Method for recognizing a change in lane of a vehicle
First Claim
1. A method of detecting a lane change of a subject vehicle including a locating device adapted to use an angular resolution for locating at least one vehicle traveling in front of the subject vehicle and a device for determining a yaw rate of the subject vehicle, comprising:
- measuring an angular velocity of the at least one vehicle relative to the subject vehicle using the locating device; and
comparing the angular velocity to the yaw rate of the subject vehicle to form a lane change signal indicating the lane change.
1 Assignment
0 Petitions

Accused Products

Abstract
A method of detecting a lane change of a subject vehicle (20), having a locating device (10) which uses angular resolution for locating vehicles (VEH1, VEH2, VEH3) traveling in front, and a device (44) for determining the yaw rate (ω0) of the subject vehicle. The angular velocity (ωi) of at least one vehicle traveling in front relative to the subject vehicle (20) is measured using the locating device (10), and a lane change signal (LC) indicating the lane change is formed by comparing the measured angular velocity (ωi) to the yaw rate (ω0) of the subject vehicle.
305 Citations
Driver assistance system for vehicle | ||
Patent #
US 7,873,187 B2
Filed 08/16/2010
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Driver assistance system for vehicle | ||
Patent #
US 7,949,152 B2
Filed 12/28/2010
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Automatic signaling system for vehicles | ||
Patent #
US 7,986,223 B2
Filed 01/26/2009
|
Current Assignee
Autosignal LLC
|
Original Assignee
Anita Au, Gerald Chan
|
Driving intention estimation system, driver assisting system, and vehicle with the system | ||
Patent #
US 7,809,506 B2
Filed 11/23/2005
|
Current Assignee
Nissan Motor Co. Ltd.
|
Original Assignee
Nissan Motor Co. Ltd.
|
System for influencing the speed of a motor vehicle | ||
Patent #
US 7,840,330 B2
Filed 05/19/2005
|
Current Assignee
Lucas Automotive GmbH
|
Original Assignee
Lucas Automotive GmbH
|
Imaging system for vehicle | ||
Patent #
US 7,792,329 B2
Filed 10/27/2009
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
System for influencing the speed of a motor vehicle | ||
Patent #
US 7,774,123 B2
Filed 05/19/2005
|
Current Assignee
Lucas Automotive GmbH
|
Original Assignee
Lucas Automotive GmbH
|
MARK-ERASABLE PEN CAP | ||
Patent #
US 20100266326A1
Filed 04/21/2009
|
Current Assignee
Cheng-Hua Chuang
|
Original Assignee
Cheng-Hua Chuang
|
System for influencing the speed of a motor vehicle | ||
Patent #
US 7,831,368 B2
Filed 05/19/2005
|
Current Assignee
Lucas Automotive GmbH
|
Original Assignee
Lucas Automotive GmbH
|
System for influencing the speed of a motor vehicle | ||
Patent #
US 7,831,367 B2
Filed 05/19/2005
|
Current Assignee
Lucas Automotive GmbH
|
Original Assignee
Lucas Automotive GmbH
|
Automatic signaling systems for vehicles | ||
Patent #
US 7,482,916 B2
Filed 01/28/2005
|
Current Assignee
Autosignal LLC
|
Original Assignee
Anita Au, Gerald Chan
|
Method and Apparatus for Predicting a Movement Trajectory | ||
Patent #
US 20090076702A1
Filed 09/15/2006
|
Current Assignee
Continental Teves AG Co. OHG
|
Original Assignee
Continental Teves AG Co. OHG
|
Imaging system for vehicle | ||
Patent #
US 7,526,103 B2
Filed 04/14/2005
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Adaptive intention estimation method and system | ||
Patent #
US 7,555,367 B2
Filed 06/02/2005
|
Current Assignee
Nissan Motor Co. Ltd.
|
Original Assignee
Nissan Motor Co. Ltd.
|
AUTOMATIC SIGNALING SYSTEM FOR VEHICLES | ||
Patent #
US 20090189756A1
Filed 01/26/2009
|
Current Assignee
Autosignal LLC
|
Original Assignee
Gerald Chan
|
Method and device for driver assistance | ||
Patent #
US 20090185718A1
Filed 05/29/2006
|
Current Assignee
Robert Bosch GmbH
|
Original Assignee
Robert Bosch GmbH
|
TURNING DIRECTION INDICATOR | ||
Patent #
US 20090205936A1
Filed 02/12/2009
|
Current Assignee
Panasonic Corporation
|
Original Assignee
Panasonic Corporation
|
Vehicle operation support apparatus | ||
Patent #
US 7,610,121 B2
Filed 10/12/2005
|
Current Assignee
Nissan Motor Co. Ltd.
|
Original Assignee
Nissan Motor Co. Ltd.
|
Driver assistance system for vehicle | ||
Patent #
US 7,616,781 B2
Filed 04/24/2009
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Vehicle navigation apparatus and method | ||
Patent #
US 20080071474A1
Filed 08/16/2007
|
Current Assignee
DENSO Corporation
|
Original Assignee
DENSO Corporation
|
System for recognising the lane-change manoeuver of a motor vehicle | ||
Patent #
US 7,386,385 B2
Filed 05/19/2005
|
Current Assignee
Lucas Automotive GmbH
|
Original Assignee
Lucas Automotive GmbH
|
System for influencing the speed of a motor vehicle | ||
Patent #
US 7,177,750 B2
Filed 05/19/2005
|
Current Assignee
Lucas Automotive GmbH
|
Original Assignee
Lucas Automotive GmbH
|
System for influencing the speed of a motor vehicle | ||
Patent #
US 7,212,907 B2
Filed 05/19/2005
|
Current Assignee
Lucas Automotive GmbH
|
Original Assignee
Lucas Automotive GmbH
|
System for influencing the speed of a motor vehicle | ||
Patent #
US 7,248,962 B2
Filed 05/19/2005
|
Current Assignee
Lucas Automotive GmbH
|
Original Assignee
Lucas Automotive GmbH
|
Vehicle operation support apparatus | ||
Patent #
US 20060095193A1
Filed 10/12/2005
|
Current Assignee
Nissan Motor Co. Ltd.
|
Original Assignee
Nissan Motor Co. Ltd.
|
Driving intention estimating system, driver assisting system, and vehicle with the system | ||
Patent #
US 20060145827A1
Filed 11/23/2005
|
Current Assignee
Nissan Motor Co. Ltd.
|
Original Assignee
Nissan Motor Co. Ltd.
|
System for recognising the lane-change manoeuver of a motor vehicle | ||
Patent #
US 20050216171A1
Filed 05/19/2005
|
Current Assignee
Lucas Automotive GmbH
|
Original Assignee
Lucas Automotive GmbH
|
System for influencing the spread of a motor vehicle | ||
Patent #
US 20050216170A1
Filed 05/19/2005
|
Current Assignee
Lucas Automotive GmbH
|
Original Assignee
Lucas Automotive GmbH
|
System for influencing the speed of a motor vehicle | ||
Patent #
US 20050216137A1
Filed 05/19/2005
|
Current Assignee
Lucas Automotive GmbH
|
Original Assignee
Lucas Automotive GmbH
|
System for recognizing left-hand or right-hand driving conditions | ||
Patent #
US 20050209764A1
Filed 05/19/2005
|
Current Assignee
Lucas Automotive GmbH
|
Original Assignee
Lucas Automotive GmbH
|
System for influencing the speed of a motor vehicle | ||
Patent #
US 20050216172A1
Filed 05/19/2005
|
Current Assignee
Lucas Automotive GmbH
|
Original Assignee
Lucas Automotive GmbH
|
System for influencing the speed of a motor vehicle | ||
Patent #
US 20050240335A1
Filed 05/19/2005
|
Current Assignee
Lucas Automotive GmbH
|
Original Assignee
Lucas Automotive GmbH
|
System for influencing the speed of a motor vehicle | ||
Patent #
US 20050240330A1
Filed 05/19/2005
|
Current Assignee
Lucas Automotive GmbH
|
Original Assignee
Lucas Automotive GmbH
|
Imaging system for vehicle | ||
Patent #
US 20050232469A1
Filed 04/14/2005
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Mirrors of America Incorporated
|
System for influencing the speed of a motor vehicle | ||
Patent #
US 20050251323A1
Filed 05/19/2005
|
Current Assignee
Lucas Automotive GmbH
|
Original Assignee
Lucas Automotive GmbH
|
System for influencing the speed of a motor vehicle | ||
Patent #
US 20050251313A1
Filed 05/19/2005
|
Current Assignee
Lucas Automotive GmbH
|
Original Assignee
Lucas Automotive GmbH
|
Adaptive intention estimation method and system | ||
Patent #
US 20050273215A1
Filed 06/02/2005
|
Current Assignee
Nissan Motor Co. Ltd.
|
Original Assignee
Nissan Motor Co. Ltd.
|
Process for predicting the course of a lane of a vehicle | ||
Patent #
US 20050278112A1
Filed 06/14/2005
|
Current Assignee
Daimler Chrysler Company LLC
|
Original Assignee
Daimler Chrysler Company LLC
|
Imaging system for vehicle | ||
Patent #
US 8,090,153 B2
Filed 05/13/2011
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Turning direction indicator | ||
Patent #
US 8,090,498 B2
Filed 02/12/2009
|
Current Assignee
Panasonic Corporation
|
Original Assignee
Panasonic Corporation
|
Automatic lighting system with adaptive function | ||
Patent #
US 8,070,332 B2
Filed 03/29/2011
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Automatic lighting system | ||
Patent #
US 8,142,059 B2
Filed 11/09/2011
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision system for vehicle | ||
Patent #
US 8,189,871 B2
Filed 01/31/2011
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Method and device for driver assistance | ||
Patent #
US 8,195,387 B2
Filed 05/29/2006
|
Current Assignee
Robert Bosch GmbH
|
Original Assignee
Robert Bosch GmbH
|
Forward facing sensing system for a vehicle | ||
Patent #
US 8,217,830 B2
Filed 07/28/2011
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle navigation apparatus and method | ||
Patent #
US 8,234,065 B2
Filed 08/16/2007
|
Current Assignee
DENSO Corporation
|
Original Assignee
DENSO Corporation
|
Forward facing sensing system for vehicle | ||
Patent #
US 8,294,608 B1
Filed 07/03/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Imaging system for vehicle | ||
Patent #
US 8,325,986 B2
Filed 12/22/2011
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Method and apparatus for predicting a movement trajectory | ||
Patent #
US 8,340,883 B2
Filed 09/15/2006
|
Current Assignee
Continental Teves AG Co. OHG
|
Original Assignee
Continental Teves AG Co. OHG
|
Automatic headlamp control | ||
Patent #
US 8,376,595 B2
Filed 05/17/2010
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Automatic signaling system for vehicles | ||
Patent #
US 8,378,805 B2
Filed 07/26/2011
|
Current Assignee
Autosignal LLC
|
Original Assignee
Anita Au, Gerald Chan
|
Combined RGB and IR imaging sensor | ||
Patent #
US 8,446,470 B2
Filed 10/03/2008
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Imaging system for vehicle | ||
Patent #
US 8,451,107 B2
Filed 09/11/2008
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision system for vehicle | ||
Patent #
US 8,483,439 B2
Filed 05/25/2012
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Imaging system for vehicle | ||
Patent #
US 8,593,521 B2
Filed 11/30/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular vision system | ||
Patent #
US 8,599,001 B2
Filed 11/19/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Forward facing sensing system for vehicle | ||
Patent #
US 8,614,640 B2
Filed 10/22/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system | ||
Patent #
US 8,629,768 B2
Filed 06/18/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Driver assistance system for vehicle | ||
Patent #
US 8,636,393 B2
Filed 05/06/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assistance system for a vehicle | ||
Patent #
US 8,637,801 B2
Filed 07/08/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Multi-camera vision system for a vehicle | ||
Patent #
US 8,643,724 B2
Filed 03/13/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision system for vehicle | ||
Patent #
US 8,665,079 B2
Filed 10/15/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle yaw rate correction | ||
Patent #
US 8,694,224 B2
Filed 02/28/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular vision system | ||
Patent #
US 8,814,401 B2
Filed 03/22/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assistance system for vehicle | ||
Patent #
US 8,818,042 B2
Filed 11/18/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with yaw rate determination | ||
Patent #
US 8,849,495 B2
Filed 04/07/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Automatic vehicle exterior light control | ||
Patent #
US 8,842,176 B2
Filed 01/15/2010
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Parking assist system | ||
Patent #
US 8,874,317 B2
Filed 07/27/2010
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assistance system for a vehicle | ||
Patent #
US 8,886,401 B2
Filed 11/04/2013
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Adaptable wireless vehicle vision system based on wireless communication error | ||
Patent #
US 8,890,955 B2
Filed 02/09/2011
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Magna Mirrors of America Incorporated
|
Imaging system for vehicle | ||
Patent #
US 8,908,040 B2
Filed 05/17/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular vision system | ||
Patent #
US 8,917,169 B2
Filed 12/02/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assistance system for vehicle | ||
Patent #
US 8,977,008 B2
Filed 07/08/2013
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Driver assistance system for a vehicle | ||
Patent #
US 8,993,951 B2
Filed 07/16/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision system for vehicle | ||
Patent #
US 9,008,369 B2
Filed 08/25/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assistance system for vehicle | ||
Patent #
US 9,014,904 B2
Filed 09/23/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular imaging system with camera misalignment correction and capturing image data at different resolution levels dependent on distance to object in field of view | ||
Patent #
US 9,018,577 B2
Filed 02/25/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Imaging and display system for vehicle | ||
Patent #
US 9,041,806 B2
Filed 08/31/2010
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Rear vision system with trailer angle detection | ||
Patent #
US 9,085,261 B2
Filed 01/25/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Braking control system for vehicle | ||
Patent #
US 9,090,234 B2
Filed 11/18/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular vision system | ||
Patent #
US 9,092,986 B2
Filed 01/31/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular rear view camera display system with lifecheck function | ||
Patent #
US 9,117,123 B2
Filed 07/05/2011
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Alert system for vehicle | ||
Patent #
US 9,126,525 B2
Filed 02/25/2010
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Multi-camera vision system for a vehicle | ||
Patent #
US 9,131,120 B2
Filed 05/15/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Forward facing sensing system for vehicle | ||
Patent #
US 9,140,789 B2
Filed 12/16/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assist system with algorithm switching | ||
Patent #
US 9,146,898 B2
Filed 10/25/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision system for vehicle | ||
Patent #
US 9,171,217 B2
Filed 03/03/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Lane keeping system and lane centering system | ||
Patent #
US 9,180,908 B2
Filed 11/17/2011
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assistance system for vehicle | ||
Patent #
US 9,187,028 B2
Filed 02/14/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular vision system | ||
Patent #
US 9,191,574 B2
Filed 03/13/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision system for vehicle | ||
Patent #
US 9,191,634 B2
Filed 04/03/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assistance system for vehicle | ||
Patent #
US 9,193,303 B2
Filed 04/20/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Step filter for estimating distance in a time-of-flight ranging system | ||
Patent #
US 9,194,943 B2
Filed 04/11/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system using kinematic model of vehicle motion | ||
Patent #
US 9,205,776 B2
Filed 05/20/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assistance system for a vehicle | ||
Patent #
US 9,245,448 B2
Filed 06/17/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Forward facing sensing system for vehicle | ||
Patent #
US 9,244,165 B1
Filed 09/21/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Automatic signaling system for vehicles | ||
Patent #
US 9,248,777 B2
Filed 02/19/2013
|
Current Assignee
Autosignal LLC
|
Original Assignee
Anita Au, Gerald Chan
|
Vehicle vision system with collision mitigation | ||
Patent #
US 9,260,095 B2
Filed 06/13/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision display system for vehicle | ||
Patent #
US 9,264,672 B2
Filed 12/21/2011
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Mirrors of America Incorporated
|
Vehicular collision mitigation system | ||
Patent #
US 9,318,020 B2
Filed 07/27/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Rear collision avoidance system for vehicle | ||
Patent #
US 9,327,693 B2
Filed 04/09/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Forward facing sensing system for vehicle | ||
Patent #
US 9,335,411 B1
Filed 01/25/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle lane keep assist system | ||
Patent #
US 9,340,227 B2
Filed 08/12/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with yaw rate determination | ||
Patent #
US 9,346,468 B2
Filed 09/29/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Method and system for dynamically calibrating vehicular cameras | ||
Patent #
US 9,357,208 B2
Filed 01/20/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assist system for vehicle | ||
Patent #
US 9,376,060 B2
Filed 11/16/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision system for vehicle | ||
Patent #
US 9,428,192 B2
Filed 11/16/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system | ||
Patent #
US 9,436,880 B2
Filed 01/13/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision system for vehicle | ||
Patent #
US 9,440,535 B2
Filed 01/27/2014
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Trailer angle detection system | ||
Patent #
US 9,446,713 B2
Filed 09/25/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Parking assist system | ||
Patent #
US 9,457,717 B2
Filed 10/27/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assistance system for a vehicle | ||
Patent #
US 9,463,744 B2
Filed 01/18/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision display system for vehicle | ||
Patent #
US 9,469,250 B2
Filed 02/12/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system utilizing camera synchronization | ||
Patent #
US 9,481,301 B2
Filed 12/05/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Braking control system for vehicle | ||
Patent #
US 9,481,344 B2
Filed 07/27/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle control system with adaptive wheel angle correction | ||
Patent #
US 9,487,235 B2
Filed 04/01/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle camera alignment system | ||
Patent #
US 9,491,450 B2
Filed 07/30/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Calibration system and method for vehicular surround vision system | ||
Patent #
US 9,491,451 B2
Filed 11/14/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular camera with on-board microcontroller | ||
Patent #
US 9,495,876 B2
Filed 07/27/2010
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle monitoring system | ||
Patent #
US 9,499,139 B2
Filed 12/05/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Automatic control systems for vehicles | ||
Patent #
US 9,505,343 B2
Filed 01/28/2016
|
Current Assignee
Autosignal LLC
|
Original Assignee
Anita Au, Gerald Chan
|
Vehicular multi-camera vision system | ||
Patent #
US 9,508,014 B2
Filed 05/05/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Forward facing sensing system for vehicle | ||
Patent #
US 9,507,021 B2
Filed 05/09/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Collision avoidance system for vehicle | ||
Patent #
US 9,545,921 B2
Filed 05/02/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Image processing method for detecting objects using relative motion | ||
Patent #
US 9,547,795 B2
Filed 01/20/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with trailer angle detection | ||
Patent #
US 9,558,409 B2
Filed 12/11/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assistance system for vehicle | ||
Patent #
US 9,555,803 B2
Filed 05/16/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular vision system | ||
Patent #
US 9,563,809 B2
Filed 04/18/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with targetless camera calibration | ||
Patent #
US 9,563,951 B2
Filed 05/20/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision display system for vehicle | ||
Patent #
US 9,598,014 B2
Filed 10/17/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision system for vehicle | ||
Patent #
US 9,609,289 B2
Filed 08/29/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with image classification | ||
Patent #
US 9,619,716 B2
Filed 08/11/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Personalized driver assistance system for vehicle | ||
Patent #
US 9,623,878 B2
Filed 04/01/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision system for vehicle | ||
Patent #
US 9,643,605 B2
Filed 10/26/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assist system for vehicle | ||
Patent #
US 9,656,608 B2
Filed 06/13/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle camera image quality improvement in poor visibility conditions by contrast amplification | ||
Patent #
US 9,681,062 B2
Filed 09/25/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Calibration system and method for multi-camera vision system | ||
Patent #
US 9,688,200 B2
Filed 03/03/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system using kinematic model of vehicle motion | ||
Patent #
US 9,701,246 B2
Filed 12/07/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Process for determining state of a vehicle | ||
Patent #
US 9,715,769 B2
Filed 05/23/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Multi-camera image stitching calibration system | ||
Patent #
US 9,723,272 B2
Filed 10/04/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision display system for vehicle | ||
Patent #
US 9,731,653 B2
Filed 03/16/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision system for vehicle | ||
Patent #
US 9,736,435 B2
Filed 03/20/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with enhanced display functions | ||
Patent #
US 9,743,002 B2
Filed 11/18/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with reduced image color data processing by use of dithering | ||
Patent #
US 9,751,465 B2
Filed 04/16/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Lane keeping system and lane centering system | ||
Patent #
US 9,758,163 B2
Filed 11/09/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assistant system using influence mapping for conflict avoidance path determination | ||
Patent #
US 9,761,142 B2
Filed 09/03/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with customized display | ||
Patent #
US 9,762,880 B2
Filed 12/07/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle yaw rate estimation system | ||
Patent #
US 9,764,744 B2
Filed 02/24/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular multi-camera vision system | ||
Patent #
US 9,769,381 B2
Filed 11/28/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Method for enhancing vehicle camera image quality | ||
Patent #
US 9,774,790 B1
Filed 06/12/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with trailer angle detection | ||
Patent #
US 9,779,313 B2
Filed 01/24/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Imaging and display system for vehicle | ||
Patent #
US 9,789,821 B2
Filed 05/22/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Imaging system for vehicle | ||
Patent #
US 9,796,332 B2
Filed 05/24/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Collision avoidance system for vehicle | ||
Patent #
US 9,802,609 B2
Filed 01/16/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Trailer angle detection system calibration | ||
Patent #
US 9,802,542 B2
Filed 09/19/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular control system | ||
Patent #
US 9,824,285 B2
Filed 01/26/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with collision mitigation | ||
Patent #
US 9,824,587 B2
Filed 02/12/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driving assist system for vehicle | ||
Patent #
US 9,834,142 B2
Filed 05/19/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular control system using cameras and radar sensor | ||
Patent #
US 9,834,216 B2
Filed 01/24/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Method and system for dynamically calibrating vehicular cameras | ||
Patent #
US 9,834,153 B2
Filed 04/25/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Parking assist system | ||
Patent #
US 9,868,463 B2
Filed 09/28/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system using image data transmission and power supply via a coaxial cable | ||
Patent #
US 9,900,490 B2
Filed 02/22/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
System and method of establishing a multi-camera image using pixel remapping | ||
Patent #
US 9,900,522 B2
Filed 12/01/2011
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver active safety control system for vehicle | ||
Patent #
US 9,911,050 B2
Filed 09/04/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system utilizing camera synchronization | ||
Patent #
US 9,912,841 B2
Filed 10/31/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Process for determining state of a vehicle | ||
Patent #
US 9,916,699 B2
Filed 07/24/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with calibration algorithm | ||
Patent #
US 9,916,660 B2
Filed 01/15/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assist system with image processing and wireless communication | ||
Patent #
US 9,919,705 B2
Filed 09/28/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle collision avoidance system with enhanced pedestrian avoidance | ||
Patent #
US 9,925,980 B2
Filed 09/15/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assistance system for vehicle | ||
Patent #
US 9,940,528 B2
Filed 11/20/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision system for vehicle | ||
Patent #
US 9,948,904 B2
Filed 08/14/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Method for controlling a vehicle in accordance with parameters preferred by an identified driver | ||
Patent #
US 9,950,707 B2
Filed 04/17/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Trailering assist system with trailer angle detection | ||
Patent #
US 9,950,738 B2
Filed 07/20/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular imaging system comprising an imaging device with a single image sensor and image processor for determining a totally blocked state or partially blocked state of the single image sensor as well as an automatic correction for misalignment of the imaging device | ||
Patent #
US 9,972,100 B2
Filed 04/23/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with targetless camera calibration | ||
Patent #
US 9,979,957 B2
Filed 01/26/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle control system with traffic driving control | ||
Patent #
US 9,988,047 B2
Filed 12/12/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Imaging system for vehicle | ||
Patent #
US 10,003,755 B2
Filed 12/08/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assistance system for vehicle | ||
Patent #
US 10,005,394 B2
Filed 11/16/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular control system | ||
Patent #
US 10,015,452 B1
Filed 04/16/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Braking control system for vehicle | ||
Patent #
US 10,023,161 B2
Filed 10/31/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system utilizing corner detection | ||
Patent #
US 10,025,994 B2
Filed 12/02/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Spectral filtering for vehicular driver assistance systems | ||
Patent #
US 10,027,930 B2
Filed 03/28/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
System and method for detection of surrounding vehicle lane departure | ||
Patent #
US 10,030,978 B2
Filed 01/17/2016
|
Current Assignee
Ibaraki Toyota Jidosha Kabushiki Kaisha
|
Original Assignee
Toyota Motor Engineering Manufacturing North America Incorporated
|
Image processing method for detecting objects using relative motion | ||
Patent #
US 10,043,082 B2
Filed 01/16/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Automatic control systems for vehicles | ||
Patent #
US 10,046,696 B2
Filed 11/10/2016
|
Current Assignee
Autosignal LLC
|
Original Assignee
Anita Au, Gerald Chan
|
Control system for vehicle | ||
Patent #
US 10,046,702 B2
Filed 12/04/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Imaging and display system for vehicle | ||
Patent #
US 10,053,012 B2
Filed 10/16/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with enhanced lane tracking | ||
Patent #
US 10,055,651 B2
Filed 03/01/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular multi-camera vision system | ||
Patent #
US 10,057,489 B2
Filed 09/18/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision system for vehicle | ||
Patent #
US 10,071,676 B2
Filed 09/12/2016
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision system for vehicle | ||
Patent #
US 10,071,687 B2
Filed 11/27/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle parking assist system with vision-based parking space detection | ||
Patent #
US 10,078,789 B2
Filed 07/14/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assistance system for vehicle | ||
Patent #
US 10,086,747 B2
Filed 08/25/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular control system with trailering assist function | ||
Patent #
US 10,089,541 B2
Filed 10/02/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with front and rear camera integration | ||
Patent #
US 10,089,537 B2
Filed 05/15/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision system for vehicle | ||
Patent #
US 10,099,614 B2
Filed 11/27/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assistance system for a vehicle | ||
Patent #
US 10,099,610 B2
Filed 10/10/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with enhanced display functions | ||
Patent #
US 10,104,298 B2
Filed 08/21/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular camera with on-board microcontroller | ||
Patent #
US 10,106,155 B2
Filed 11/11/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Forward facing sensing system for vehicle | ||
Patent #
US 10,107,905 B2
Filed 11/28/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular control system | ||
Patent #
US 10,110,860 B1
Filed 07/02/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assistant system using influence mapping for conflict avoidance path determination | ||
Patent #
US 10,115,310 B2
Filed 09/11/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular control system using cameras and radar sensor | ||
Patent #
US 10,118,618 B2
Filed 12/04/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Method for vehicular control | ||
Patent #
US 10,127,738 B2
Filed 03/12/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with customized display | ||
Patent #
US 10,129,518 B2
Filed 09/11/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle monitoring system | ||
Patent #
US 10,137,892 B2
Filed 11/18/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision display system for vehicle | ||
Patent #
US 10,144,352 B2
Filed 08/14/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle dynamic control system for emergency handling | ||
Patent #
US 10,144,419 B2
Filed 11/22/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Trailer backup assist system | ||
Patent #
US 10,160,382 B2
Filed 02/04/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle control system with reverse assist | ||
Patent #
US 10,160,437 B2
Filed 02/27/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system utilizing multiple cameras and ethernet links | ||
Patent #
US 10,171,709 B2
Filed 03/05/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Multi-camera dynamic top view vision system | ||
Patent #
US 10,179,543 B2
Filed 02/27/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Multi-camera vehicle vision system with image gap fill | ||
Patent #
US 10,187,590 B2
Filed 10/26/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular control system | ||
Patent #
US 10,187,615 B1
Filed 10/22/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Moving object detection apparatus and drive support apparatus | ||
Patent #
US 10,197,672 B2
Filed 06/21/2016
|
Current Assignee
Ibaraki Toyota Jidosha Kabushiki Kaisha
|
Original Assignee
Ibaraki Toyota Jidosha Kabushiki Kaisha
|
Vehicle control system with adaptive wheel angle correction | ||
Patent #
US 10,202,147 B2
Filed 11/07/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Method for dynamically calibrating vehicular cameras | ||
Patent #
US 10,202,077 B2
Filed 05/23/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Collision avoidance system for vehicle | ||
Patent #
US 10,207,705 B2
Filed 10/25/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Parking assist system for vehicle | ||
Patent #
US 10,214,206 B2
Filed 07/11/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
System for locating a parking space based on a previously parked space | ||
Patent #
US 10,222,224 B2
Filed 04/15/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Rear vision system for vehicle with dual purpose signal lines | ||
Patent #
US 10,232,797 B2
Filed 04/29/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with calibration algorithm | ||
Patent #
US 10,235,775 B2
Filed 03/07/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Method for enhancing vehicle camera image quality | ||
Patent #
US 10,257,432 B2
Filed 09/25/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Calibration system and method for vehicular surround vision system | ||
Patent #
US 10,264,249 B2
Filed 11/07/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system using kinematic model of vehicle motion | ||
Patent #
US 10,266,115 B2
Filed 07/10/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Multi-camera image stitching calibration system | ||
Patent #
US 10,284,818 B2
Filed 07/31/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision using image data transmission and power supply via a coaxial cable | ||
Patent #
US 10,284,764 B2
Filed 02/19/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with video compression | ||
Patent #
US 10,286,855 B2
Filed 03/22/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
System and method for estimating distance between a mobile unit and a vehicle using a TOF system | ||
Patent #
US 10,288,724 B2
Filed 11/20/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Automatic control systems for vehicles | ||
Patent #
US 10,293,743 B2
Filed 08/10/2018
|
Current Assignee
Autosignal LLC
|
Original Assignee
Anita Au, Gerald Chan
|
Multi-sensor interior mirror device with image adjustment | ||
Patent #
US 10,300,859 B2
Filed 06/08/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Trailer driving assist system | ||
Patent #
US 10,300,855 B2
Filed 10/25/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular display system | ||
Patent #
US 10,300,856 B2
Filed 08/20/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular control system | ||
Patent #
US 10,306,190 B1
Filed 01/21/2019
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular vision system with enhanced display functions | ||
Patent #
US 10,321,064 B2
Filed 10/11/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with reduction of temporal noise in images | ||
Patent #
US 10,326,969 B2
Filed 08/11/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Parking assist system with annotated map generation | ||
Patent #
US 10,328,932 B2
Filed 06/01/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular vision system with rear backup video display | ||
Patent #
US 10,336,255 B2
Filed 11/29/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular control system using cameras and radar sensor | ||
Patent #
US 10,351,135 B2
Filed 11/01/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
System and method for detection of vehicle lane departure | ||
Patent #
US 10,352,704 B2
Filed 06/26/2018
|
Current Assignee
Ibaraki Toyota Jidosha Kabushiki Kaisha
|
Original Assignee
Toyota Motor Engineering Manufacturing North America Incorporated
|
Vehicular lane change system | ||
Patent #
US 10,406,980 B2
Filed 10/11/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular control system responsive to yaw rate estimation system | ||
Patent #
US 10,407,080 B2
Filed 09/18/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Lane keeping system and lane centering system | ||
Patent #
US 10,427,679 B2
Filed 09/11/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with reduced image color data processing by use of dithering | ||
Patent #
US 10,434,944 B2
Filed 08/30/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Processing method for distinguishing a three dimensional object from a two dimensional object using a vehicular system | ||
Patent #
US 10,452,931 B2
Filed 08/06/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular control system | ||
Patent #
US 10,462,426 B2
Filed 05/16/2019
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular vision system with rear backup video display | ||
Patent #
US 10,486,597 B1
Filed 07/01/2019
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Multi-camera dynamic top view vision system | ||
Patent #
US 10,486,596 B2
Filed 01/14/2019
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle camera system with image manipulation | ||
Patent #
US 10,493,916 B2
Filed 02/22/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular trailer backup assist system | ||
Patent #
US 10,493,917 B2
Filed 12/20/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular collision mitigation system | ||
Patent #
US 10,497,262 B2
Filed 11/20/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular vision system | ||
Patent #
US 10,509,972 B2
Filed 04/09/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with front and rear camera integration | ||
Patent #
US 10,515,279 B2
Filed 08/30/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle data recording system | ||
Patent #
US 10,523,904 B2
Filed 04/10/2019
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with customized display | ||
Patent #
US 10,542,244 B2
Filed 11/12/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Method of synchronizing multiple vehicular cameras with an ECU | ||
Patent #
US 10,560,610 B2
Filed 12/28/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Coaxial cable with bidirectional data transmission | ||
Patent #
US 10,567,705 B2
Filed 06/06/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system using image data transmission and power supply via a coaxial cable | ||
Patent #
US 10,567,633 B2
Filed 05/02/2019
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Targetless vehicular camera calibration method | ||
Patent #
US 10,567,748 B2
Filed 05/21/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Parking assist system | ||
Patent #
US 10,569,804 B2
Filed 01/15/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Automatic control systems for vehicles | ||
Patent #
US 10,569,700 B2
Filed 05/20/2019
|
Current Assignee
Autosignal LLC
|
Original Assignee
Anita Au, Gerald Chan
|
Method for displaying video images for a vehicular vision system | ||
Patent #
US 10,574,885 B2
Filed 08/20/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular control system with trailering assist function | ||
Patent #
US 10,586,119 B2
Filed 10/01/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular rear backup vision system with video display | ||
Patent #
US 10,589,678 B1
Filed 11/25/2019
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with accelerated object confirmation | ||
Patent #
US 10,609,335 B2
Filed 03/22/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Video processor module for vehicle | ||
Patent #
US 10,611,306 B2
Filed 08/09/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Imaging system for vehicle | ||
Patent #
US 10,616,507 B2
Filed 06/18/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assistance system for vehicle | ||
Patent #
US 10,623,704 B2
Filed 03/09/2015
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Method for dynamically calibrating vehicular cameras | ||
Patent #
US 10,640,041 B2
Filed 02/04/2019
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision system for vehicle | ||
Patent #
US 10,640,040 B2
Filed 09/10/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Method and system for dynamically ascertaining alignment of vehicular cameras | ||
Patent #
US 10,654,423 B2
Filed 12/04/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Forward sensing system for vehicle | ||
Patent #
US 10,670,713 B2
Filed 10/22/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular driving assist system using forward-viewing camera | ||
Patent #
US 10,683,008 B2
Filed 07/15/2019
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular driver assist system | ||
Patent #
US 10,685,243 B2
Filed 08/20/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle control system with traffic driving control | ||
Patent #
US 10,688,993 B2
Filed 06/04/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with collision mitigation | ||
Patent #
US 10,692,380 B2
Filed 11/20/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular parking assist system that determines a parking space based in part on previously parked spaces | ||
Patent #
US 10,718,624 B2
Filed 03/04/2019
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular imaging system with blockage determination and misalignment correction | ||
Patent #
US 10,726,578 B2
Filed 05/14/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assistant system using influence mapping for conflict avoidance path determination | ||
Patent #
US 10,733,892 B2
Filed 10/29/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular control system with traffic lane detection | ||
Patent #
US 10,735,695 B2
Filed 10/28/2019
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular control system with temperature input | ||
Patent #
US 10,744,940 B2
Filed 06/25/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Trailering assist system for vehicle | ||
Patent #
US 10,755,110 B2
Filed 06/27/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Imaging system for vehicle | ||
Patent #
US 10,766,417 B2
Filed 10/23/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle control system with reverse assist | ||
Patent #
US 10,773,707 B2
Filed 12/20/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Method for stitching images captured by multiple vehicular cameras | ||
Patent #
US 10,780,827 B2
Filed 11/25/2019
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Method for determining misalignment of a vehicular camera | ||
Patent #
US 10,780,826 B2
Filed 04/22/2019
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Adaptive forward lighting system for vehicle comprising a control that adjusts the headlamp beam in response to processing of image data captured by a camera | ||
Patent #
US 10,787,116 B2
Filed 09/10/2018
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Imaging system for vehicle | ||
Patent #
US 10,793,067 B2
Filed 07/25/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Trailer driving assist system | ||
Patent #
US 10,800,332 B2
Filed 05/16/2019
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular collision mitigation system | ||
Patent #
US 10,803,744 B2
Filed 12/02/2019
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular adaptive headlighting system | ||
Patent #
US 10,807,515 B2
Filed 10/01/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular rear backup vision system with video display | ||
Patent #
US 10,814,785 B2
Filed 03/16/2020
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with incident recording function | ||
Patent #
US 10,819,943 B2
Filed 05/05/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular vision system using image data transmission and power supply via a coaxial cable | ||
Patent #
US 10,827,108 B2
Filed 02/17/2020
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular control system | ||
Patent #
US 10,839,233 B2
Filed 03/05/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Trailering assist system with trailer angle detection | ||
Patent #
US 10,858,042 B2
Filed 04/23/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Method for determining alignment of vehicular cameras | ||
Patent #
US 10,868,974 B2
Filed 02/19/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular control system with remote processor | ||
Patent #
US 10,870,427 B2
Filed 11/26/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Method of synchronizing multiple vehicular cameras with an ECU | ||
Patent #
US 10,873,682 B2
Filed 02/10/2020
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular vision system | ||
Patent #
US 10,875,455 B2
Filed 05/16/2019
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Collision avoidance system for vehicle | ||
Patent #
US 10,875,527 B2
Filed 02/18/2019
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular vision system | ||
Patent #
US 10,875,526 B2
Filed 10/22/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Forward sensing system for vehicle | ||
Patent #
US 10,877,147 B2
Filed 06/01/2020
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular control system for emergency handling | ||
Patent #
US 10,889,293 B2
Filed 11/29/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Distance-related method for controlling the speed of a vehicle | ||
Patent #
US 6,721,645 B2
Filed 04/22/2002
|
Current Assignee
Robert Bosch GmbH
|
Original Assignee
Robert Bosch GmbH
|
10 Claims
-
1. A method of detecting a lane change of a subject vehicle including a locating device adapted to use an angular resolution for locating at least one vehicle traveling in front of the subject vehicle and a device for determining a yaw rate of the subject vehicle, comprising:
-
measuring an angular velocity of the at least one vehicle relative to the subject vehicle using the locating device; and
comparing the angular velocity to the yaw rate of the subject vehicle to form a lane change signal indicating the lane change. - View Dependent Claims (2, 3, 4, 5, 6, 7, 8, 9, 10)
-
1 Specification
The present invention relates to a method of detecting a lane change of a vehicle having a locating device which uses angular resolution for locating vehicles traveling in front, and a device for determining the yaw rate of the subject vehicle.
Distance- and speed-regulating devices for motor vehicles, also referred to as ACC (adaptive cruise control) systems, are known. In these systems, objects, for example vehicles traveling in front in the same lane as the subject vehicle, are detected using a locating device, for example a radar system which provides angular resolution, which enables the distance and relative speed of the vehicle traveling in front to be measured. The capability for angular resolution in such a radar system has been used in the past to check the detected objects for plausibility, so that, for example, vehicles in the same lane as the subject vehicle may be distinguished from road signs or markings on the edge of the roadway, or from vehicles in other lanes.
When a vehicle traveling in front in the same lane as the subject vehicle is within the locating range of the radar, the traveling speed is regulated by intervention in the drive or braking system of the vehicle in such a way that a speed-dependent distance from the vehicle traveling in front is maintained. On the other hand, if there is no vehicle within locating range in the same lane as the subject vehicle, the device regulates the speed at an intended speed selected by the driver.
German Patent Application 196 37 245 A1 describes an ACC system in which the evaluation of the radar signal for plausibility is modified when the driver indicates his/her intention to change lanes by actuating the left or right turn indicator. In this situation, the travel corridor taken into account in regulating the distance is temporarily extended to the future new lane, and the vehicles in the former lane as well as the vehicles in the future lane are taken into account in regulating the distance. The travel corridor is defined as a strip of fixed, or optionally variable, width on both sides of the prospective travel path of the subject vehicle. For a straight roadway course, the travel path of the subject vehicle is indicated by a straight line running in the direction of travel through the center of the vehicle. For a curved roadway course, it may be assumed as an approximation that the prospective travel path is a curve of constant curvature. Assuming a steady-state curve situation, the particular curvature may be calculated by defining the yaw rate of the subject vehicle via the traveling speed. In principle, the yaw rate may be determined from the steering angle and the traveling speed, but preferably is directly measured using a yaw rate sensor, in particular since such a yaw rate sensor is already present in vehicles having an electronic stability program (ESP).
In non-steady state situations, however, in particular during a lane change, an accurate determination of the travel corridor has proven to be difficult. Merely evaluating the signal from the turn indicator is of no further use here, since actuation of the turn indicator only indicates the intention to change lanes but does not allow the detection of exactly when the lane change starts and ends. Even making additional allowance for the steering commands of the driver does not enable the lane change to be unambiguously detected, since a curved roadway course may also give rise to the steering commands. In the past, these uncertainties in the detection of a lane change have often caused malfunctions in the regulating system due to the fact that during the lane change the radar beam temporarily sweeps over the edge of the roadway and identifies stationary targets such as road signs or the like as presumably relevant objects, or that for roadways having three or more lanes, vehicles in the next-to-adjacent lane are erroneously associated with the travel corridor of the subject vehicle. To accurately associate objects detected using the locating device with the relevant travel corridor of the vehicle, it would therefore be desirable if a lane change could be reliably identified.
The object of the present invention is to provide a method which allows a lane change to be more accurately detected.
This object is achieved according to the present invention by the fact that the angular velocity of at least one vehicle traveling in front relative to the subject vehicle is measured using the locating device, and a lane change signal indicating the lane change is produced by comparing the measured angular velocity to the yaw rate of the subject vehicle.
The present invention is based on the concept that, during a lane change, in contrast to traveling along a curve, there is a distinct negative correlation between the relative angular velocity of vehicles traveling in front and the yaw rate of the subject vehicle. This is due to the fact that at the start of a lane change the subject vehicle undergoes a yawing motion, and thus a rotation about the vertical axis, with a relatively high yaw rate, i.e., a relatively high angular velocity, whereas the objects detected by the locating device do not take part in this rotation and therefore have an angular velocity relative to the subject vehicle which is equal in terms of actual amount but opposite in direction. When traveling through a curve of constant curvature, however, the subject vehicle and the vehicles traveling in front—at the same traveling speed—undergo the same rotation, so that the relative angular velocity of the vehicles traveling in front remains approximately zero. Only during travel into or out of a curve is it possible for a definite difference between the relative angular velocity of the vehicle traveling in front and the yaw rate of the subject vehicle to appear, although these differences generally are considerably smaller than those during a lane change. Comparing the relative angular velocities to the yaw rate of the subject vehicle thus provides a very reliable criterion for detecting a lane change.
Advantageous embodiments of the present invention result from the subclaims.
Since at higher traffic densities multiple vehicles traveling in front are generally simultaneously detected by the locating device, it is preferable to form a composite angular velocity from the measured relative angular velocities of several or all of the detected vehicles, for example by forming an average, or a weighted average based on the distance or angle. By assigning greater weight to vehicles which have only a slight angular deviation from the path of the subject vehicle, it is possible to reduce interference effects caused by the relative speeds of the vehicles traveling in front. Similarly, by assigning greater weight to vehicles only a small distance from the subject vehicle, interference effects which appear when entering into a curve are reduced. However, the noise from the angular signal of vehicles in close proximity is generally increased because of the motion of these same vehicles. To suppress such noise, in addition to information on the vehicles it is usually possible to also collect time-specific information. Since the radar measurements are typically repeated periodically in a fixed regulating cycle, information is provided over multiple regulating cycles, so that here as well, a lower weight may be assigned to the older cycles.
In addition, a plausibility effect may occur during the determination of the composite angular velocity. For example, for three or more vehicles which are being localized it may be practical to eliminate outliers whose angular velocity clearly deviates from the other vehicles. Thus, it is possible in particular to reduce interference effects caused by a lane change of one of the vehicles traveling in front. If only two vehicles traveling in front are within the locating range, generally a lane change by one of the vehicles traveling in front is assumed only if one of these vehicles starts to pass or completes the passing maneuver. These situations may be identified using data on the measured distance and relative angular velocity.
Based on similar considerations, it may be advantageous for vehicles which have just appeared in the locating range because they have passed the subject vehicle not to be included in the calculation of the composite angular velocity unless a certain time delay has occurred.
In the determination of the relative angular velocities of the individual vehicles, it may be useful to apply a correction due to the relative speeds of these vehicles. For example, a vehicle which has just been passed by the subject vehicle has a relative angular velocity that is different from zero, without this indicating that the subject vehicle has changed lanes. This relative angular velocity is proportional to the product of the relative speed and the angle at which the vehicle is localized, divided by the distance of this vehicle, and may be eliminated by subtracting an appropriate correction factor.
If the composite angular velocity ωc of the vehicle traveling in front and the yaw rate ω0 of the subject vehicle were determined, a signal LC is obtained which indicates with high reliability a lane change of the subject vehicle by forming the negative of the cross-correlation value of these variables: LC=−ω0*ωc/(ωc+ω0). As soon as this signal exceeds a specified threshold value, it can be assumed that a lane change of the subject vehicle is occurring.
Optionally, the signal from the turn indicator may also be taken into account in such a way that when the turn signal is actuated, the threshold value to which signal LC is compared is decreased. It is also possible to distinguish whether the left or the right turn indicator was actuated, so that the threshold value is decreased only when the lane change occurs in the correct direction. The direction of the lane change is specified by the algebraic sign of ω0.
Yaw rate signal ω0 may also be checked for a pattern which is typical of a lane change in order to increase the reliability of the information. During a lane change this: signal exhibits a characteristic S-shaped curve. According to a further embodiment of the present invention, the expected completion of the lane change as well may be predicted from this pattern. Alternatively, it may be assumed that the lane change is completed when a certain time period, which optionally is speed-related, has elapsed after the lane change is detected.
The lane change signal thus obtained may be used within the scope of an ACC system and in many other ways as well. In particular, the travel corridor of the subject vehicle may be appropriately adjusted during detection of the start of a lane change. It is also possible to take into account that at the midpoint of the lane change the direction of travel of the subject vehicle deviates from the direction of the roadway. The value of this angular deviation may be quantitatively determined by integrating the yaw rate signal, the composite angular velocity signal, or a combination of both over time, and may then be used to correct the predicted travel path and thus the travel corridor. In this manner it is possible to prevent the erroneous evaluation of stationary targets during the lane change. In one even simpler embodiment, this effect may also be achieved by reducing the penetration depth of the locating device so that objects farther away continue to be disregarded in the distance regulation.
In addition, the lane change signal may be used to temporarily extend the travel corridor to the adjoining lane which forms the future lane, and to narrow the travel corridor back to the new lane after the lane change is completed. Likewise, it is possible to use the lane change signal to trigger certain additional functions which are implemented in the ACC system, for example a passing aid which assists in merging into the flow of traffic in the future lane by automatically accelerating or decelerating the vehicle. The lane change signal may also be evaluated for special functions besides the actual ACC regulation, for example for lighting control which automatically adjusts the beam direction from the headlights of the vehicle.
Regulating systems are also known which detect the course of the roadway by evaluating a camera image or by using other sensors, and which assist the vehicle in staying within the lane (lane keeping support) by intervening in the steering of the vehicle. When the vehicle is equipped with such a system, it is possible not only to detect the lane change directly by evaluation of the sensor signals which sense the edge of the roadway, but in this case also to use the method according to the present invention for plausibility testing.
An exemplary embodiment of the present invention is described in more detail below with reference to the drawing.
Because the design and operating principle of a distance- and speed-regulating system, referred to below as an ACC system, are known as such,
A radar sensor 10 is provided as a locating device for vehicles traveling in front, and is mounted on the front of the regulated vehicle and periodically locates target objects situated in front of the vehicle, for example vehicles traveling in front, and stationary targets on the edge of the roadway. By evaluating the radar echo, signals are produced, either in the radar sensor itself or in a processing unit connected downstream, which indicate the distance di, the relative speeds vi (in the radial direction), and the azimuth angles ψi of the located objects. The azimuth angles here are defined with respect to the instantaneous straight-ahead direction of the vehicle. Positive azimuth angles correspond to an angular deviation in the mathematically positive sense, and thus to the left.
An electronic regulating device 12 evaluates the data sent by radar sensor 10 and intervenes in the drive system and, if appropriate, also in the braking system of the vehicle in order to regulate the speed of the vehicle to maintain a suitable, speed-dependent distance from the vehicle traveling immediately in front in the same lane as the subject vehicle. If no vehicle traveling in front is localized, the device regulates the speed at an intended speed selected by the driver. Stationary targets on the edge of the roadway are differentiated from vehicles traveling in front based on the angular signals and the relative speed. Since the ACC system is provided primarily for use on multilane freeways and highways, the lane in which the vehicles are situated must also be distinguished for vehicles traveling in front. Normally, only the vehicles in the same lane as the subject vehicle are taken into account for the distance regulation.
If the driver of subject vehicle 20 decides to change to middle lane 16, vehicles 26 and 28 situated in travel corridor 34 corresponding to the adjoining lane are also to be taken into account for the distance regulation. After the lane change is completed, if subject vehicle 20 is traveling approximately in the middle of lane 16, only travel corridor 34 is of significance, which however is then defined by the same path offset y as was travel corridor 30 originally. During the lane change, subject vehicle 20 temporarily changes its direction relative to lanes 14, 16, so that prospective path 32 which is defined by the straight-ahead direction of the vehicle no longer corresponds to the actual course of the roadway.
To enable a consistent distance regulation, even during a lane change, and to avoid malfunctions that may irritate the driver or cause discomfort, a method is described here which allows the beginning and also the completion of a lane change to be automatically detected.
As shown in
Filtered relative angular velocities ωi are then corrected for relative speed-dependent effects in a correction module 38. The nature and purpose of this correction are explained below.
Corrected relative angular velocities ω′i are linked in a logic circuit 40 to form a composite angular velocity ωc which represents a measure of the change in the angle of the overall composite of all vehicles 22, 24, 26, and 28 traveling in front, relative to subject vehicle 20. Only vehicles traveling in front are taken into account in the calculation of composite angular velocity ωc, whereas the signals from stationary targets remain disregarded. In the simplest case, the logic operation results in the formation of an average of all vehicles traveling in front; i.e., the sum of relative angular velocities ω′i of all vehicles traveling in front is divided by the number of vehicles taken into account. Composite angular velocity ωc is then compared to yaw rate 1070 of subject vehicle 20 in a comparator circuit 42. To determine yaw rate ω0, in the example shown a generally known yaw rate sensor 44 is used which measures the Coriolis force which appears during a yaw motion of the vehicle, it being possible to also evaluate the signals from the yaw rate sensor within the scope of a stability regulation for subject vehicle 20. Any systematic error (offset) of yaw rate sensor 44 may be eliminated, if needed, by taking into account the signals from a steering wheel angle sensor, a transverse acceleration sensor, a wheel speed sensor, and the like. The individual signals are also checked for plausibility, and in non-plausible situations a conclusion is made as to the failure of the sensor. The signal from yaw rate sensor 44 may also undergo low-pass filtering, preferably using the same time constants as for the relative angular velocity signals.
In comparator circuit 42 a lane change signal LC is formed from composite angular velocity ωc and yaw rate ω0 according to the following formula:
LC=−ωc*ω0/(ωc+ω0) (1)
Lane change signal LC is sent to regulating device 12 which, by comparing this signal to a suitable threshold value (symbolized by a threshold value switch 46 in FIG. 1), detects that a lane change by subject vehicle 20 is occurring and then makes the appropriate adjustments in the distance regulation, in particular in the determination of the travel corridor.
At time t0 the lane change has not yet begun, and the path direction of subject vehicle 20 remains parallel to the lane. Yaw rate ω0 is consequently zero. Relative angular velocity ω1 of vehicle VEH1 traveling directly in front in lane 16 is also zero. For vehicles VEH2 and VEH3 in the adjoining lanes, however, this is true only if their relative speed is zero, i.e., if their respective distances to subject vehicle 20 remain unchanged. On the other hand, if subject motor vehicle 20 has a higher speed than vehicle VEH2 in lane 14, the (negative) azimuth angle ψ2 for the latter vehicle increases in terms of actual amount, resulting in a negative relative angular velocity ω2 Similarly, a negative relative angular velocity ω3 likewise results for vehicle VEH3 in the adjoining left lane if this vehicle is faster than the subject vehicle. Thus, without additional corrections a negative composite angular velocity would result during the formation of an average. To compensate for this effect, correction element 38 makes the following correction:
ω′i=ωi−Vi*ωi/di (2)
As a result of this correction, at time to composite angular velocity ωc obtained from the formation of the average is also zero. Lane change signal LC produced according to equation (1) also has a value of zero.
Between times t0 and t2, subject vehicle 20 veers left to the adjoining lane, and during this phase has a positive yaw rate which at time t1 is at a maximum. The path direction of subject vehicle 20 also changes, corresponding to the yaw motion. Because the azimuth angle measured by location sensor 10 is based on this changed path direction, composite angular velocity ωc assumes a value equal to the yaw rate ω0 in terms of actual value, but with an opposite sign. The product of the yaw rate and the composite angular velocity is therefore negative, and LC accordingly assumes a relatively high positive value. At time t2 the yaw rate of subject vehicle 20 has again decreased to zero, and a countermotion is initiated for veering into the new lane. At this moment LC again returns to zero. In contrast, composite angular velocity ωc still has a small negative value. This is due to the fact that the path direction of subject vehicle 20 at time t2 is not parallel to the path direction of the vehicles traveling in front. For vehicles VEH1 and VEH2 in particular, this results in a negative relative angular velocity even when the relative speed has not become zero. Consequently, the zero crossing of curve ωc does not occur until a later time, so that LC temporarily assumes negative values.
At time t3, yaw rate ω0 reaches a minimum and composite angular velocity ωc is at a maximum, and LC also increases again to a maximum. All signals then decrease again to zero until the lane change is completed at time t4.
For purposes of comparison,
At time t1 both vehicles are still in the curve. Subject vehicle 20 has a positive yaw rate ω0. However, for vehicle speeds which are approximately the same, the positions of subject vehicle 20 and vehicle VEH1 relative to one another remain unchanged, so that composite angular velocity ω0 (which in this case only is indicated by ω′1) has a value of zero. Consequently, LC is also zero. This means that traveling through a curve is not erroneously interpreted by the system as a lane change.
Vehicle VEH1 traveling in front begins to travel out of the curve between points t1 and t2. Its relative angular velocity therefore decreases, while yaw rate ω0 of the subject vehicle remains constant. Lane change signal LC is therefore positive and assumes a flat maximum at t2. However, since multilane freeways generally have very large radii of curvature, the yaw rates and relative angular velocities which appear here are very low, so that lane change signal LC remains below threshold value TH.
As a variant of the described method, for signal ω0 which is used to calculate lane change signal LC it is not the actual measured yaw rate that is used, but instead the instantaneously measured yaw rate minus a moving average from the previously measured yaw rates. When traveling through a curve at a constant actual yaw rate, the moving average would then gradually approach the instantaneous yaw rate, so that signal ω0 would decrease essentially to zero. Consequently, lane change signal LC between times t1 and t2 in
Regulating device 12 may react in different ways to the detection of a lane change, at time ts in
In another embodiment, the original travel corridor is “frozen” when a lane change is detected. This may be achieved by integrating measured yaw rate ω0 from time ts forward. The integral then provides approximately the angle of the instantaneous path direction of the vehicle relative to the direction of the roadway. If this angle is subtracted from measured azimuth angle ψi, the result corresponds to the subject vehicle for remaining in the original travel corridor.
Alternatively, the evaluation of the location signals at time ts may be limited to those vehicles that were present in the instantaneous travel corridor prior to that time. This is possible because location data di, vi, and ψi measured from one regulating cycle to another for the same vehicle respectively differ only very slightly from one another, so that the individual vehicles may be identified and their motions tracked. Additionally, a collision avoidance strategy may be pursued in which the system responds to vehicles, not previously taken into account, when these vehicles are a very small distance in front of subject vehicle 20.
The signal of the turn indicator may also be included in the evaluation. In the situation shown in