee
GM Global Technology Operations LLC
|
Original Assignee
GM Global Technology Operations LLC
|
Interior rearview mirror system | ||
Patent #
US 8,779,910 B2
Filed 11/07/2011
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Exterior rearview mirror assembly | ||
Patent #
US 8,797,627 B2
Filed 12/17/2012
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Driver assistance system for vehicle | ||
Patent #
US 8,818,042 B2
Filed 11/18/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Mirror reflective element sub-assembly for exterior rearview mirror of a vehicle | ||
Patent #
US 8,833,987 B2
Filed 10/08/2012
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Donnelly Corporation
|
Automatic vehicle exterior light control | ||
Patent #
US 8,842,176 B2
Filed 01/15/2010
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Automotive communication system | ||
Patent #
US 8,884,788 B2
Filed 08/30/2013
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Vehicular video mirror system | ||
Patent #
US 8,908,039 B2
Filed 06/04/2012
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Vehicular vision system | ||
Patent #
US 8,917,169 B2
Filed 12/02/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assistance system for vehicle | ||
Patent #
US 8,977,008 B2
Filed 07/08/2013
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Driver assistance system for a vehicle | ||
Patent #
US 8,993,951 B2
Filed 07/16/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision system for vehicle | ||
Patent #
US 9,008,369 B2
Filed 08/25/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assist system for vehicle | ||
Patent #
US 9,014,966 B2
Filed 03/14/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Mirror reflective element sub-assembly for exterior rearview mirror of a vehicle | ||
Patent #
US 9,045,091 B2
Filed 09/15/2014
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Donnelly Corporation
|
Exterior rearview mirror assembly | ||
Patent #
US 9,073,491 B2
Filed 08/04/2014
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Forward facing sensing system for vehicle | ||
Patent #
US 9,140,789 B2
Filed 12/16/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision system for vehicle | ||
Patent #
US 9,171,217 B2
Filed 03/03/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision system for vehicle | ||
Patent #
US 9,191,634 B2
Filed 04/03/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Automotive communication system | ||
Patent #
US 9,221,399 B2
Filed 11/07/2014
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Magna Mirrors of America Incorporated
|
Forward facing sensing system for vehicle | ||
Patent #
US 9,244,165 B1
Filed 09/21/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Interior rearview mirror system for vehicle | ||
Patent #
US 9,278,654 B2
Filed 04/20/2012
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Vehicle vision system with lens pollution detection | ||
Patent #
US 9,319,637 B2
Filed 03/27/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assist system for vehicle | ||
Patent #
US 9,315,151 B2
Filed 04/03/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Forward facing sensing system for vehicle | ||
Patent #
US 9,335,411 B1
Filed 01/25/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Trailer hitching aid system for vehicle | ||
Patent #
US 9,352,623 B2
Filed 02/17/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Accessory system of a vehicle | ||
Patent #
US 9,376,061 B2
Filed 04/23/2015
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Vision system for vehicle | ||
Patent #
US 9,428,192 B2
Filed 11/16/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
FORWARD FACING SENSING SYSTEM FOR VEHICLE | ||
Patent #
US 20160252612A1
Filed 05/09/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system | ||
Patent #
US 9,436,880 B2
Filed 01/13/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with dirt detection | ||
Patent #
US 9,445,057 B2
Filed 02/19/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision system for vehicle | ||
Patent #
US 9,440,535 B2
Filed 01/27/2014
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Automotive communication system | ||
Patent #
US 9,481,306 B2
Filed 12/16/2015
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Forward facing sensing system for vehicle | ||
Patent #
US 9,507,021 B2
Filed 05/09/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Exterior rearview mirror assembly | ||
Patent #
US 9,545,883 B2
Filed 07/06/2015
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Driver assistance system for vehicle | ||
Patent #
US 9,555,803 B2
Filed 05/16/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Display mirror assembly | ||
Patent #
US 9,598,018 B2
Filed 03/10/2014
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Vision system for vehicle | ||
Patent #
US 9,609,289 B2
Filed 08/29/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Systems and methods for multi-dimensional object detection | ||
Patent #
US 9,633,436 B2
Filed 07/18/2013
|
Current Assignee
Infosys Limited
|
Original Assignee
Infosys Limited
|
Vision system for vehicle | ||
Patent #
US 9,643,605 B2
Filed 10/26/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Trailer hitching aid system for vehicle | ||
Patent #
US 9,694,749 B2
Filed 05/23/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Mirror reflective element sub-assembly for exterior rearview mirror of a vehicle | ||
Patent #
US 9,694,753 B2
Filed 06/01/2015
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Magna Mirrors of America Incorporated
|
Vehicle camera lens dirt protection via air flow | ||
Patent #
US 9,707,896 B2
Filed 10/14/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision system for vehicle | ||
Patent #
US 9,736,435 B2
Filed 03/20/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Mirror reflective element sub-assembly for exterior rearview mirror of a vehicle | ||
Patent #
US 9,758,102 B1
Filed 06/30/2017
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Magna Mirrors of America Incorporated
|
Vehicular video mirror system | ||
Patent #
US 9,783,114 B2
Filed 12/05/2014
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Driver assist system for vehicle | ||
Patent #
US 9,809,168 B2
Filed 04/18/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision system for vehicle | ||
Patent #
US 9,809,171 B2
Filed 04/23/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular control system using cameras and radar sensor | ||
Patent #
US 9,834,216 B2
Filed 01/24/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision system for vehicle | ||
Patent #
US 9,948,904 B2
Filed 08/14/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular control system | ||
Patent #
US 10,015,452 B1
Filed 04/16/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with lens pollution detection | ||
Patent #
US 10,021,278 B2
Filed 04/18/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Rearview mirror assembly for vehicle | ||
Patent #
US 10,029,616 B2
Filed 01/16/2017
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Vision system for vehicle | ||
Patent #
US 10,053,013 B2
Filed 11/06/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision system for vehicle | ||
Patent #
US 10,071,676 B2
Filed 09/12/2016
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with dirt detection | ||
Patent #
US 10,089,540 B2
Filed 09/12/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Forward facing sensing system for vehicle | ||
Patent #
US 10,107,905 B2
Filed 11/28/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular control system | ||
Patent #
US 10,110,860 B1
Filed 07/02/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular control system using cameras and radar sensor | ||
Patent #
US 10,118,618 B2
Filed 12/04/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular video mirror system | ||
Patent #
US 10,131,280 B2
Filed 10/09/2017
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Interior rearview mirror system for vehicle | ||
Patent #
US 10,144,355 B2
Filed 03/07/2016
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Mirror reflective element sub-assembly for exterior rearview mirror of a vehicle | ||
Patent #
US 10,150,417 B2
Filed 09/11/2017
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Magna Mirrors of America Incorporated
|
Display system for vehicle | ||
Patent #
US 10,175,477 B2
Filed 08/12/2013
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Magna Mirrors of America Incorporated
|
Park-aid system for vehicle | ||
Patent #
US 10,179,545 B2
Filed 11/06/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular control system | ||
Patent #
US 10,187,615 B1
Filed 10/22/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
FORWARD SENSING SYSTEM FOR VEHICLE | ||
Patent #
US 20190056493A1
Filed 10/22/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular vision system | ||
Patent #
US 10,239,457 B2
Filed 08/20/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Rear seat occupant monitoring system for vehicle | ||
Patent #
US 10,272,839 B2
Filed 06/30/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular control system | ||
Patent #
US 10,306,190 B1
Filed 01/21/2019
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular exterior rearview mirror assembly with blind spot indicator | ||
Patent #
US 10,308,186 B2
Filed 12/10/2018
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Magna Mirrors of America Incorporated
|
Vehicular control system using cameras and radar sensor | ||
Patent #
US 10,351,135 B2
Filed 11/01/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular exterior electrically variable reflectance mirror reflective element assembly | ||
Patent #
US 10,363,875 B2
Filed 07/23/2018
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Vehicle vision system with lens pollution detection | ||
Patent #
US 10,397,451 B2
Filed 07/09/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with multi-paned view | ||
Patent #
US 10,457,209 B2
Filed 03/28/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular control system | ||
Patent #
US 10,462,426 B2
Filed 05/16/2019
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assistance system for vehicle | ||
Patent #
US 10,623,704 B2
Filed 03/09/2015
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Vehicular exterior electrically variable reflectance mirror reflective element assembly | ||
Patent #
US 10,661,716 B2
Filed 07/29/2019
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Forward sensing system for vehicle | ||
Patent #
US 10,670,713 B2
Filed 10/22/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular driving assist system using forward-viewing camera | ||
Patent #
US 10,683,008 B2
Filed 07/15/2019
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular control system with traffic lane detection | ||
Patent #
US 10,735,695 B2
Filed 10/28/2019
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Adaptive forward lighting system for vehicle comprising a control that adjusts the headlamp beam in response to processing of image data captured by a camera | ||
Patent #
US 10,787,116 B2
Filed 09/10/2018
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Forward sensing system for vehicle | ||
Patent #
US 10,877,147 B2
Filed 06/01/2020
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Method for determining range of vision | ||
Patent #
US 6,362,773 B1
Filed 06/26/2000
|
Current Assignee
Robert Bosch GmbH
|
Original Assignee
Robert Bosch GmbH
|
System to aid a driver to determine whether to change lanes | ||
Patent #
US 6,424,273 B1
Filed 03/30/2001
|
Current Assignee
Koninklijke Philips N.V.
|
Original Assignee
Koninklijke Philips N.V.
|
Vehicular blind spot vision system | ||
Patent #
US 6,424,272 B1
Filed 03/30/2001
|
Current Assignee
Koninklijke Philips N.V.
|
Original Assignee
Koninklijke Philips N.V.
|
Run environment recognizing apparatus | ||
Patent #
US 6,191,704 B1
Filed 12/19/1997
|
Current Assignee
Hitachi America Limited
|
Original Assignee
Hitachi Ltd.
|
Device for acquiring lane path indicative data | ||
Patent #
US 6,292,752 B1
Filed 11/06/1998
|
Current Assignee
21ST CENTURY GARAGE LLC
|
Original Assignee
Daimler Chrysler Company LLC
|
Moving subject recognizing system for automotive vehicle | ||
Patent #
US 6,035,053 A
Filed 09/30/1997
|
Current Assignee
Mazda Motor Corporation
|
Original Assignee
Mazda Motor Corporation
|
Vehicle running control apparatus and vehicle running control method | ||
Patent #
US 6,134,497 A
Filed 06/18/1998
|
Current Assignee
Mitsubishi Jidosha Kogyo Kabushiki Kaisha
|
Original Assignee
Mitsubishi Jidosha Kogyo Kabushiki Kaisha
|
Method and apparatus for machine vision classification and tracking | ||
Patent #
US 5,761,326 A
Filed 04/27/1995
|
Current Assignee
3M Company
|
Original Assignee
3M Company
|
Method and apparatus for monitoring the surroundings of a vehicle and for detecting failure of the monitoring apparatus | ||
Patent #
US 5,617,085 A
Filed 05/30/1996
|
Current Assignee
Mitsubishi Electric Corporation
|
Original Assignee
Mitsubishi Electric Corporation
|
Distance measurement apparatus for vehicle | ||
Patent #
US 5,699,149 A
Filed 06/09/1995
|
Current Assignee
Hitachi America Limited
|
Original Assignee
Hitachi America Limited
|
Vehicle crash predictive and evasive operation system by neural networks | ||
Patent #
US 5,541,590 A
Filed 01/19/1995
|
Current Assignee
Takata Corporation
|
Original Assignee
Takata Corporation
|
Automobile apparatus for road lane and vehicle ahead detection and ranging | ||
Patent #
US 5,555,312 A
Filed 04/28/1994
|
Current Assignee
Fujitsu Ten Limited, Fujitsu Limited
|
Original Assignee
Fujitsu Limited
|
System for monitoring condition outside vehicle using imaged picture by a plurality of television cameras | ||
Patent #
US 5,410,346 A
Filed 03/15/1993
|
Current Assignee
Fuji Heavy Industries Limited
|
Original Assignee
Fuji Heavy Industries Limited
|
Vehicle-surroundings monitoring apparatus | ||
Patent #
US 5,424,952 A
Filed 03/15/1994
|
Current Assignee
Mitsubishi Electric Corporation
|
Original Assignee
Mitsubishi Electric Corporation
|
19 Claims
-
1. A method for detecting road users and obstacles as a function of camera images so as to determine their distance from an observer and to classify them, comprising the steps of:
-
identifying regions within a two-dimensional camera image that is not resolved with respect to distance using a classifier designed for detecting road users and obstacles;
marking and ranging, in a subsequent step, the identified regions using a distance-measuring sensor with respect to their distance from the observer; and
subsequently type classifying the identified regions using a type classifier. - View Dependent Claims (2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15)
-
-
16. A device for detecting road users and obstacles as a function of camera images to determine their distance from an observer, and to classify them, comprising:
-
a distance-measuring sensor unit;
a mono-image camera coupled to the distance-measuring sensor unit;
a first classifying unit interposed between the sensor unit and the camera; and
a second classifying unit downstream from the sensor unit and the camera. - View Dependent Claims (17, 18, 19)
-
1 Specification
The present invention is directed to a method for detecting road users and obstacles on the basis of camera images, and to a device for detecting road users and obstacles on the basis of camera images.
By detecting an imminent collision between a road user and the vehicle of an observer at an early stage, one can improve the safety of vehicle occupants as well as of the potential other party involved in the collision. The time savings that can be gained by visually detecting and evaluating the observable region in front of the observer'"'"'s vehicle permits stepped reactions of the vehicle occupant safety systems (e.g., a gentle firing of the airbag), or makes reactions possible in the first place to protect the other party in a collision (such as raising the engine hood in the case of collision involving a pedestrian). Developments culminating in switchable crash structures have made it more important than ever to know the type of other party involved in the accident (truck, passenger car, motor cycle, pedestrian).
Current developments in precrash sensors are directed, inter alia, to the analysis of methods based on infrared lasers, ultrasound, or radar sensors. The drawbacks of these systems are due, in part, to their limited range (ultrasound, infrared laser) and to their inability to identify the other party potentially involved in a collision, along the lines of a reliable type classification (truck, passenger car, motor cycle, person). In radar-based systems, inter alia, non-metallic objects (e.g.: people or trees) are not able to be reliably detected by inexpensive sensors suited for use in vehicle applications. However, adapting an optimally stepped reaction of safety systems to imminent collisions requires reliable detection and dependable typing. Within the framework of such a stepped reaction, for example in the event of a collision with a pedestrian, active measures should be taken to ensure the pedestrian'"'"'s safety. In this connection, one can conceive of rapid changes in the vehicle body form to minimize the probability of serious head or leg injuries. However, the basic condition for activating these measures is that the safety system be able to reliably detect road users and classify them according to type (e.g.: passenger car, truck, bicycle riders, pedestrians).
Generally, methods for interpreting image scenes endeavor to not only obtain purely two-dimensional image information, but multi-dimensional scene information as well. They do so already in the first step, using a mostly costly sensor (stereo sensor or high-resolution radar or lidar). In order to detect objects, these methods are based, however, on models, above all with respect to the position and orientation of potential targets, as well as with respect to a predefined, fixed geometry of the orientation to the sensor and surroundings. In practice, it is often ascertained, however, that these models and assumptions frequently do not conform with actual conditions, so that misinterpretations result.
An object of the present invention is to devise a method and a suitable device which will make it possible to detect road users on the basis of camera images, to determine their distance from the observer, and to classify the road users.
The present invention provides a method for detecting road users and obstacles on the basis of camera images, in order to determine their distance from the observer and to classify them, wherein a classifier designed for detecting road users and obstacles identifies regions within a two-dimensional camera image that is not resolved with respect to distance. In a subsequent step, these regions, so identified, are marked and then ranged using a distance-measuring sensor with respect to their distance from the observer. Selected regions are subsequently fed to a type classification to identify the road users or obstacles. In this case, the recording of data, organized into a plurality of steps, and object identification facilitate the use of conventional sensory technology and, at the same time, offer the potential of a real-time implementation.
The present invention also provides a device for detecting road users and obstacles on the basis of camera images, to determine their distance from the observer, and to classify them, wherein a mono-image camera 1 is coupled to a distance-measuring sensor unit 3. In each case, this coupling has an interposed or downstream classifying unit 2 and 5, respectively.
The method according to the present invention identifies regions within a camera image, in which road users or obstacles are situated. It advantageously suffices, in this context, that this camera image contains purely two-dimensional image information without any distance resolution. The identification is carried out using a classifier specially trained for the road users and obstacles to be detected. In a subsequent step, the regions so identified are then marked and ranged using a distance-measuring sensor with respect to their distance from the observer. Selected regions are subsequently fed to a type classification to precisely determine the type of road user or obstacle.
A device suited for implementing this method includes a mono-image camera, which is coupled to a distance-measuring sensor unit. In each case, this coupling has an interposed or downstream classifying unit.
In one advantageous embodiment of the device, the downstream classifying unit used for classifying types has an upstream selection unit connected in incoming circuit thereto, with whose assistance the number of regions to be classified can be controlled.
It is also conceivable, in another advantageous embodiment of the device according to the present invention, for selection unit 4 to be omitted and, basically, for all data 20 and 30 to be fed directly to classifying unit 5.
The method according to the present invention can be devised quite advantageously to identify road users and obstacles through the use of a hyperpermutation network within the framework of classifying unit 2.
A network of this kind is able to localize regions belonging to a specific class (in this case road users and obstacles), at a high speed and on the basis of pixels, within image data 10. The advantage of using simple, two-dimensional image information is not only apparent in the method'"'"'s suitability for using a simple, inexpensive camera, but, in particular, also in the feasibility of using powerful classification algorithms under real-time conditions to analyze the entire image information. Since image information 10 supplied by a mono-image camera 1 is quite simple, it is possible, in contrast to conventional methods that mostly work on very complex data, to include every single image pixel in the classification.
Within classifying unit 2, an algorithm, advantageously a box (boxcar-averaging) algorithm adapted to this task follows the actual classifier (for example the hyperpermutation network). This box algorithm combines and marks related regions of interest ROI, so that they can be fed for further processing.
Within the framework of this further processing, the regions belonging to this ROI are marked and ranged using a distance-measuring sensor 3, with respect to their distance from the observer. Radar systems or stereo camera systems are advantageously suited for this. Since the data acquired by these sensors are utilized purely for estimating distances and not for classifying types of road users or obstacles, there is no need to equip these sensors with extreme angular resolutions or with robust models requiring substantial computational outlay. Thus, one can preferably revert to using sensors which are already present in the vehicle and mainly geared towards other applications.
It is also conceivable, however, in another advantageous embodiment of the method according to the present invention, for distances to be estimated in the area of the ROI using a mono-image camera, in cooperation with a complex image analysis. Since, in this connection, only individual segments (ROI) of the entire image information need to be processed, large-volume computational work can be performed in real time using powerful processors. It would be especially beneficial, in this context, if this information could be directly obtained in a second processing step from image data 10 already supplied by mono-image camera 1. The system can also be implemented without the use of an additional distance-measuring sensor 3.
In the method of the present invention, the information obtained by repeatedly measuring the distance of road users or obstacles from the user is advantageously used to determine the relative velocity of these objects in relation to the observer. It is of particular benefit for distance-measuring sensor 3 to not only provide distance information, but velocity information as well (e.g.: double radar). This would enable the indirect velocity estimation to be omitted from the sequence of distance measurements.
The distance and velocity information 30 is fed, together with image information 10, to a selection unit 4. Based on its default settings, this selection unit then decides which of the image data are to be supplied to a type classification within a downstream classifying unit 5. One can conceive of selection unit 4 being configured to basically supply all image data belonging to ROI to a type classification. However, one can also conceive of only those image data being transmitted which belong to the ROI having assigned road users or obstacles which meet specific criteria. In the process, the existing potential for danger is to be considered; thus, for example, the size of objects or the velocity at which they move toward the observer, or also their relative velocity in general (for example, moving or stationary objects).
For the actual type classification within classifying unit 5 which serves the purpose of precisely defining the type of road user or obstacle, one can fall back on classification algorithms specially trained for such objects. Advantageously suited for this are neural networks, such as a radial-basis function classifier or a support-vector machine.
The method and device of the present invention are superbly suited for the early detection and subsequent assessment of accident situations (precrash detection).