Road monitoring method for a vehicle and a system thereof
First Claim
1. A road monitoring method for a vehicle using a camera, comprising:
- receiving a picture signal from said camera;
detecting a target from said picture signal;
calculating a horizontally estimated distance from said vehicle to said target;
calculating variables including a vertical angle of said target on a circumference and a curvature radius of said circumference; and
calculating an actual distance from said vehicle to said target based on said vertical angle and said curvature radius.
1 Assignment
0 Petitions

Accused Products

Abstract
In order to measure an actual distance from a vehicle to a target, the target is detected from a picture signal generated by a camera mounted on a vehicle, a horizontally estimated distance of the target is calculated, variables including a vertical angle of the target on a circumference and a curvature radius of the circumference are calculated, and then the actual distance is calculated based on the vertical angle and the curvature radius.
135 Citations
VEHICLE INFORMATION DISPLAY | ||
Patent #
US 20110109746A1
Filed 01/14/2011
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Vehicle information display | ||
Patent #
US 8,019,505 B2
Filed 01/14/2011
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
VEHICULAR INTERIOR REARVIEW MIRROR SYSTEM | ||
Patent #
US 20110181727A1
Filed 03/28/2011
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Automatic signaling system for vehicles | ||
Patent #
US 7,986,223 B2
Filed 01/26/2009
|
Current Assignee
Autosignal LLC
|
Original Assignee
Anita Au, Gerald Chan
|
INTERIOR REARVIEW MIRROR ASSEMBLY FOR VEHICLE | ||
Patent #
US 20110176323A1
Filed 03/30/2011
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Vehicular interior rearview mirror system | ||
Patent #
US 8,047,667 B2
Filed 03/28/2011
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Automatic signaling systems for vehicles | ||
Patent #
US 7,482,916 B2
Filed 01/28/2005
|
Current Assignee
Autosignal LLC
|
Original Assignee
Anita Au, Gerald Chan
|
On-vehicle image processing apparatus | ||
Patent #
US 20090028388A1
Filed 07/22/2008
|
Current Assignee
Renesas Electronics Corporation
|
Original Assignee
NEC Electronics Corporation
|
AUTOMATIC SIGNALING SYSTEM FOR VEHICLES | ||
Patent #
US 20090189756A1
Filed 01/26/2009
|
Current Assignee
Autosignal LLC
|
Original Assignee
Gerald Chan
|
Measuring distance using perspective | ||
Patent #
US 7,372,550 B2
Filed 10/05/2005
|
Current Assignee
Libre Holdings Incorporated
|
Original Assignee
Hewlett-Packard Development Company L.P.
|
Measuring distance using perspective | ||
Patent #
US 20070076187A1
Filed 10/05/2005
|
Current Assignee
Libre Holdings Incorporated
|
Original Assignee
Hewlett-Packard Development Company L.P.
|
HAND-HELD DEVICE WITH CHARACTER INPUT ROTARY WHEEL | ||
Patent #
US 20070195071A1
Filed 11/22/2006
|
Current Assignee
Hon Hai Precision Industry Co. Ltd.
|
Original Assignee
Hon Hai Precision Industry Co. Ltd.
|
Drive control system for automotive vehicle | ||
Patent #
US 20060161331A1
Filed 01/06/2006
|
Current Assignee
DENSO Corporation
|
Original Assignee
DENSO Corporation
|
Interior rearview mirror system for a vehicle | ||
Patent #
US 8,100,568 B2
Filed 03/24/2011
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Vehicle information display | ||
Patent #
US 8,095,260 B1
Filed 09/12/2011
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
On-vehicle image processing apparatus | ||
Patent #
US 8,116,523 B2
Filed 07/22/2008
|
Current Assignee
Renesas Electronics Corporation
|
Original Assignee
Renesas Electronics Corporation
|
Vehicular video mirror system | ||
Patent #
US 8,121,787 B2
Filed 08/15/2011
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Vehicular having a camera, a rain sensor and a single-ball interior electrochromic mirror assembly attached at an attachment element | ||
Patent #
US 8,134,117 B2
Filed 07/27/2011
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Interior rearview mirror assembly for vehicle | ||
Patent #
US 8,162,493 B2
Filed 03/30/2011
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Vehicle information display system | ||
Patent #
US 8,170,748 B1
Filed 01/06/2012
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Vehicular interior rearview mirror system | ||
Patent #
US 8,177,376 B2
Filed 10/28/2011
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Interior rearview mirror assembly for a vehicle | ||
Patent #
US 8,267,559 B2
Filed 01/20/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Vehicular video mirror system | ||
Patent #
US 8,271,187 B2
Filed 02/17/2012
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Mirror reflective element sub-assembly for exterior rearview mirror of a vehicle | ||
Patent #
US 8,282,253 B2
Filed 12/22/2011
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Donnelly Corporation
|
Interior rearview mirror system with forwardly-viewing camera and a control | ||
Patent #
US 8,288,711 B2
Filed 03/02/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Vehicle rearview mirror system | ||
Patent #
US 8,304,711 B2
Filed 01/20/2012
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Interior rearview mirror system | ||
Patent #
US 8,325,028 B2
Filed 01/06/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Vehicle vision system with night vision function | ||
Patent #
US 8,355,839 B2
Filed 04/24/2012
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Automatic signaling system for vehicles | ||
Patent #
US 8,378,805 B2
Filed 07/26/2011
|
Current Assignee
Autosignal LLC
|
Original Assignee
Anita Au, Gerald Chan
|
Rearview mirror assembly for vehicle | ||
Patent #
US 8,379,289 B2
Filed 05/14/2012
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Interior rearview mirror system for a vehicle | ||
Patent #
US 8,400,704 B2
Filed 07/23/2012
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Rear vision system for a vehicle | ||
Patent #
US 8,427,288 B2
Filed 10/21/2011
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Vehicular interior rearview mirror system | ||
Patent #
US 8,465,162 B2
Filed 05/14/2012
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Interior rearview mirror system | ||
Patent #
US 8,465,163 B2
Filed 10/08/2012
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Rearview mirror element assembly for vehicle | ||
Patent #
US 8,503,062 B2
Filed 08/27/2012
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Donnelly Corporation
|
Interior rearview mirror system | ||
Patent #
US 8,508,383 B2
Filed 03/26/2012
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Magna Mirrors of America Incorporated
|
Driver assist system for vehicle | ||
Patent #
US 8,543,330 B2
Filed 09/17/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Electrochromic mirror reflective element for vehicular rearview mirror assembly | ||
Patent #
US 8,559,093 B2
Filed 04/20/2012
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Information display system for a vehicle | ||
Patent #
US 8,577,549 B2
Filed 01/14/2013
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Imaging system for vehicle | ||
Patent #
US 8,593,521 B2
Filed 11/30/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular vision system | ||
Patent #
US 8,599,001 B2
Filed 11/19/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Automatic compass system for vehicle | ||
Patent #
US 8,608,327 B2
Filed 06/17/2013
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Variable transmission window | ||
Patent #
US 8,610,992 B2
Filed 10/22/2012
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Driver assistance system for vehicle | ||
Patent #
US 8,636,393 B2
Filed 05/06/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assistance system for a vehicle | ||
Patent #
US 8,637,801 B2
Filed 07/08/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Video mirror system for a vehicle | ||
Patent #
US 8,653,959 B2
Filed 12/02/2011
|
Current Assignee
Niall R. Lynam, John O. Lindahl, Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Rearview mirror assembly for vehicle | ||
Patent #
US 8,654,433 B2
Filed 08/05/2013
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Magna Mirrors of America Incorporated
|
Vision system for vehicle | ||
Patent #
US 8,665,079 B2
Filed 10/15/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assist system for vehicle | ||
Patent #
US 8,676,491 B2
Filed 09/23/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Method of manufacturing a reflective element for a vehicular rearview mirror assembly | ||
Patent #
US 8,705,161 B2
Filed 02/14/2013
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Interior rearview mirror system | ||
Patent #
US 8,779,910 B2
Filed 11/07/2011
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Exterior rearview mirror assembly | ||
Patent #
US 8,797,627 B2
Filed 12/17/2012
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Driver assistance system for vehicle | ||
Patent #
US 8,818,042 B2
Filed 11/18/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Mirror reflective element sub-assembly for exterior rearview mirror of a vehicle | ||
Patent #
US 8,833,987 B2
Filed 10/08/2012
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Donnelly Corporation
|
Automatic vehicle exterior light control | ||
Patent #
US 8,842,176 B2
Filed 01/15/2010
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Automotive communication system | ||
Patent #
US 8,884,788 B2
Filed 08/30/2013
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Vehicular video mirror system | ||
Patent #
US 8,908,039 B2
Filed 06/04/2012
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Vehicular vision system | ||
Patent #
US 8,917,169 B2
Filed 12/02/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assistance system for vehicle | ||
Patent #
US 8,977,008 B2
Filed 07/08/2013
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Driver assistance system for a vehicle | ||
Patent #
US 8,993,951 B2
Filed 07/16/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision system for vehicle | ||
Patent #
US 9,008,369 B2
Filed 08/25/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assist system for vehicle | ||
Patent #
US 9,014,966 B2
Filed 03/14/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Mirror reflective element sub-assembly for exterior rearview mirror of a vehicle | ||
Patent #
US 9,045,091 B2
Filed 09/15/2014
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Donnelly Corporation
|
Exterior rearview mirror assembly | ||
Patent #
US 9,073,491 B2
Filed 08/04/2014
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Vision system for vehicle | ||
Patent #
US 9,171,217 B2
Filed 03/03/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision system for vehicle | ||
Patent #
US 9,191,634 B2
Filed 04/03/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Automotive communication system | ||
Patent #
US 9,221,399 B2
Filed 11/07/2014
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Magna Mirrors of America Incorporated
|
Automatic signaling system for vehicles | ||
Patent #
US 9,248,777 B2
Filed 02/19/2013
|
Current Assignee
Autosignal LLC
|
Original Assignee
Anita Au, Gerald Chan
|
Interior rearview mirror system for vehicle | ||
Patent #
US 9,278,654 B2
Filed 04/20/2012
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Vehicle vision system with lens pollution detection | ||
Patent #
US 9,319,637 B2
Filed 03/27/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assist system for vehicle | ||
Patent #
US 9,315,151 B2
Filed 04/03/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Trailer hitching aid system for vehicle | ||
Patent #
US 9,352,623 B2
Filed 02/17/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Accessory system of a vehicle | ||
Patent #
US 9,376,061 B2
Filed 04/23/2015
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Vision system for vehicle | ||
Patent #
US 9,428,192 B2
Filed 11/16/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system | ||
Patent #
US 9,436,880 B2
Filed 01/13/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with dirt detection | ||
Patent #
US 9,445,057 B2
Filed 02/19/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision system for vehicle | ||
Patent #
US 9,440,535 B2
Filed 01/27/2014
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Automotive communication system | ||
Patent #
US 9,481,306 B2
Filed 12/16/2015
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Automatic control systems for vehicles | ||
Patent #
US 9,505,343 B2
Filed 01/28/2016
|
Current Assignee
Autosignal LLC
|
Original Assignee
Anita Au, Gerald Chan
|
Exterior rearview mirror assembly | ||
Patent #
US 9,545,883 B2
Filed 07/06/2015
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Driver assistance system for vehicle | ||
Patent #
US 9,555,803 B2
Filed 05/16/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Display mirror assembly | ||
Patent #
US 9,598,018 B2
Filed 03/10/2014
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Vision system for vehicle | ||
Patent #
US 9,609,289 B2
Filed 08/29/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision system for vehicle | ||
Patent #
US 9,643,605 B2
Filed 10/26/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Trailer hitching aid system for vehicle | ||
Patent #
US 9,694,749 B2
Filed 05/23/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Mirror reflective element sub-assembly for exterior rearview mirror of a vehicle | ||
Patent #
US 9,694,753 B2
Filed 06/01/2015
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Magna Mirrors of America Incorporated
|
Vehicle camera lens dirt protection via air flow | ||
Patent #
US 9,707,896 B2
Filed 10/14/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision system for vehicle | ||
Patent #
US 9,736,435 B2
Filed 03/20/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Mirror reflective element sub-assembly for exterior rearview mirror of a vehicle | ||
Patent #
US 9,758,102 B1
Filed 06/30/2017
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Magna Mirrors of America Incorporated
|
Vehicular video mirror system | ||
Patent #
US 9,783,114 B2
Filed 12/05/2014
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Driver assist system for vehicle | ||
Patent #
US 9,809,168 B2
Filed 04/18/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision system for vehicle | ||
Patent #
US 9,809,171 B2
Filed 04/23/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular control system using cameras and radar sensor | ||
Patent #
US 9,834,216 B2
Filed 01/24/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Road condition detection system | ||
Patent #
US 9,863,928 B1
Filed 03/20/2014
|
Current Assignee
United Parcel Service Of America Incorporated
|
Original Assignee
United Parcel Service Of America Incorporated
|
Vision system for vehicle | ||
Patent #
US 9,948,904 B2
Filed 08/14/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular control system | ||
Patent #
US 10,015,452 B1
Filed 04/16/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with lens pollution detection | ||
Patent #
US 10,021,278 B2
Filed 04/18/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Rearview mirror assembly for vehicle | ||
Patent #
US 10,029,616 B2
Filed 01/16/2017
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Automatic control systems for vehicles | ||
Patent #
US 10,046,696 B2
Filed 11/10/2016
|
Current Assignee
Autosignal LLC
|
Original Assignee
Anita Au, Gerald Chan
|
Vision system for vehicle | ||
Patent #
US 10,053,013 B2
Filed 11/06/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision system for vehicle | ||
Patent #
US 10,071,676 B2
Filed 09/12/2016
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with dirt detection | ||
Patent #
US 10,089,540 B2
Filed 09/12/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular control system | ||
Patent #
US 10,110,860 B1
Filed 07/02/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular control system using cameras and radar sensor | ||
Patent #
US 10,118,618 B2
Filed 12/04/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular video mirror system | ||
Patent #
US 10,131,280 B2
Filed 10/09/2017
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Interior rearview mirror system for vehicle | ||
Patent #
US 10,144,355 B2
Filed 03/07/2016
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Mirror reflective element sub-assembly for exterior rearview mirror of a vehicle | ||
Patent #
US 10,150,417 B2
Filed 09/11/2017
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Magna Mirrors of America Incorporated
|
Display system for vehicle | ||
Patent #
US 10,175,477 B2
Filed 08/12/2013
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Magna Mirrors of America Incorporated
|
Park-aid system for vehicle | ||
Patent #
US 10,179,545 B2
Filed 11/06/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular control system | ||
Patent #
US 10,187,615 B1
Filed 10/22/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular vision system | ||
Patent #
US 10,239,457 B2
Filed 08/20/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Rear seat occupant monitoring system for vehicle | ||
Patent #
US 10,272,839 B2
Filed 06/30/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Automatic control systems for vehicles | ||
Patent #
US 10,293,743 B2
Filed 08/10/2018
|
Current Assignee
Autosignal LLC
|
Original Assignee
Anita Au, Gerald Chan
|
Vehicular control system | ||
Patent #
US 10,306,190 B1
Filed 01/21/2019
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular exterior rearview mirror assembly with blind spot indicator | ||
Patent #
US 10,308,186 B2
Filed 12/10/2018
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Magna Mirrors of America Incorporated
|
Vehicular control system using cameras and radar sensor | ||
Patent #
US 10,351,135 B2
Filed 11/01/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular exterior electrically variable reflectance mirror reflective element assembly | ||
Patent #
US 10,363,875 B2
Filed 07/23/2018
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Vehicle vision system with lens pollution detection | ||
Patent #
US 10,397,451 B2
Filed 07/09/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with multi-paned view | ||
Patent #
US 10,457,209 B2
Filed 03/28/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular control system | ||
Patent #
US 10,462,426 B2
Filed 05/16/2019
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Automatic control systems for vehicles | ||
Patent #
US 10,569,700 B2
Filed 05/20/2019
|
Current Assignee
Autosignal LLC
|
Original Assignee
Anita Au, Gerald Chan
|
Driver assistance system for vehicle | ||
Patent #
US 10,623,704 B2
Filed 03/09/2015
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Vehicular exterior electrically variable reflectance mirror reflective element assembly | ||
Patent #
US 10,661,716 B2
Filed 07/29/2019
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Vehicular driving assist system using forward-viewing camera | ||
Patent #
US 10,683,008 B2
Filed 07/15/2019
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular control system with traffic lane detection | ||
Patent #
US 10,735,695 B2
Filed 10/28/2019
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Adaptive forward lighting system for vehicle comprising a control that adjusts the headlamp beam in response to processing of image data captured by a camera | ||
Patent #
US 10,787,116 B2
Filed 09/10/2018
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Motor vehicle warning and control system and method | ||
Patent #
US 6,553,130 B1
Filed 06/28/1996
|
Current Assignee
Jerome H. Lemelson, Robert Pedersen
|
Original Assignee
Jerome H. Lemelson, Robert Pedersen
|
Obstacle recognition system for automotive vehicle | ||
Patent #
US 6,593,873 B2
Filed 07/23/2001
|
Current Assignee
DENSO Corporation
|
Original Assignee
DENSO Corporation
|
Automatic drive control system | ||
Patent #
US 6,343,247 B2
Filed 08/14/1998
|
Current Assignee
Honda Giken Kogyo Kabushiki Kaisha
|
Original Assignee
Honda Giken Kogyo Kabushiki Kaisha
|
Obstacle recognition system for vehicle | ||
Patent #
US 6,380,885 B2
Filed 03/13/2001
|
Current Assignee
DENSO Corporation
|
Original Assignee
DENSO Corporation
|
Position measuring apparatus using a pair of electronic cameras | ||
Patent #
US 6,477,260 B1
Filed 10/26/1999
|
Current Assignee
Nissan Motor Co. Ltd.
|
Original Assignee
Nissan Motor Co. Ltd.
|
Road image display device | ||
Patent #
US 6,476,780 B2
Filed 01/06/1998
|
Current Assignee
Honda Giken Kogyo Kabushiki Kaisha
|
Original Assignee
Honda Giken Kogyo Kabushiki Kaisha
|
Image sensor for monitoring vehicle's forward view and method for setting aspect ratio for photosensitive portion of such image sensor | ||
Patent #
US 6,037,975 A
Filed 08/29/1997
|
Current Assignee
Honda Giken Kogyo Kabushiki Kaisha
|
Original Assignee
Honda Giken Kogyo Kabushiki Kaisha
|
Image processing apparatus for vehicles | ||
Patent #
US 5,987,174 A
Filed 12/24/1996
|
Current Assignee
Hitachi America Limited
|
Original Assignee
Hitachi America Limited
|
Method and an apparatus for monitoring the environment around a vehicle and an operation support system using the same | ||
Patent #
US 5,612,686 A
Filed 09/28/1994
|
Current Assignee
Hitachi America Limited
|
Original Assignee
Hitachi America Limited
|
15 Claims
-
1. A road monitoring method for a vehicle using a camera, comprising:
-
receiving a picture signal from said camera;
detecting a target from said picture signal;
calculating a horizontally estimated distance from said vehicle to said target;
calculating variables including a vertical angle of said target on a circumference and a curvature radius of said circumference; and
calculating an actual distance from said vehicle to said target based on said vertical angle and said curvature radius. - View Dependent Claims (2, 3, 4, 5, 6, 7, 8, 9, 10, 11)
-
-
12. A road monitoring system for a vehicle comprising a camera for generating a picture signal and an electronic control unit for receiving said picture signal and monitoring a road based on said received picture signal, wherein said electronic control unit performs:
-
detecting a target from said picture signal;
calculating a horizontally estimated distance from said vehicle to said target;
calculating variables including a vertical angle of said target on a circumference and a curvature radius of said circumference; and
calculating an actual distance from said vehicle to said target based on said vertical angle and said curvature radius. - View Dependent Claims (13, 14, 15)
-
1 Specification
1. Field of the Invention
The present invention relates to a method and an apparatus for monitoring a road, and more particularly, to a method and an apparatus for monitoring a road wherein road information, such as a distance to a preceding vehicle, is acquired using a picture captured by a camera.
2. Description of the Related Art
Recently, an unmanned vehicle, which perceives driving circumstances and automatically controls driving performance, has been under development. Such an unmanned vehicle usually includes a lane marker detector for detecting lane markers to be used for keeping the unmanned vehicle running in the same lane, and a vehicle detector for detecting a preceding vehicle in order to prevent the unmanned vehicle from bumping the preceding vehicle.
The lane marker detector detects lane markers from a picture captured by an input apparatus such as a camera, such that the road on which the unmanned vehicle is running can be modeled.
Marking objects disposed on the road according to a predetermined scheme are detected for modeling of the road, and a typical example of the marking objects is a lane marker.
The lane marker detector, including a camera for capturing a forward picture, usually perceives lane markers from the captured picture based on a brightness difference between a road surface and the lane markers because the lane markers are brighter than the road surface.
The vehicle detector detects a preceding vehicle by various methods.
One example of these is a stereo camera method, where a distance to a preceding vehicle is calculated based on an angular difference of two cameras aiming at the preceding vehicle.
A laser radar method and a mm-wave (electromagnetic wave whose wavelength is of an order of magnitude of millimeters) radar method are also used to detect a distance to a preceding vehicle, and in such methods, a reflective wave reflected from the preceding vehicle is detected and used for calculating the distance.
As described above, according to the prior art, an unmanned vehicle must be equipped with two different apparatus, a lane marker detector and a vehicle detector for distance control of the vehicle.
Therefore, it is obvious that the cost for realizing an unmanned vehicle must be reduced if there is provided a method for calculating a distance to a preceding vehicle from a captured picture.
Moreover, the stereo camera method has difficulty in setting of the two cameras, the laser radar method is apt to lose reliability because a laser ray is too narrow and easily scattered by moisture in the air, and the mm-wave radar is very expensive.
Therefore it is one object of this invention to provide a method and system in which a distance to a preceding vehicle is calculated based on a picture signal received from a picture input apparatus that is already installed in a lane marker detector.
In order to achieve the above object, this invention provides a road monitoring system for a vehicle comprising a camera for generating a picture signal and an electronic control unit for performing a road monitoring method of this invention.
The road monitoring method of this invention for a vehicle using a camera comprises receiving a picture signal from said camera; detecting a target from said picture signal; calculating a horizontally estimated distance from said vehicle to said target; calculating variables including a vertical angle of said target on a circumference and a curvature radius of said circumference; and calculating an actual distance from said vehicle to said target based on said vertical angle and said curvature radius.
In further description of this invention, symbols are defined such as: α as a proportional coefficient, f as a focal distance of said camera, h as a height of a center of said camera from a road surface, y as a vertical picture-coordinate of said target, c′ as a vertical picture-coordinate of a horizon in said picture signal, c as a vertical picture-coordinate of a horizon of a flat road, θ as a constant satisfying an equation c=f×tan(θ), L as a horizontally estimated distance of said target, φ as a vertical angle of the target on said circumference, and R as a curvature radius of said circumference.
Said calculating a horizontally estimated distance calculates said horizontally estimated distance as a value of L satisfying an equation
Said calculating variables is performed by including determining whether a road is curved upward or downward; calculating said vertical angle of said target on said circumference; and calculating a corresponding curvature radius among an upward curvature radius and a downward curvature radius according to a determination of said determining whether said road is curved upward or downward.
In said determining whether a road is curved upward or downward, whether said road is curved upward or downward can be determined based on a shape of a plurality of lane markers, said plurality of lane markers being detected from said picture signal.
Alternatively, in said determining whether a road is curved upward or downward, it may be determined that said road is curved upward if a vertical picture-coordinate of a horizon in said picture signal is higher than a predetermined vertical picture-coordinate, and said road is curved downward if a vertical picture-coordinate of a horizon in said picture signal is lower than said predetermined vertical picture-coordinate.
Said vertical angle of said target can be calculated as a value of φ satisfying an equation c′=f×tan(φ+θ).
Said upward curvature radius can be calculated as a value of R satisfying an equation
where said value of R satisfying said equation
is preferably calculated based on a predetermined map having variables of said L and said φ.
Also, said downward curvature radius can be calculated as a value of R satisfying an equation
where said value of R satisfying said equation
is preferably calculated based on a predetermined map having variables of said L and said φ.
Said actual distance can be then calculated as an absolute value of l, said l satisfying an equation l=Rφ.
The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate an embodiment of the invention, and, together with the description, serve to explain the principles of the invention:
FIG. 4A through
A preferred embodiment of the present invention will hereinafter be described in detail with reference to the accompanying drawings.
As shown in
The camera 110 is preferably a CCD (Charge Coupled Device) camera such that a captured picture can be easily digitalized to continuously generate picture signals.
The ECU 120 can be realized by one or more processors activated by predetermined software, and the predetermined software can be programmed to perform each step of a road monitoring method according to a preferred embodiment of this invention.
The ECU 120 can be disposed at any location in a vehicle 130, and the camera 110 is, as shown in
For references hereinafter, a height h and an angle θ are respectively defined as a height of a center of said camera from a road surface, and an angle between a line that the camera 110 is aiming along and a horizontal line.
The height h and angle θ, although they can be modified according to driving history, can be regarded as constants determined when the camera 110 is installed.
An angle φ shown in
A road on which the vehicle 130 runs can be flat, upwardly curved (i.e., in a concave shape), or downwardly curved (i.e., in a convex shape).
The shape (b) is related to a case in which the road is flat, where the lane markers, starting from both sides of the bottom of the picture, meet at a point above the bottom and the lane markers are formed as straight lines.
The point where the lane markers meet each other corresponds to a horizon H0, and c denotes the vertical picture-coordinate of the horizon of the flat road.
When a forward road is curved upward, the lane markers are curved as shown in shape (a), where a left lane marker is curved leftward and a right lane marker is curved rightward. Therefore, the point at which the two lane markers meet is raised higher than c, or the two lane markers do not meet before the horizon.
If the lane markers meet each other, the point at which the lane markers meet must be on the horizon Hu. However, even if the lane markers do not meet before their ends, a line connecting their ends must be the horizon Hu.
Therefore, the horizon Hu must be above the horizon H0, and its vertical picture-coordinate is denoted as c′.
To the contrary, in a shape (c) related to a case when the road is curved downward, a left lane marker is curved rightward and a right lane marker is curved leftward, such that the point at which the lane markers meet each other or at a line connecting their ends is formed lower than c. Therefore, a vertical picture-coordinate c′ of its corresponding horizon Hd is smaller than c.
A point P shown in each of shapes (a), (b), and (c) denotes a target of which a distance from the vehicle 130 shall be calculated, and y denotes a vertical picture-coordinate of the target P. The target P can be defined as any kind of object on the road, and a preceding vehicle can be set as the target P when this embodiment of this invention is applied for distance-controlling between vehicles.
A road monitoring method according to a preferred embodiment of the present invention is hereinafter described in detail.
The camera 110 installed in the vehicle 130 captures a picture of a forward road, and after generating a corresponding picture signal, transmits the picture signal to the ECU 120 at step S310.
The ECU 120 detects the target P from the received picture signal at step S320. A variety of methods to detect the target from a picture signal are already known to a person skilled in the art.
When the target P is detected at step S320, the ECU 120 calculates a horizontally estimated distance L from the vehicle 130 to the detected target P at S330.
The horizontally estimated distance L denotes a distance between the vehicle 130 and the target P calculated on the supposition that they are on the same plane, that is, on the supposition that the vehicle 130 is running on a flat road. Such horizontally estimated distance L is calculated as a value satisfying an equation
where α, f, c, and y respectively denote a proportional coefficient, a focal distance of the camera 110, a vertical picture-coordinate of the horizon of a flat road, and a vertical picture coordinate of the target P.
It is obvious that the values of f and h are already determined when the target P is detected at step S320.
A constant value of the proportional coefficient α can vary with respect to the camera 110 and its installation scheme. However, a preferable value of α can be easily determined by one or more simple experiments after the camera 110 is installed.
When the horizontally estimated distance L is calculated at step S330, the ECU 120 calculates a vertical angle φ of the target P on a circumference and a curvature radius R of the circumference at step S350.
The circumference is a circumference of a circle with which a forward road curved upward or downward is approximated.
A process for calculating the variables φ and R is described in detail hereinafter.
Firstly, it is determined whether the road is curved upward or downward at step S355.
Whether the road is curved upward or downward can be determined based on shapes of a plurality of lane markers, where the plurality of lane markers is detected from said picture signal, which is described in more detail with reference to
Lane markers obtained from the picture signal can be formed as shown in
In a case that a left lane marker is curved leftward and a right lane marker is curved rightward as shown in
When the left and right lane markers are straight lines as shown in
In a case that a left lane marker is curved rightward and a right lane marker is curved leftward as shown in
If the left and right lane markers are curved in the same direction, the ECU 120 does not determine that the road is curved upward or downward.
The step S355 can be realized in another way.
The ECU 120 can determine that the road is curved upward if a vertical picture-coordinate c′ of a horizon detected from the picture signal is greater than a vertical picture-coordinate c of a horizon of a flat road. Also, the ECU 120 can determine that the road is curved downward if a vertical picture-coordinate c′ of a horizon detected from the picture signal is smaller than a vertical picture-coordinate c of a horizon of a flat road.
When it is determined whether the road is curved upward or downward at step S355, the ECU 120 calculates the vertical angle φ at step S360.
The vertical angle φ can be determined as a value satisfying an equation c′=f×tan(φ+θ), where θ denotes a value satisfying an equation c=f×tan(θ).
The equation c′=f×tan(φ+θ) must result in a correct value of φ because it can be assumed that, as shown in
In this case, the equation c′=f×tan(φ+θ) must hold because it is only another form of the equation c=f×tan(θ) which is a correct relation between a vertical picture-coordinate c and camera angle θ.
When the vertical angle φ is calculated at step S360, the ECU 120 calculates a corresponding curvature radius among an upward curvature radius and a downward curvature radius according to a determination of step S355.
That is, the ECU 120 calculates an upward curvature radius when the road is curved upward and a downward curvature radius when the road is curved downward, and each calculation method of upward/downward curvature radius is hereinafter described.
A calculation method of an upward curvature radius is described with reference to
Points A, B, and C respectively denote a location of the camera 110, an actual location of the target P, and a horizontally estimated location of the target P, estimated at step S330 on the supposition that the target P is on the same plane with the vehicle 130.
Also, h, φ, R, and l respectively denote a height of a center of the camera 110 from the road surface, a vertical angle of the target P on a circumference 510, a curvature radius of the circumference 510, and an actual distance of the target P from the position O of the vehicle 130. The actual distance l is defined as a length of an arc OB.
Because of the geometrical relationship, variables L, R, h, and φ satisfy an equation
The ECU 120 can calculate a value of R as a value satisfying this equation because h is determined at installation of the camera 110, and L and φ are values calculated at steps S330 and S360.
The value of R satisfying the equation
is preferably calculated based on a predetermined map having variables of L and φ, in order to reduce calculation time.
A calculation method of a downward curvature radius is described with reference to
Points A, B, and C and variables L, h, and φ is defined as same as in
Because of the geometrical relationship in
and the ECU 120 can calculate a value of R as a value satisfying this equation.
The value of a downward curvature radius R satisfying the equation
is also preferably calculated based on a predetermined map having variables of L and φ, in order to reduce calculation time.
When values of the variables φ and R are calculated, the ECU 120 calculates the actual distance l on the basis of the values of the variables φ and R at step S370.
It is obvious that the actual distance l can be calculated by an equation l=Rφ.
The effect of the above-described preferred embodiment of this invention is hereinafter described.
Table 1 shown below shows values of the horizontally estimated distance L at various values of an upward curvature radius R of a road and an actual distance l of a target on the road, where a height of a center of the camera 110 from the road is presumed to be 1.2 m.
A substantial difference between an actual distance to the target and a horizontally estimated distance exists as shown in Table 1. For example, when an upward curvature radius is 7,000 m and the target is actually 100 m away from the vehicle 130, a horizontally estimated distance is as much as 247 m. Such difference is resolved by calculating the actual distance based on the upward curvature radius and the vertical angle.
The designed speed shows a maximum permitted designed speed for a road of such curvature radius. Therefore, when a designed speed is 70 km/h, the road must have its curvature radius greater than 2,000 m. As can be seen in Table 1, such a curvature radius is very large and therefore an error possibly produced from an approximation of a road to a circle must be very small.
Table 2 shown below shows values of the horizontally estimated distance L at various values of a downward curvature radius R of a road and an actual distance l of a target on the road, where a height of a center of the camera 110 from the road is presumed to be 1.2 m.
Table 2 shows that an error possibly produced from an approximation of a road to a circle must be small and therefore a more accurate actual distance can be acquired by a method according to the embodiment of this invention.
According to the present invention, an unmanned vehicle can be realized without an additional vehicle detector because the distance from a vehicle to a target can be measured on the basis of a picture captured by a camera, and therefore an unmanned vehicle can be more cheaply produced. Moreover, accuracy is increased because a road is approximated by a circle.
While this invention has been described in connection with what is presently considered to be the most practical and preferred embodiment, it is to be understood that the invention is not limited to the disclosed embodiments, but, on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims.