Liquid crystal display device
First Claim
1. A liquid crystal display device including an under light type back light unit in which light emitted from a plurality of linear light sources is reflected by a reflecting sheet disposed at a rear side of the plurality of linear light sources, then transmitted through a light modulation film and a light diffusion plate to form a planar light source with a first uniform luminance indirectly irradiating a first portion of a liquid crystal panel from a rear side thereof,wherein one end portion of the light modulation film is shielded by a light shielding plate, and light emitted from one of the plurality of linear light sources is shielded by the light shielding plate and transmitted through only the light diffusion plate to irradiate a second portion of the liquid crystal panel from the rear side thereof with a second luminance higher than the first luminance.
0 Assignments
0 Petitions

Accused Products

Abstract
An LCD provided with an edge light type back light unit which is arranged in a manner that the light emitted from a CCT in the form of a linear light source is condensed at the end portion of a light conduction plate, then the light reflected by a reflecting sheet and then ejected from the light conduction plate transmits through a light diffusion plate thereby to indirectly irradiate on a liquid crystal panel from the rear direction thereof in the form of planar light with uniform luminance. A light reflecting plate having a curved surface is disposed in the vicinity of the CCT. A light shielding plate is disposed in a manner that a part of the light emitted from the CCT and reflected by the light reflecting plate is condensed at the end portion of the light conduction plate. Another part of the light emitted from the CCT and reflected by the light reflecting plate is directed upward and directly irradiates a part of the display area of the liquid crystal panel thereby to form a high luminance irradiation portion. Accordingly, thus configured LCD is improved in its visibility and so can be formed as a vehicle-mounted alarm display device for displaying various alarms.
103 Citations
System and method for instrument panel with color graphical display | ||
Patent #
US 7,750,821 B1
Filed 03/30/2007
|
Current Assignee
Yazaki North America Incorporated
|
Original Assignee
Yazaki North America Incorporated
|
System and method for analog vehicle gauge with embedded driver information | ||
Patent #
US 7,571,696 B1
Filed 06/19/2007
|
Current Assignee
Yazaki North America Incorporated
|
Original Assignee
Yazaki North America Incorporated
|
Vehicle gauge with embedded driver information | ||
Patent #
US 7,347,575 B2
Filed 06/20/2005
|
Current Assignee
Yazaki North America Incorporated
|
Original Assignee
Yazaki North America Incorporated
|
Instrument cluster with three-dimensional display | ||
Patent #
US 7,427,143 B1
Filed 06/30/2005
|
Current Assignee
Yazaki North America Incorporated
|
Original Assignee
Yazaki North America Incorporated
|
Vehicle gauge with embedded driver information | ||
Patent #
US 20060012971A1
Filed 06/20/2005
|
Current Assignee
Yazaki North America Incorporated
|
Original Assignee
Yazaki North America Incorporated
|
SEGMENTED EDGE-LIT BACKLIGHT ASSEMBLY FOR A DISPLAY | ||
Patent #
US 20130321496A1
Filed 05/29/2012
|
Current Assignee
Gentex Corporation
|
Original Assignee
Andrew D. Weller, Ethan J. Lee, John A. Vanderploeg
|
Segmented edge-lit backlight assembly for a display | ||
Patent #
US 8,878,882 B2
Filed 05/29/2012
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Driver assistance system for a vehicle | ||
Patent #
US 8,993,951 B2
Filed 07/16/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assist system for vehicle | ||
Patent #
US 9,014,966 B2
Filed 03/14/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Multi-camera vision system for a vehicle | ||
Patent #
US 9,131,120 B2
Filed 05/15/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision system for vehicle | ||
Patent #
US 9,171,217 B2
Filed 03/03/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision system for vehicle | ||
Patent #
US 9,191,634 B2
Filed 04/03/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system using kinematic model of vehicle motion | ||
Patent #
US 9,205,776 B2
Filed 05/20/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assist system for vehicle | ||
Patent #
US 9,315,151 B2
Filed 04/03/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Method and system for dynamically calibrating vehicular cameras | ||
Patent #
US 9,357,208 B2
Filed 01/20/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision system for vehicle | ||
Patent #
US 9,428,192 B2
Filed 11/16/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system | ||
Patent #
US 9,436,880 B2
Filed 01/13/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Multi-camera vision system for a vehicle | ||
Patent #
US 9,440,586 B2
Filed 11/09/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision system for vehicle | ||
Patent #
US 9,440,535 B2
Filed 01/27/2014
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle control system with adaptive wheel angle correction | ||
Patent #
US 9,487,235 B2
Filed 04/01/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle camera alignment system | ||
Patent #
US 9,491,450 B2
Filed 07/30/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Calibration system and method for vehicular surround vision system | ||
Patent #
US 9,491,451 B2
Filed 11/14/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular multi-camera vision system | ||
Patent #
US 9,508,014 B2
Filed 05/05/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assistance system for vehicle | ||
Patent #
US 9,555,803 B2
Filed 05/16/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with targetless camera calibration | ||
Patent #
US 9,563,951 B2
Filed 05/20/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision system for vehicle | ||
Patent #
US 9,609,289 B2
Filed 08/29/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision system for vehicle | ||
Patent #
US 9,643,605 B2
Filed 10/26/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Calibration system and method for multi-camera vision system | ||
Patent #
US 9,688,200 B2
Filed 03/03/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system using kinematic model of vehicle motion | ||
Patent #
US 9,701,246 B2
Filed 12/07/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Multi-camera image stitching calibration system | ||
Patent #
US 9,723,272 B2
Filed 10/04/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision system for vehicle | ||
Patent #
US 9,736,435 B2
Filed 03/20/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Display device comprising the same | ||
Patent #
US 9,752,753 B2
Filed 03/04/2013
|
Current Assignee
Samsung Display Company Limited
|
Original Assignee
Samsung Display Company Limited
|
Vehicle vision system with customized display | ||
Patent #
US 9,762,880 B2
Filed 12/07/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular multi-camera vision system | ||
Patent #
US 9,769,381 B2
Filed 11/28/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Multi-camera vision system for a vehicle | ||
Patent #
US 9,796,331 B2
Filed 09/12/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assist system for vehicle | ||
Patent #
US 9,809,168 B2
Filed 04/18/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular control system using cameras and radar sensor | ||
Patent #
US 9,834,216 B2
Filed 01/24/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Method and system for dynamically calibrating vehicular cameras | ||
Patent #
US 9,834,153 B2
Filed 04/25/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Display system for displaying images acquired by a camera system onto a rearview assembly of a vehicle | ||
Patent #
US 9,884,591 B2
Filed 08/29/2014
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
System and method of establishing a multi-camera image using pixel remapping | ||
Patent #
US 9,900,522 B2
Filed 12/01/2011
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with calibration algorithm | ||
Patent #
US 9,916,660 B2
Filed 01/15/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assistance system for vehicle | ||
Patent #
US 9,940,528 B2
Filed 11/20/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision system for vehicle | ||
Patent #
US 9,948,904 B2
Filed 08/14/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular imaging system comprising an imaging device with a single image sensor and image processor for determining a totally blocked state or partially blocked state of the single image sensor as well as an automatic correction for misalignment of the imaging device | ||
Patent #
US 9,972,100 B2
Filed 04/23/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with targetless camera calibration | ||
Patent #
US 9,979,957 B2
Filed 01/26/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular control system | ||
Patent #
US 10,015,452 B1
Filed 04/16/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular multi-camera vision system | ||
Patent #
US 10,057,489 B2
Filed 09/18/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision system for vehicle | ||
Patent #
US 10,071,676 B2
Filed 09/12/2016
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision system for vehicle | ||
Patent #
US 10,071,687 B2
Filed 11/27/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision system for vehicle | ||
Patent #
US 10,099,614 B2
Filed 11/27/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular control system | ||
Patent #
US 10,110,860 B1
Filed 07/02/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular control system using cameras and radar sensor | ||
Patent #
US 10,118,618 B2
Filed 12/04/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with customized display | ||
Patent #
US 10,129,518 B2
Filed 09/11/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Multi-camera vision system for a vehicle | ||
Patent #
US 10,144,353 B2
Filed 10/23/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Park-aid system for vehicle | ||
Patent #
US 10,179,545 B2
Filed 11/06/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Multi-camera dynamic top view vision system | ||
Patent #
US 10,179,543 B2
Filed 02/27/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Multi-camera vehicle vision system with image gap fill | ||
Patent #
US 10,187,590 B2
Filed 10/26/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular control system | ||
Patent #
US 10,187,615 B1
Filed 10/22/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle control system with adaptive wheel angle correction | ||
Patent #
US 10,202,147 B2
Filed 11/07/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Method for dynamically calibrating vehicular cameras | ||
Patent #
US 10,202,077 B2
Filed 05/23/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with calibration algorithm | ||
Patent #
US 10,235,775 B2
Filed 03/07/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Calibration system and method for vehicular surround vision system | ||
Patent #
US 10,264,249 B2
Filed 11/07/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system using kinematic model of vehicle motion | ||
Patent #
US 10,266,115 B2
Filed 07/10/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Multi-camera image stitching calibration system | ||
Patent #
US 10,284,818 B2
Filed 07/31/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Multi-sensor interior mirror device with image adjustment | ||
Patent #
US 10,300,859 B2
Filed 06/08/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular control system | ||
Patent #
US 10,306,190 B1
Filed 01/21/2019
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Rear backup system for a vehicle | ||
Patent #
US 10,308,180 B2
Filed 11/29/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular control system using cameras and radar sensor | ||
Patent #
US 10,351,135 B2
Filed 11/01/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular control system | ||
Patent #
US 10,462,426 B2
Filed 05/16/2019
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Multi-camera dynamic top view vision system | ||
Patent #
US 10,486,596 B2
Filed 01/14/2019
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle camera system with image manipulation | ||
Patent #
US 10,493,916 B2
Filed 02/22/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular vision system | ||
Patent #
US 10,509,972 B2
Filed 04/09/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with customized display | ||
Patent #
US 10,542,244 B2
Filed 11/12/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Display device comprising the same | ||
Patent #
US 10,551,030 B2
Filed 08/09/2017
|
Current Assignee
Samsung Display Company Limited
|
Original Assignee
Samsung Display Company Limited
|
Rear backup system for a vehicle | ||
Patent #
US 10,556,542 B2
Filed 06/03/2019
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Targetless vehicular camera calibration method | ||
Patent #
US 10,567,748 B2
Filed 05/21/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Method for displaying video images for a vehicular vision system | ||
Patent #
US 10,574,885 B2
Filed 08/20/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Method for dynamically calibrating vehicular cameras | ||
Patent #
US 10,640,041 B2
Filed 02/04/2019
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision system for vehicle | ||
Patent #
US 10,640,040 B2
Filed 09/10/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Method and system for dynamically ascertaining alignment of vehicular cameras | ||
Patent #
US 10,654,423 B2
Filed 12/04/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular driving assist system using forward-viewing camera | ||
Patent #
US 10,683,008 B2
Filed 07/15/2019
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular multi-camera vision system including rear backup camera | ||
Patent #
US 10,703,274 B2
Filed 02/10/2020
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular imaging system with blockage determination and misalignment correction | ||
Patent #
US 10,726,578 B2
Filed 05/14/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular control system with traffic lane detection | ||
Patent #
US 10,735,695 B2
Filed 10/28/2019
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Method for stitching images captured by multiple vehicular cameras | ||
Patent #
US 10,780,827 B2
Filed 11/25/2019
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Method for determining misalignment of a vehicular camera | ||
Patent #
US 10,780,826 B2
Filed 04/22/2019
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Adaptive forward lighting system for vehicle comprising a control that adjusts the headlamp beam in response to processing of image data captured by a camera | ||
Patent #
US 10,787,116 B2
Filed 09/10/2018
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Imaging system for vehicle | ||
Patent #
US 10,793,067 B2
Filed 07/25/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular vision system including rear backup camera | ||
Patent #
US 10,800,331 B1
Filed 07/06/2020
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Method for determining alignment of vehicular cameras | ||
Patent #
US 10,868,974 B2
Filed 02/19/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Backlight device and liquid crystal display device | ||
Patent #
US 6,504,589 B1
Filed 02/17/1998
|
Current Assignee
Dai Nippon Printing Company Limited
|
Original Assignee
Dai Nippon Printing Company Limited
|
SURFACE LIGHT SOURCE DEVICE | ||
Patent #
US 20020057562A1
Filed 03/31/1997
|
Current Assignee
Enplas Corporation
|
Original Assignee
Yasuhiro Koike, Enplas Corporation
|
Ultra-thin backlight | ||
Patent #
US 20020172039A1
Filed 05/15/2002
|
Current Assignee
Visus
|
Original Assignee
Visus
|
BACKLIGHT ASSEMBLY FOR A DISPLAY DEVICE | ||
Patent #
US 20010038425A1
Filed 08/04/1998
|
Current Assignee
James Y. Lee
|
Original Assignee
James Y. Lee
|
Surface light source device of side light type | ||
Patent #
US 6,074,070 A
Filed 07/28/1997
|
Current Assignee
Enplas Corporation
|
Original Assignee
Yasuhiro Koike, Enplas Corporation
|
Luminance control film | ||
Patent #
US 6,091,547 A
Filed 04/30/1997
|
Current Assignee
3M Innovative Properties Company
|
Original Assignee
3M Innovative Properties Company
|
Polarizing illumination device and projection display device | ||
Patent #
US 6,084,714 A
Filed 01/25/1999
|
Current Assignee
Seiko Epson Corporation
|
Original Assignee
Seiko Epson Corporation
|
Liquid crystal display apparatus having adjustable viewing angle characteristics | ||
Patent #
US 5,877,829 A
Filed 11/14/1996
|
Current Assignee
Sharp Electronics Corporation
|
Original Assignee
Sharp Electronics Corporation
|
Surface light source device and liquid crystal display device using the same | ||
Patent #
US 5,914,760 A
Filed 06/18/1997
|
Current Assignee
Casio Computer Company Limited
|
Original Assignee
Casio Computer Company Limited
|
Illumination device and liquid crystal display apparatus including same | ||
Patent #
US 5,796,450 A
Filed 12/13/1995
|
Current Assignee
Canon Kabushiki Kaisha
|
Original Assignee
Canon Kabushiki Kaisha
|
Lighting apparatus | ||
Patent #
US 5,808,708 A
Filed 12/14/1995
|
Current Assignee
Sharp Electronics Corporation
|
Original Assignee
Sharp Electronics Corporation
|
Surface-type illumination device and liquid crystal display | ||
Patent #
US 5,619,351 A
Filed 05/10/1994
|
Current Assignee
Seiko Epson Corporation
|
Original Assignee
Seiko Epson Corporation
|
Back light device of liquid crystal device | ||
Patent #
US 5,673,128 A
Filed 12/28/1995
|
Current Assignee
Sharp Electronics Corporation
|
Original Assignee
Sharp Electronics Corporation
|
1 Claim
-
1. A liquid crystal display device including an under light type back light unit in which light emitted from a plurality of linear light sources is reflected by a reflecting sheet disposed at a rear side of the plurality of linear light sources, then transmitted through a light modulation film and a light diffusion plate to form a planar light source with a first uniform luminance indirectly irradiating a first portion of a liquid crystal panel from a rear side thereof,
wherein one end portion of the light modulation film is shielded by a light shielding plate, and light emitted from one of the plurality of linear light sources is shielded by the light shielding plate and transmitted through only the light diffusion plate to irradiate a second portion of the liquid crystal panel from the rear side thereof with a second luminance higher than the first luminance.
1 Specification
This is a divisional of copending application Ser. No. 09/282,161 filed on Mar. 31, 1999.
1. Field of the Invention
The present invention relates to a liquid crystal display device (LCD) intended to increase the luminance of a display screen thereof so as to be suitable for an alarm display device to be mounted on a vehicle such as an automobile or the like.
2. Description of the Related Art
A housing 2 having an upper surface portion and a lower surface portion respectively shown in the upper and lower directions in the figure is provided with the light conduction plate 3 made of light transmission material at the center portion thereof. A fluorescent tube (hereinafter referred to as a CCT) 4 of a hot cathode tube or a cold cathode tube in the form of a linear light source is disposed at one end side of the light conduction plate 3. The linear light emitted from the CCT 4 is condensed at the end face of the light conduction plate 3 by means of a reflecting plate 5 having a curved surface and then conducted within the light conduction plate 3. The light from the CCT 4 thus conducted within the light conduction plate 3 is reflected upward by a reflecting sheet 6 disposed at the lower back side of the light conduction plate 3. In this manner, the light from the CCT 4 is formed as a planar light source, and the light from the planar light source transmits a light diffusion plate 7 disposed at the upward portion of the light conduction plate 3 thereby to illuminate the liquid crystal panel 8 provided at the uppermost portion of the housing 2 from the lower direction thereof. The light diffusion plate 7 is formed by an optical part such as a prism sheet or an element formed by translucent material effective for light diffusion.
Since the light from the CCT 4 transmits the light diffusion plate 7, the light is formed as a planar light source with a uniform luminance and then illuminated on the entire surface of the liquid crystal panel 8. As a result, the LCD 1 is formed as a dot matrix type LCD which displays characters or images on the display screen of the liquid crystal panel 8 in the form of the aggregation of dots, for example.
In this case, a plurality of CCTs 4 are disposed at the lower portion of the housing 2. A part of the light emitted from the respective CCTs 4 is reflected upward by a reflecting sheet 5 which is formed in a wave shape and disposed beneath the CCTs. The reflected light passes through a light modulation film 9 and transmits the light diffusion plate 7, whereby the light is formed as planar light with uniform luminance and then illuminated on the entire surface of the liquid crystal panel 8 from the lower direction thereof.
In each of the conventional LCDs shown in
The luminance of the light emitted from the surface of the side light type CCT 4 is usually about 30,000 cd/m2. The light emitted from the CCT 4 as the linear light source passes through the light conduction plate 3 and the light diffusion plate 7 or the light modulation film 9, so that the luminance of the light is attenuated. Thus, the luminance of the light illuminated on the liquid crystal panel 8 from the planar light source is reduced. Further, the luminance of the displayed image is reduced to about 150 cd/m2 due to the transmittance of the liquid crystal panel 8.
In the case of displaying various kinds of alarms within a vehicle such as an automobile, the luminance of the displayed image is desirably 200 cd/m2 or more at the maximum. However, the luminance of the displayed image of the LCD is generally about 150 cd/m2 at the maximum. In the aforesaid conventional examples, since the luminance of the displayed image of the LCD is reduced to about 150 cd/m2 due to the attenuation, the shortage of the luminance of the displayed image arises. Therefore, the aforesaid conventional LCDs are disadvantageous in that the visibility and the attention calling function thereof are deteriorated when used for a particular object such as a vehicle-mounted alarm display.
Accordingly, an object of the present invention is to provide an LCD which is intended to increase the luminance of a display screen thereof to thereby improve the visibility thereof so as to be effective for a vehicle-mounted alarm display device, in particular.
In order to achieve the aforesaid object, the present invention provides a liquid crystal display device including an edge light type back light unit in which light emitted from a linear light source is condensed at an end portion of a light conduction plate, then conducted and reflected, and a reflected light ejected from the light conduction plate is transmitted through a light diffusion plate to form a planar light source with a uniform luminance thereby to indirectly irradiate a liquid crystal panel from a rear side thereof, wherein a reflecting plate having a curved surface is disposed in a vicinity of the linear light source, and a light shielding plate is disposed so that a part of the light emitted from the linear light source and reflected by the reflecting plate is condensed at the end portion of the light conduction plate, whereby another part of the light emitted from the linear light source and reflected by the reflecting plate is directly irradiated with a higher luminance on a part of a display area of the liquid crystal panel than that of another part of the display area.
Further, the present invention provides a liquid crystal display device including an under light type back light unit in which light emitted from a plurality of linear light sources is reflected by a reflecting sheet disposed at a rear side of the plurality of linear light sources, then transmitted through a light modulation film and a light diffusion plate to form a planar light source with a uniform luminance thereby to indirectly irradiate a liquid crystal panel from a rear side thereof, wherein one end portion of the light modulation film is shielded by a light shielding plate, and light emitted from one of the plurality of linear light sources is shielded by the light shielding plate and transmitted through only the light diffusion plate thereby to directly irradiate with a higher luminance on a part of a display area of the liquid crystal panel than that of another part of the display area.
The LCDs according to the embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the following embodiments, elements same as or common to those of the conventional LCDs shown in
A light conduction plate 3 disposed at the center portion of a housing 2 is formed by transparent resin material or the like so that each of the upper and lower surfaces thereof is formed to be flat and smooth. The light conduction plate 3 is slanted from one side toward the other side thereof such that the thickness thereof becomes smaller so as to have a substantially rectangular shape in its sectional side view. A cold cathode fluorescent tube CCT 4 in the form of a linear light source is disposed to face on the one end side with the larger thickness of the light conduction plate 3.
A light shielding plate 10 is disposed between the one end side of the light conduction plate 3 and the CCT 4 so as to have such a size and a shape that almost half of the light emitted from the CCT 4 toward the one end side of the light conduction plate 3 is shielded by the light shielding plate. A light reflecting plate 11 having a curved surface opened upward is disposed at the position opposite to the light shielding plate 10. Further, a light diffusion plate 12 having a thin thickness is disposed in the upper direction of the CCT 4. These constituent elements configure the gist of the LCD of the present invention.
According to such a configuration, a part of the planar light emitted from the CCT 4 is reflected by the light reflecting plate 11, then the reflected light passes below the light shielding plate 10 and is condensed at the end face of the one end side of the light conduction plate 3. Further, another part of the planar light emitted from the CCT 4 is reflected by the light reflecting plate 11 and the reflected light directed upward is transmittable through the light diffusion plate 12. That is, the part of the light emitted from the CCT 4 is directed upward and capable of directly irradiating the part of a liquid crystal panel 8 from the lower direction thereof by merely transmitting through the light diffusion plate 12.
On the other hand, a reflecting sheet 6 is disposed at the rear surface side of the light conduction plate 3 along the slanted surface of the lower surface thereof. The light emitted from the CCT 4 and condensed at the one end surface of the light conduction plate 3 is reflected upward by means of the reflecting sheet 6. A light diffusion plate 7 is disposed in the upper direction of the light conduction plate 3, whereby the light reflected by the reflecting sheet 6 and then ejected from the light conduction plate 3 transmits the light diffusion plate 7 disposed above the light conduction plate thereby to be formed in uniform planar light. The light thus transmitted through the light diffusion plate 7 is indirectly irradiated on the liquid crystal panel 8 from the lower direction thereof as a back light of a planar light source with uniform luminance. The light diffusion plate 7 may be formed by an optical part such as a prism sheet or an element formed by translucent material effective for light diffusion.
According to the aforesaid configuration, the LCD of the first embodiment operates in the following manner. The operation of the LCD will be described also with reference to
A part of the light emitted from the CCT 4 as the linear light source is reflected by the light reflecting plate 11, then passes beneath the light shielding plate 10 and is condensed at the one end surface of the light conduction plate 3 (as shown by a dotted arrow a in FIG. 1). A part of the light incident into the light conduction plate 3 is reflected upward by means of the reflecting sheet 6 disposed at the rear surface of the light conduction plate 3 and transmits through the light diffusion plate 7. The light transmitted through the plate 7 is irradiated as uniform planar indirect light with a normal luminance on a display area (B) which occupies the most part of an entire display area (A) of the liquid crystal panel 8, from the lower direction thereof.
On the other hand, another part of the light emitted from the CCT 4 is shielded by the light shielding plate 10, and still another part of the light emitted from the CCT 4 is reflected by the light reflecting plate 11 and directed upward, then transmits the light diffusion plate 12 and irradiates a part of the liquid crystal panel 8 (as shown by a dotted arrow b in FIG. 1). Since this irradiated light only transmits the light diffusion plate 12 with a thin thickness on the way thereof, the irradiated light is riot attenuated and so can be irradiated on the part of the liquid crystal panel 8 with a required high luminance from the lower direction thereof.
That is, as shown in
Since the high luminance irradiation portion (C) is formed at the part of the entire display area (A) of the liquid crystal panel 8, the shortage of the luminance in the liquid crystal panel 8 is eliminated. Accordingly, a display screen with a high luminance and good visibility can be obtained when this LCD 1 is employed as a vehicle-mounted alarm display device.
Thus, this embodiment is arranged in a manner that the light modulation film 9 is not disposed in the upper direction of one of the CCTs 4 (that is, CCT 4a) and the light emitted from the CCT 4a is shielded by a light shielding plate 13, whereby the light emitted from the CCT 4a transmits the light diffusion plate 7 and can be directly irradiated on a part of a liquid crystal panel 8.
Accordingly, in this embodiment, since the light emitted from the plurality of CCTs 4 transmits the light modulation film 9 and the light diffusion plate 7, a display area (B) which occupies the most part of an entire display area (A) of the liquid crystal panel 8 is indirectly irradiated, from the lower direction thereof. According to this indirect irradiation, the irradiated display area occupying the most part of the entire display area serves as a normal luminance irradiation portion (B) of the display portion of the liquid crystal panel. In contrast, the light emitted upward from the CCT 4a transmits only the light diffusion plate 7 and then directly irradiates a part (C) of the display area of the liquid crystal panel 8 from the lower direction thereof. According to this direct irradiation, this irradiated part of the display area of the liquid crystal panel serves as a high luminance irradiation portion (C) of the display portion of the liquid crystal panel.
As will be understood from the LCDs according to the first and second embodiments, the present invention can form a high luminance area in the liquid crystal panel 8 with a lower cost without using particular parts as compared with the conventional LCDs.
Each of the LCDs according to the aforesaid embodiments may be applied to the segment type as the display method of characters and images, and is effective in particular for the dot matrix type which displays characters or images in the form of the aggregation of dots.
As described above, in the conventional LCD, when a back light unit called an edge light type or a side light type using a light conduction plate is employed as a lighting unit for lighting a liquid crystal panel of the LCD, there arises a problem that the luminance becomes insufficient when the LCD is used for a particular object such as a vehicle-mounted alarm device. In contrast, the LCD according to the present invention is advantageous in that the display can be performed with a high luminance through the constructional improvement without using particular parts thereby to eliminate the aforesaid conventional problem.