Alumina insulation for coating implantable components and other microminiature devices
First Claim
1. An implantable component comprising:
- a substrate;
conductive patterns formed on a surface of the substrate, the conductive patterns having at least one layer of titanium formed thereon; and
at least one layer of a ceramic material formed on the at least one layer of titanium, the at least one layer of the ceramic material having a thickness of about 5-10 microns.
0 Assignments
0 Petitions

Accused Products

Abstract
A protective, biocompatible coating or encapsulation material protects and insulates a component or device intended to be implanted in living tissue. The coating or encapsulation material comprises a thin layer or layers of alumina, zirconia or other ceramic, less than 25 microns thick, e.g., 5-10 microns thick. The alumina layer(s) may be applied at relatively low temperature. Once applied, the layer provides excellent hermeticity, and prevents electrical leakage. Even though very thin, the alumina layer retains excellent insulating characteristics. In one embodiment, an alumina layer less than about 6 microns thick provides an insulative coating that exhibits less than 10 pA of leakage current over an area 75 mils by 25 mils area while soaking in a saline solution at temperatures up to 80° C. over a three month period.
208 Citations
Analyte monitoring device and methods of use | ||
Patent #
US 7,885,699 B2
Filed 08/06/2010
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and Apparatus for Providing Notification Function in Analyte Monitoring Systems | ||
Patent #
US 20110077494A1
Filed 09/29/2010
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
POLYMER COMPRESSION JOINING IN IMPLANTABLE LEAD | ||
Patent #
US 20110034980A1
Filed 07/08/2010
|
Current Assignee
Cardiac Pacemakers Incorporated
|
Original Assignee
Cardiac Pacemakers Incorporated
|
Glucose Measuring Device for Use In Personal Area Network | ||
Patent #
US 20110046469A1
Filed 10/27/2010
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
SEALING OF AN IMPLANTABLE MEDICAL DEVICE | ||
Patent #
US 20110015686A1
Filed 07/02/2010
|
Current Assignee
Cochlear Limited
|
Original Assignee
Cochlear Limited
|
Analyte monitoring device and methods of use | ||
Patent #
US 7,869,853 B1
Filed 08/06/2010
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring system and method | ||
Patent #
US 7,920,907 B2
Filed 06/07/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring system and methods | ||
Patent #
US 7,928,850 B2
Filed 05/08/2008
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
PENETRATING ELECTRODES FOR RETINAL STIMULATION | ||
Patent #
US 20110172736A1
Filed 01/14/2010
|
Current Assignee
Nano-Retina Inc.
|
Original Assignee
Nano-Retina Inc.
|
Blood glucose tracking apparatus | ||
Patent #
US 7,976,778 B2
Filed 06/22/2005
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Glucose measuring device for use in personal area network | ||
Patent #
US 8,066,639 B2
Filed 06/04/2004
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Error Detection in Critical Repeating Data in a Wireless Sensor System | ||
Patent #
US 20100275108A1
Filed 04/28/2010
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 7,860,544 B2
Filed 03/07/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
METHOD AND SYSTEM FOR DIRECTING A LOCALIZED BIOLOGICAL RESPONSE TO AN IMPLANT | ||
Patent #
US 20100303772A1
Filed 05/27/2010
|
Current Assignee
Profusa Inc.
|
Original Assignee
Profusa Inc.
|
Continuous glucose monitoring system and methods of use | ||
Patent #
US 7,811,231 B2
Filed 12/26/2003
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and System for Powering an Electronic Device | ||
Patent #
US 20100045231A1
Filed 11/03/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and system for providing basal profile modification in analyte monitoring and management systems | ||
Patent #
US 7,766,829 B2
Filed 11/04/2005
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method And Device For Determining Elapsed Sensor Life | ||
Patent #
US 20100014626A1
Filed 06/30/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and Device for Early Signal Attenuation Using Blood Glucose Measurements | ||
Patent #
US 20100191472A1
Filed 01/29/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and System for Providing Data Transmission in a Data Management System | ||
Patent #
US 20090054749A1
Filed 05/31/2006
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and system for providing analyte sensor tester isolation | ||
Patent #
US 20090054747A1
Filed 10/31/2005
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Implantable Transponder Pulse Stimulation Systems and Methods | ||
Patent #
US 20090157151A1
Filed 11/26/2008
|
Current Assignee
MicroTransponder Inc., Board of Regents of the University of Texas System
|
Original Assignee
MicroTransponder Inc.
|
Implantable Transponder Systems and Methods | ||
Patent #
US 20090157147A1
Filed 11/26/2008
|
Current Assignee
MicroTransponder Inc.
|
Original Assignee
MicroTransponder Inc.
|
Analyte Monitoring Device and Methods of Use | ||
Patent #
US 20090216101A1
Filed 02/13/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and system for powering an electronic device | ||
Patent #
US 7,620,438 B2
Filed 03/31/2006
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte Monitoring System and Methods | ||
Patent #
US 20090318792A1
Filed 08/28/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte Monitoring System and Methods | ||
Patent #
US 20090318789A1
Filed 08/29/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Micro-Miniature Implantable Coated Device | ||
Patent #
US 20080051862A1
Filed 10/25/2007
|
Current Assignee
Second Sight Enterprises Incorporated
|
Original Assignee
Second Sight Enterprises Incorporated
|
ANALYTE MONITORING SYSTEM AND METHOD | ||
Patent #
US 20080064937A1
Filed 06/07/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Packaging sensors for long term implant | ||
Patent #
US 7,347,826 B1
Filed 10/16/2003
|
Current Assignee
Pacesetter Incorporated
|
Original Assignee
Pacesetter Incorporated
|
Analyte Monitoring Device And Methods Of Use | ||
Patent #
US 20080091094A1
Filed 10/30/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
THERAPEUTIC DRIVING LAYER FOR A MEDICAL DEVICE | ||
Patent #
US 20080215137A1
Filed 08/08/2007
|
Current Assignee
Boston Scientific Scimed
|
Original Assignee
Boston Scientific Scimed
|
ANALYTE MONITORING SYSTEM AND METHODS | ||
Patent #
US 20080278333A1
Filed 05/08/2008
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
ANALYTE MONITORING SYSTEM AND METHODS | ||
Patent #
US 20080281840A1
Filed 05/08/2008
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Feedthrough terminal assembly with lead wire bonding pad for human implant applications | ||
Patent #
US 7,012,192 B2
Filed 03/30/2005
|
Current Assignee
Greatbatch Limited
|
Original Assignee
Greatbatch-Sierra Inc.
|
Therapeutic driving layer for a medical device | ||
Patent #
US 20060105018A1
Filed 11/17/2004
|
Current Assignee
Boston Scientific Scimed
|
Original Assignee
Boston Scientific Scimed
|
Micro-miniature implantable coated device | ||
Patent #
US 20060173497A1
Filed 01/30/2006
|
Current Assignee
Second Sight Enterprises Incorporated
|
Original Assignee
Second Sight Enterprises Incorporated
|
Method and apparatus for providing leak detection in data monitoring and management systems | ||
Patent #
US 20060247508A1
Filed 04/29/2005
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Therasense Incorporated
|
Feedthrough terminal assembly with lead wire bonding pad for human implant applications | ||
Patent #
US 20050247475A1
Filed 03/30/2005
|
Current Assignee
Greatbatch Limited
|
Original Assignee
Greatbatch-Sierra Inc.
|
Continuous glucose monitoring system and methods of use | ||
Patent #
US 20040186365A1
Filed 12/26/2003
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Therasense Incorporated
|
Method and apparatus for providing rolling data in communication systems | ||
Patent #
US 8,123,686 B2
Filed 03/01/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and device for early signal attenuation detection using blood glucose measurements | ||
Patent #
US 8,103,456 B2
Filed 01/29/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and apparatus for providing leak detection in data monitoring and management systems | ||
Patent #
US 8,112,240 B2
Filed 04/29/2005
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring system and methods | ||
Patent #
US 8,149,117 B2
Filed 08/29/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,162,829 B2
Filed 03/30/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,175,673 B2
Filed 11/09/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,177,716 B2
Filed 12/21/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Continuous glucose monitoring system and methods of use | ||
Patent #
US 8,187,183 B2
Filed 10/11/2010
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,224,413 B2
Filed 10/10/2008
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,226,558 B2
Filed 09/27/2010
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,226,557 B2
Filed 12/28/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,226,555 B2
Filed 03/18/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring devices and methods therefor | ||
Patent #
US 8,226,891 B2
Filed 03/31/2006
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,231,532 B2
Filed 04/30/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Blood glucose tracking apparatus and methods | ||
Patent #
US 8,236,242 B2
Filed 02/12/2010
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,235,896 B2
Filed 12/21/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,255,031 B2
Filed 03/17/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,260,392 B2
Filed 06/09/2008
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,265,726 B2
Filed 11/09/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Blood glucose tracking apparatus and methods | ||
Patent #
US 8,268,243 B2
Filed 12/28/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,273,022 B2
Filed 02/13/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,275,439 B2
Filed 11/09/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,287,454 B2
Filed 09/27/2010
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,306,598 B2
Filed 11/09/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,346,336 B2
Filed 03/18/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,346,337 B2
Filed 06/30/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,353,829 B2
Filed 12/21/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,357,091 B2
Filed 12/21/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring system and methods | ||
Patent #
US 8,362,904 B2
Filed 04/18/2011
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,366,614 B2
Filed 03/30/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,372,005 B2
Filed 12/21/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,380,273 B2
Filed 04/11/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,391,945 B2
Filed 03/17/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,409,131 B2
Filed 03/07/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Sealing of an implantable medical device | ||
Patent #
US 8,412,304 B2
Filed 07/02/2010
|
Current Assignee
Cochlear Limited
|
Original Assignee
Cochlear Limited
|
Retinal prosthesis techniques | ||
Patent #
US 8,428,740 B2
Filed 08/06/2010
|
Current Assignee
Nano-Retina Inc.
|
Original Assignee
Nano-Retina Inc.
|
Retinal prosthesis techniques | ||
Patent #
US 8,442,641 B2
Filed 05/09/2011
|
Current Assignee
Nano-Retina Inc.
|
Original Assignee
Nano-Retina Inc.
|
Analyte monitoring system and methods | ||
Patent #
US 8,456,301 B2
Filed 05/08/2008
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Implantable transponder systems and methods | ||
Patent #
US 8,457,757 B2
Filed 11/26/2008
|
Current Assignee
MicroTransponder Inc.
|
Original Assignee
MICRO TRANSPONDER INC.
|
Analyte monitoring system and methods | ||
Patent #
US 8,461,985 B2
Filed 05/08/2008
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,465,425 B2
Filed 06/30/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and device for early signal attenuation detection using blood glucose measurements | ||
Patent #
US 8,473,220 B2
Filed 01/23/2012
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,473,021 B2
Filed 07/31/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,480,580 B2
Filed 04/19/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Timing control for paired plasticity | ||
Patent #
US 8,489,185 B2
Filed 06/16/2009
|
Current Assignee
Board of Regents of the University of Texas System
|
Original Assignee
Board of Regents of the University of Texas System
|
Thin Film for a Lead for Brain Applications | ||
Patent #
US 20130204318A1
Filed 02/08/2013
|
Current Assignee
Medtronic Bakken Research Center B.V.
|
Original Assignee
Sapiens Steering Brain Stimulation B.V.
|
Glucose measuring device for use in personal area network | ||
Patent #
US 8,512,239 B2
Filed 04/20/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Retinal prosthesis with efficient processing circuits | ||
Patent #
US 8,571,669 B2
Filed 02/24/2011
|
Current Assignee
Nano-Retina Inc.
|
Original Assignee
Nano-Retina Inc.
|
Method and system for providing basal profile modification in analyte monitoring and management systems | ||
Patent #
US 8,585,591 B2
Filed 07/10/2010
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring system and methods | ||
Patent #
US 8,593,287 B2
Filed 07/20/2012
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and system for powering an electronic device | ||
Patent #
US 8,593,109 B2
Filed 11/03/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,597,189 B2
Filed 03/03/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring devices and methods therefor | ||
Patent #
US 8,597,575 B2
Filed 07/23/2012
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,612,159 B2
Filed 02/16/2004
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,617,071 B2
Filed 06/21/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Continuous glucose monitoring system and methods of use | ||
Patent #
US 8,622,903 B2
Filed 05/25/2012
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,622,906 B2
Filed 12/21/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,641,619 B2
Filed 12/21/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Glucose measuring device for use in personal area network | ||
Patent #
US 8,647,269 B2
Filed 04/20/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,649,841 B2
Filed 04/03/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,652,043 B2
Filed 07/20/2012
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,660,627 B2
Filed 03/17/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and device for determining elapsed sensor life | ||
Patent #
US 8,665,091 B2
Filed 06/30/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,666,469 B2
Filed 11/16/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,668,645 B2
Filed 01/03/2003
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,670,815 B2
Filed 04/30/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,672,844 B2
Filed 02/27/2004
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and device for early signal attenuation detection using blood glucose measurements | ||
Patent #
US 8,676,513 B2
Filed 06/21/2013
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,688,188 B2
Filed 06/30/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Retinal prosthesis techniques | ||
Patent #
US 8,706,243 B2
Filed 04/02/2012
|
Current Assignee
Nano-Retina Inc.
|
Original Assignee
Rainbow Medical Ltd.
|
Penetrating electrodes for retinal stimulation | ||
Patent #
US 8,718,784 B2
Filed 01/14/2010
|
Current Assignee
Nano-Retina Inc.
|
Original Assignee
Nano-Retina Inc.
|
Method and system for providing contextual based medication dosage determination | ||
Patent #
US 8,732,188 B2
Filed 02/15/2008
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,734,348 B2
Filed 03/17/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,734,346 B2
Filed 04/30/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,738,109 B2
Filed 03/03/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,744,545 B2
Filed 03/03/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Blood glucose tracking apparatus | ||
Patent #
US 8,765,059 B2
Filed 10/27/2010
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and system for providing data communication in continuous glucose monitoring and management system | ||
Patent #
US 8,771,183 B2
Filed 02/16/2005
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,774,887 B2
Filed 03/24/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Polymer compression joining in implantable lead | ||
Patent #
US 8,788,062 B2
Filed 07/08/2010
|
Current Assignee
Cardiac Pacemakers Incorporated
|
Original Assignee
Cardiac Pacemakers Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,840,553 B2
Filed 02/26/2009
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,880,137 B2
Filed 04/18/2003
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,915,850 B2
Filed 03/28/2014
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,920,319 B2
Filed 12/28/2012
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Multi-function analyte test device and methods therefor | ||
Patent #
US 8,930,203 B2
Filed 02/03/2010
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and system for powering an electronic device | ||
Patent #
US 8,933,664 B2
Filed 11/25/2013
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Systems, methods and devices for treating tinnitus | ||
Patent #
US 8,934,967 B2
Filed 06/16/2009
|
Current Assignee
Board of Regents of the University of Texas System
|
Original Assignee
Board of Regents of the University of Texas System
|
Method for providing near-hermetically coated integrated circuit assemblies | ||
Patent #
US 8,935,848 B1
Filed 10/16/2013
|
Current Assignee
Rockwell Collins Inc.
|
Original Assignee
Rockwell Collins Inc.
|
Analyte monitoring device and methods of use | ||
Patent #
US 8,974,386 B2
Filed 11/01/2005
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring system and methods for managing power and noise | ||
Patent #
US 8,993,331 B2
Filed 08/31/2010
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring system and methods | ||
Patent #
US 9,000,929 B2
Filed 11/22/2013
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 9,011,332 B2
Filed 10/30/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 9,011,331 B2
Filed 12/29/2004
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 9,014,773 B2
Filed 03/07/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring system and methods | ||
Patent #
US 9,035,767 B2
Filed 05/30/2013
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring devices and methods therefor | ||
Patent #
US 9,039,975 B2
Filed 12/02/2013
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 9,042,953 B2
Filed 03/02/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 9,066,695 B2
Filed 04/12/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 9,066,697 B2
Filed 10/27/2011
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and device for early signal attenuation detection using blood glucose measurements | ||
Patent #
US 9,066,709 B2
Filed 03/17/2014
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 9,066,694 B2
Filed 04/03/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 9,072,477 B2
Filed 06/21/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 9,078,607 B2
Filed 06/17/2013
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Systems, methods and devices for paired plasticity | ||
Patent #
US 9,089,707 B2
Filed 06/15/2009
|
Current Assignee
Board of Regents of the University of Texas System
|
Original Assignee
Board of Regents of the University of Texas System
|
Method and apparatus for providing rolling data in communication systems | ||
Patent #
US 9,095,290 B2
Filed 02/27/2012
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Micro-miniature implantable coated device | ||
Patent #
US 9,095,722 B2
Filed 01/30/2006
|
Current Assignee
Second Sight Enterprises Incorporated
|
Original Assignee
Second Sight Enterprises Incorporated
|
Analyte monitoring system and methods | ||
Patent #
US 9,177,456 B2
Filed 06/10/2013
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Retinal prosthesis with efficient processing circuits | ||
Patent #
US 9,192,464 B2
Filed 09/05/2013
|
Current Assignee
Nano-Retina Inc.
|
Original Assignee
Nano-Retina Inc.
|
Method of reinforcing a hermetic seal of a module | ||
Patent #
US 9,197,024 B1
Filed 03/24/2011
|
Current Assignee
Rockwell Collins Inc.
|
Original Assignee
Rockwell Collins Inc.
|
Integrated circuit protection and ruggedization coatings and methods | ||
Patent #
US 9,196,555 B1
Filed 11/02/2011
|
Current Assignee
Rockwell Collins Inc.
|
Original Assignee
Rockwell Collins Inc.
|
Techniques for powering a retinal prosthesis | ||
Patent #
US 9,198,753 B2
Filed 03/06/2014
|
Current Assignee
Nano-Retina Inc.
|
Original Assignee
Nano-Retina Inc.
|
Error detection in critical repeating data in a wireless sensor system | ||
Patent #
US 9,226,701 B2
Filed 04/28/2010
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Retinal prosthesis | ||
Patent #
US 9,265,945 B2
Filed 02/03/2010
|
Current Assignee
Nano-Retina Inc.
|
Original Assignee
Nano-Retina Inc.
|
Timing control for paired plasticity | ||
Patent #
US 9,272,145 B2
Filed 07/15/2013
|
Current Assignee
Board of Regents of the University of Texas System
|
Original Assignee
MicroTransponder Inc., Board of Regents of the University of Texas System
|
Analyte monitoring system and methods | ||
Patent #
US 9,314,198 B2
Filed 04/03/2015
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte signal processing device and methods | ||
Patent #
US 9,314,195 B2
Filed 08/31/2010
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and apparatus for providing notification function in analyte monitoring systems | ||
Patent #
US 9,320,461 B2
Filed 09/29/2010
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and system for providing basal profile modification in analyte monitoring and management systems | ||
Patent #
US 9,323,898 B2
Filed 11/15/2013
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 9,326,716 B2
Filed 12/05/2014
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 9,326,714 B2
Filed 06/29/2010
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Transfer of power and data | ||
Patent #
US 9,331,791 B2
Filed 01/21/2014
|
Current Assignee
Nano Retina Ltd.
|
Original Assignee
Nano Retina Ltd.
|
Timing control for paired plasticity | ||
Patent #
US 9,339,654 B2
Filed 09/29/2014
|
Current Assignee
Board of Regents of the University of Texas System
|
Original Assignee
MicroTransponder Inc., Board of Regents of the University of Texas System
|
Timing control for paired plasticity | ||
Patent #
US 9,345,886 B2
Filed 09/26/2014
|
Current Assignee
Board of Regents of the University of Texas System
|
Original Assignee
MicroTransponder Inc., Board of Regents of the University of Texas System
|
Foveated retinal prosthesis | ||
Patent #
US 9,370,417 B2
Filed 03/14/2013
|
Current Assignee
Nano-Retina Inc.
|
Original Assignee
Nano-Retina Inc.
|
Method and system for powering an electronic device | ||
Patent #
US 9,380,971 B2
Filed 12/05/2014
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Wearable apparatus for delivery of power to a retinal prosthesis | ||
Patent #
US 9,474,902 B2
Filed 12/31/2013
|
Current Assignee
Nano Retina Ltd.
|
Original Assignee
Nano Retina Ltd.
|
Blood glucose tracking apparatus and methods | ||
Patent #
US 9,477,811 B2
Filed 06/23/2005
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Micro-miniature implantable coated device | ||
Patent #
US 9,492,670 B2
Filed 10/25/2007
|
Current Assignee
Second Sight Enterprises Incorporated
|
Original Assignee
Second Sight Enterprises Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 9,498,159 B2
Filed 10/30/2007
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and system for directing a localized biological response to an implant | ||
Patent #
US 9,517,023 B2
Filed 05/27/2010
|
Current Assignee
Profusa Inc.
|
Original Assignee
Profusa Inc.
|
Alkali silicate glass based coating and method for applying | ||
Patent #
US 9,565,758 B2
Filed 12/24/2013
|
Current Assignee
Rockwell Collins Inc.
|
Original Assignee
Rockwell Collins Inc.
|
Retinal prosthesis with visible-light filter | ||
Patent #
US 9,566,191 B2
Filed 11/09/2015
|
Current Assignee
Nano-Retina Inc.
|
Original Assignee
Nano-Retina Inc.
|
Method and device for determining elapsed sensor life | ||
Patent #
US 9,574,914 B2
Filed 03/03/2014
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 9,610,034 B2
Filed 11/09/2015
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring devices and methods therefor | ||
Patent #
US 9,625,413 B2
Filed 05/19/2015
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring system and methods | ||
Patent #
US 9,649,057 B2
Filed 05/11/2015
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and system for providing basal profile modification in analyte monitoring and management systems | ||
Patent #
US 9,669,162 B2
Filed 03/16/2016
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Glucose measuring device for use in personal area network | ||
Patent #
US 9,730,584 B2
Filed 02/10/2014
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and system for powering an electronic device | ||
Patent #
US 9,743,863 B2
Filed 06/01/2016
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and apparatus for providing notification function in analyte monitoring systems | ||
Patent #
US 9,750,439 B2
Filed 04/08/2016
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and apparatus for providing rolling data in communication systems | ||
Patent #
US 9,801,545 B2
Filed 07/30/2015
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Retinal prosthesis with an external power source | ||
Patent #
US 9,907,969 B2
Filed 01/23/2017
|
Current Assignee
Nano-Retina Inc.
|
Original Assignee
Nano-Retina Inc.
|
Method and device for determining elapsed sensor life | ||
Patent #
US 9,949,678 B2
Filed 02/16/2017
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Thin film for a lead for brain applications | ||
Patent #
US 9,956,396 B2
Filed 02/08/2013
|
Current Assignee
Medtronic Bakken Research Center B.V.
|
Original Assignee
Medtronic Bakken Research Center B.V.
|
Continuous glucose monitoring system and methods of use | ||
Patent #
US 9,962,091 B2
Filed 01/06/2014
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte signal processing device and methods | ||
Patent #
US 9,968,302 B2
Filed 04/04/2016
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Methods and apparatuses for providing adverse condition notification with enhanced wireless communication range in analyte monitoring systems | ||
Patent #
US 9,968,306 B2
Filed 10/21/2014
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods | ||
Patent #
US 9,980,669 B2
Filed 11/07/2012
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Tissue-integrating electronic apparatus | ||
Patent #
US 10,010,272 B2
Filed 08/15/2014
|
Current Assignee
Profusa Inc.
|
Original Assignee
Profusa Inc.
|
Method and system for providing data communication in continuous glucose monitoring and management system | ||
Patent #
US 10,039,881 B2
Filed 07/07/2014
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and device for correcting optical signals | ||
Patent #
US 10,045,722 B2
Filed 03/06/2014
|
Current Assignee
Profusa Inc.
|
Original Assignee
Profusa Inc.
|
Tissue-integrating sensors | ||
Patent #
US 10,117,613 B2
Filed 03/31/2016
|
Current Assignee
Profusa Inc.
|
Original Assignee
Profusa Inc.
|
Analyte monitoring system and methods | ||
Patent #
US 10,178,954 B2
Filed 05/09/2017
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring device and methods of use | ||
Patent #
US 10,201,301 B2
Filed 04/18/2016
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Apparatus and methods for detecting optical signals from implanted sensors | ||
Patent #
US 10,219,729 B2
Filed 06/06/2014
|
Current Assignee
Profusa Inc.
|
Original Assignee
Profusa Inc.
|
Analyte monitoring device and methods of use | ||
Patent #
US 10,231,654 B2
Filed 06/23/2015
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Method and apparatus for providing notification function in analyte monitoring systems | ||
Patent #
US 10,349,874 B2
Filed 08/31/2017
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Analyte monitoring system and methods for managing power and noise | ||
Patent #
US 10,429,250 B2
Filed 03/26/2015
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Tissue-integrating sensors | ||
Patent #
US 10,463,287 B2
Filed 10/06/2011
|
Current Assignee
Profusa Inc.
|
Original Assignee
Profusa Inc.
|
Analyte monitoring device and methods of use | ||
Patent #
US 10,478,108 B2
Filed 02/05/2016
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Multilayer structure and method of manufacturing a multilayer structure | ||
Patent #
US 10,507,321 B2
Filed 11/25/2015
|
Current Assignee
Medtronic Bakken Research Center B.V.
|
Original Assignee
Medtronic Bakken Research Center B.V.
|
Method and system for directing a localized biological response to an implant | ||
Patent #
US 10,583,308 B2
Filed 12/12/2016
|
Current Assignee
Profusa Inc.
|
Original Assignee
Profusa Inc.
|
Micro-miniature implantable coated device | ||
Patent #
US 10,589,102 B2
Filed 10/04/2016
|
Current Assignee
Second Sight Enterprises Incorporated
|
Original Assignee
Second Sight Enterprises Incorporated
|
Analyte monitoring system and methods | ||
Patent #
US 10,653,317 B2
Filed 01/10/2019
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Continuous glucose monitoring system and methods of use | ||
Patent #
US 10,750,952 B2
Filed 03/26/2018
|
Current Assignee
Abbott Diabetes Care Incorporated
|
Original Assignee
Abbott Diabetes Care Incorporated
|
Hermetically sealed electrical feedthrough for use with implantable electronic devices | ||
Patent #
US 5,750,926 A
Filed 08/16/1995
|
Current Assignee
Alfred E. Mann Foundation For Scientific Research
|
Original Assignee
Alfred E. Mann Foundation For Scientific Research
|
Glucose sensor assembly | ||
Patent #
US 5,660,163 A
Filed 05/18/1995
|
Current Assignee
Alfred E. Mann Foundation For Scientific Research
|
Original Assignee
Alfred E. Mann Foundation For Scientific Research
|
Medical implants of hot worked, high strength, biocompatible, low modulus titanium alloys | ||
Patent #
US 5,509,933 A
Filed 03/24/1993
|
Current Assignee
Smith Nephew Richards Incorporated
|
Original Assignee
Smith Nephew Richards Incorporated
|
10 Claims
-
1. An implantable component comprising:
-
a substrate;
conductive patterns formed on a surface of the substrate, the conductive patterns having at least one layer of titanium formed thereon; and
at least one layer of a ceramic material formed on the at least one layer of titanium, the at least one layer of the ceramic material having a thickness of about 5-10 microns. - View Dependent Claims (2, 3, 4, 5, 6, 7, 8, 9, 10)
-
1 Specification
Embodiments of the present invention claim priority from U.S. divisional application Ser. No. 09/393,438, filed Sep. 9, 1999 (now U.S. Pat. No. 6,472,122 issued Oct. 29, 2002), continuation application Ser. No. 08/994,515 filed Dec. 19, 1997 (now U.S. Pat. No. 6,043,437 issued Mar. 28, 2000) and U.S. Provisional application Ser. No. 60/033,637 filed Dec. 20, 1996, the contents of each are incorporated by reference herein.
The present invention relates to very thin layers of electrical insulation that may be used to coat and protect microminiature components and devices that are intended to be implanted in living tissue and/or to maintain electrical leakage of such components/devices within acceptable limits, e.g., less than 1 μA/cm2 when the components and/or devices are submerged in water or salt water. More particularly, the invention relates to the use of alumina or aluminum oxide as a safe, biocompatible, coating material that provides a reliable, protective and insulative layer or coating for components, or devices comprised of components, wherein the insulating layers can be made extremely thin, on the order of microns, yet wherein the electrical leakage through the thin insulative layer (when the coated component or device is implanted or otherwise immersed in a saline solution or in distilled water) is less than about 1 μA/cm2 (or less than about 12.1 nA for an area of 0.075 inches×0.025 inches, corresponding to an area of 0.1905 cm by 0.0635 cm).
The use of alumina as a thick insulator for use with implantable devices has previously been disclosed, for example, in U.S. Pat. Nos. 4,940,858 and 4,678,868 assigned to Medtronic, Inc. In these applications, however, the alumina insulator is very thick and is used only as part of the feedthrough for the implantable device and is often carried by a metal ferrule. Such use of alumina (or other ceramic) as an insulator requires a relatively thick layer. Many materials work well as an insulator when put down in a thick layer, e.g., in a layer thicker than 25 microns (where 1 micron=1×10−6 meter). But all such materials, except as discussed herein, typically leak at a rate greater than about 1 μA/cm2. Applicants invention, as set forth below, uses a nonconductive ceramic, such as alumina, in very thin layers, e.g., less than about 25 microns.
It is also known to use the ceramic alumina as a case material for an implanted device as disclosed in U.S. Pat. No. 4,991,582, incorporated herein by reference. Again, however, the alumina, while comprising a material that is biocompatible (and is thus not harmful to, and is not harmed by, living tissue and fluids wherein it is implanted), is relatively thick, e.g., greater than 25 microns.
A problem with the related art is that the thickness of the insulation needed for implantable devices is typically on the order of about several millimeters thick. None of the related art, to applicant'"'"'s knowledge, has heretofore achieved an insulating layer with very small dimensions and free of micro-holes. The presence of a micro-hole, or “pin-hole”, destroys the insulating properties which may lead to eventual failure of the implantable device.
Further, some components or devices which need to be implanted in living tissue, such as magnets, are susceptible to extremely high temperatures, i.e., extremely high temperatures may damage or destroy such components. When such components or devices must be implanted, it is important therefore that whatever coating or encapsulating material is used to coat them be one that can be applied without subjecting the component or device to extremely high temperatures. That is, the coating or application process must not subject such components to extremely high temperatures.
It is seen, therefore, that what is needed is a way to utilize a very thin layer of a suitable insulating material, such as alumina (aluminum oxide), zirconia (zirconium oxide), or alloys of alumina and/or zirconia, at relatively low temperatures, as a coating to cover, insulate and/or encapsulate any type of component or device that must be implanted, thereby effectively rendering such coated component or device biocompatible and safe for implantation. In particular, it is seen that what is needed is a very thin insulative coating that can be applied at relatively low temperatures for the purpose of insulating electrical connections on implantable devices and other microminiature devices, or for coating non-biocompatible components (thereby making the coated component biocompatible) wherein the coating can be as thin as about {fraction (1/1000)} of an inch or less yet still maintain the electrical leakage through the insulator at or below acceptable levels.
The present invention addresses the above and other needs.
The present invention provides a protective, biocompatible coating or encapsulation material that may be applied to a component or device intended to be implanted in living tissue. The coating or encapsulation material comprises a thin layer or layers of alumina, zirconia, and/or alloys of alumina and/or zirconia. Advantageously, a thin alumina or zirconia layer applied in accordance with the present invention may be applied at relatively low temperature. Once applied, the coating provides excellent hermeticity, and prevents electrical leakage, while retaining a microminiature size. The layer of alumina or zirconia insulation can be made as thin as about {fraction (1/1000)} of an inch (Note: {fraction (1/1000)} inch=0.001 inch=1 mil=25.4 microns) or less while still retaining excellent insulating characteristics. For example, in accordance with one aspect of the present invention, an alumina coating having a thickness that is less than about 5-10 microns provides an insulative coating that exhibits less than about 12 nA of leakage current over an area 75 mils by 25 mils while soaking in a saline solution at temperatures up to 80° C. over a three month period.
Advantageously, the invention may be used to encapsulate or coat (and thereby insulate) passive electrical and/or magnetic components, such as resistors, capacitors, inductors, wire, conductive strips, magnets, diodes, etc., and/or active electrical components, such as transistors, integrated circuits, etc., and/or assemblies or combinations of such passive and/or active components. Because the coating layer can be made extremely thin, yet still provide the needed insulative properties required for an implanted component or device, the overall size of such components or devices does not increase significantly from the normal size (non-implanted size) of such components or devices. For many applications, e.g., as taught in U.S. Pat. No. 5,193,539, incorporated herein by reference, a complete implanted device, comprised of many different components, may be coated and maintained at a microminiature size. For other applications, e.g., the implantation of one or more permanent magnets, such magnets may be coated with the alumina or zirconia coating, thereby effectively hermetically sealing the magnets in an alumina or zirconium encapsulation that renders the magnets suitable for direct implantation in living body tissue at a desired location.
It is an object of the invention to provide a biocompatible, thin, insulative coating that is easy to apply to a wide variety of different shapes and sizes of components and devices, and that once applied provides excellent insulative properties for the covered component or device over a long period of time, thereby allowing the covered component or device to be safely implanted in living tissue for long periods of time.
It is a further object of the invention, in accordance with one aspect thereof, to provide a biocompatible, insulative coating that may be applied to implantable components or devices of various shapes and sizes, and wherein the coating is: (1) less than about 10 microns thick; (2) submersible for long periods of time in water or saline solution or any other conductive fluids; (3) made from alumina, zirconia or alloys of alumina and/or zirconia, or other substances having properties the same as or similar to alumina, zirconia and/or alloys of alumina and/or zirconia; (4) amenable to being applied using a batch process, e.g., a process wherein 1000 or more devices or components may be coated at the same time using the same process, such as an evaporative coating, vapor deposition, or ion-beam deposition (IBD) process; and/or (5) extremely strong in the lateral direction.
The above and other aspects, features and advantages of the present invention will be more apparent from the following more particular description thereof, presented in conjunction with the following drawings, wherein:
FIG 3 is a flow chart that depicts, in general steps, the method of applying a coating in accordance with the invention;
The following description is of the best mode presently contemplated for carrying out the invention. This description is not to be taken in a limiting sense, but is made merely for the purpose of describing the general principles of the invention.
In the description of the invention herein, reference is frequently made to a “layer of alumina” or to an “alumina insulation layer” as the preferred material for the coating or layer that comprises the invention. Alumina, as is known in the art, comprises a shorthand notation for aluminum oxide, Al2O3. It is to be understood that all such references to an insulating layer or coating made from “alumina” also apply to an insulating layer made from other suitable substances, such as magnesium oxide, zirconium oxide (zirconia), alloys of alumina and/or zirconia, and the like. In general, such oxides may be referred to as ceramics.
An alumina insulation layer or coating for microminiature or other devices is applied by depositing one or successive layers of alumina to electrical connections and/or other electronic circuitry or components. In some cases, the component or object to be coated may comprise an IC chip by itself.
Each insulating layer applied is preferably made by depositing aluminum oxide (“alumina”), or other suitable insulating material, so as to coat the desired surface of the component or device.
A common application for the alumina insulating coating of the present invention is to insulate or encapsulate the entire surface of a hybrid integrated circuit 12 formed on a ceramic substrate 14, once the hybrid integrated circuit 12 has been formed, with an insulative layer 16, as illustrated in FIG. 1A. In
For other applications, the alumina insulating coating is applied to insulate or encapsulate just the integrated circuit (IC) chip 20 by itself. Any electrical connections that may need to be made to the IC chip, e.g., via an insulated wire, may be made prior to application of the insulating coating. In such instance, the IC 20 once coated could then be implanted directly into living tissue yet still perform its intended function.
The insulative layer 16 is very thin, having a thickness “t” on the order of 5-25 microns. Thus, the layer 16 is not readily visible in
Alternatively, an insulating coating 16′ may be used to insulate selected metal traces 28 and 30, or components 32 and 34, mounted on or to a ceramic substrate 14′ of a hybrid integrated circuit 12′, while other components, such as electrode 36, or some portions of the surface of the substrate 14′, are not coated or encapsulated, as illustrated in FIG. 2A. In
In general terms, and for applications where a hybrid circuit, an IC chip, or other device is to be coated with alumina in accordance with the encapsulation/coating process of the present invention, the steps followed by the invention are illustrated in FIG. 3 and may be summarized as:
- (1) Atomically cleaning an insulating substrate or IC chip (if necessary) with a plasma cleaning, or equivalent, process (block 102 of FIG. 3). Note: if an IC chip is being coated by itself, and if the IC chip has not yet left its clean fabrication environment, this step may not be needed. The insulating substrate, when used, may be made from, or already coated with, successive layers of alumina or other suitable insulating material, such as magnesium oxide or zirconia.
- (2) Depositing metallized patterns of a suitable conductive material on one or more of the exposed surfaces of the substrate (block 104). The metallized patterns are preferably deposited or etched on the substrate using conventional thin film deposition, painting or metallized etching techniques, as are common in the printed circuit board and integrated circuit fabrication arts. These patterns are used to make desired electrical connections between components of the circuit.
- (3) Depositing a layer of titanium on the metallized portions of alumina substrate (block 106). Typically, such layer of titantium will be about 300 Å thick.
- (4) Depositing additional layers of alumina, using an ion-enhanced evaporative sputtering technique, or ion beam deposition (IBD) technique, over the entire surface of the substrate including the metallized traces. Using an IBD technique, for example, one application of alumina may lay down a layer of alumina that is only 1-2 microns thick. Through application of several such layers, an alumina coating may thus be formed of sufficient thickness to provide the desired insulative (leakage current) and encapsulation (hermeticity) properties. Advantageously, the deposited alumina coating (comprising a plurality of deposited layers) need only be 5-10 microns thick.
Various techniques may be used to apply the alumina insulation over the device or component that is to be insulated. A preferred technique, for example, is to use an ion beam deposition (IBD) technique. IBD techniques are known in the art, as taught, e.g. in U.S. Pat. No. 4,474,827 or 5,508,368, incorporated herein by reference.
Using such IBD techniques, or similar techniques, the desired alumina layer may be deposited on all sides of an object 15 as illustrated in FIG. 4. As seen in
Other techniques, as are known in the art, may also be used to apply the alumina coating to the object.
The steps typically followed in applying a coating of alumina to an object are illustrated in the flow chart of FIG. 5. As seen in
(a) Sputtering a layer of titanium of about 300 Å thick over any metal conductor or other object that is to be coated with the alumina (block 110 of FIG. 4).
(b) If selective application of the alumina to the object is to be made (YES branch of block 112), spinning a photosensitive polyamide onto a ceramic hybrid substrate, or other component to be encapsulated with the alumina or other substance (block 114).
(c) Applying a mask that exposes those areas where Alumina is not to be applied (block 116).
(d) Shining ultra violet (UV) light through the mask to polymerize the polyamide (block 118). Where the UV light illuminates the polyamide is where aluminum oxide will not be deposited. Thus, the polymerization of the polyamide is, in effect, a negatively acting resist.
(e) Developing the photoresist by washing off the unpolymerized polyamide with xylene (block 120), or an equivalent substance. Once the unpolymerized polyamide has been washed off, the ceramic (or other component) is ready for aluminum oxide deposition.
(f) If selective application of the alumina is not to be made (NO branch of block 112), i.e., if alumina is to be applied everywhere, or after washing off the unpolymerized polyamide (block 120), depositing aluminum oxide to a prescribed thickness, e.g., between 4 and 10 microns, e.g., 6 microns, over the object using ion enhanced evaporation (or sputtering), IBD, or other suitable application techniques (block 122).
(g) During application of the coating, rotate and/or reposition the object as required (block 124) in order to coat all sides of the object, e.g., as shown in
(h) Breaking or scribing the aluminum oxide that resides over the polyamide, if present, with a diamond scribe, or laser, controlled by a computerized milling machine (block 128). This permits a pyrana solution, explained below, to set under the oxide for subsequent lift off of the aluminum oxide.
(i) Lifting off the polyamide and unwanted aluminum oxide after soaking the substrate in pyrana solution (H2SO4×4+H2O2×2 heated to 60° C.) (block 130). Soaking should occur for 30 to 60 minutes, depending on the thickness of the polyamide layer.
For some applications, the device to be coated may comprise an entire IC chip or a permanent magnet, e.g., a small ceramic magnet. When an IC chip or a magnet is to be coated with alumina, a similar process to that described above is followed, except that there are no metal traces or pads that need to be deposited or covered. Rather, the entire chip or magnet is coated with one or more layers of alumina.
Leakage tests and voltage breakdown tests, when applicable, may also be performed in conventional manner in order to determine the insulative and/or sealing properties of the coating. Typically, the device or component is immersed in a saline solution representative of living body tissue. Next, a voltage is applied between a metal trace covered by the alumina and a platinum black electrode, or other reference electrode, positioned proximate the covered device. The voltage is slowly increased while watching/monitoring the current drain. The voltage increase is stopped and measured at the point where breakdown occurs. Leakage current is measured by keeping the applied voltage at a constant value and monitoring the current drain.
A useful test for determining how thick the alumina coating must be to eliminate micro-holes, or pinholes, is shown in the flow diagram of FIG. 6. As seen in
Generally, 4-6 layers of alumina, creating a total coating thickness of 5-10 microns, is sufficient to reduce leakage current to less than about 6 pa. For desired hermeticity, at least about 6 layers of alumina are typically required.
It is to be emphasized that while using alumina in an implanted device is not new, depositing extremely thin layers of alumina, e.g., 5 to 10 microns thick, over components or devices to be implanted, and then relying on such thin layer of alumina to act as an insulative layer or coating, is new, and has produced surprising and unexpected results relative to its insulative properties.
A test specimen that included a plurality of 75 mil by 25 mil and 75 mil by 5 mil metallized pads deposited on an alumina substrate was constructed using conventional techniques. The plurality of metallized pads are separated from one another by a distance of about 2.0-2.5 mils. A layer of alumina insulator approximately 5-6 microns thick was deposited on and between the metallized pads using an ion-enhanced evaporative sputtering technique. The ion-enhanced evaporative sputtering was performed in an evacuated chamber at a moderate temperature of about 60-100° C., and allowed to cure for approximately 0.5-4 hours. The test specimen was subsequently submersed in a saline solution at 87° C. for three months. Leakage current between the metallized pads and the saline solution was measured and did not exceed 10 pA across the 6 micron size insulating layer. In addition leakage current between each metallized pads did not exceed 10 pA across the 2.0-2.5 mil spacings.