Method and system for controlling a vehicle
First Claim
1. An apparatus for sensing a potential rollover situation involving a vehicle, comprising:
- an inertial reference unit including three accelerometers and three gyroscopes which provide data on vehicle motion;
vehicle control devices arranged to affect control of the vehicle;
a processor coupled to said inertial reference unit and said vehicle control devices and including an algorithm arranged to receive data from said inertial reference unit and control at least one of said vehicle control devices to apply at least one of the throttle, brakes and steering to prevent the rollover; and
location determining means for determining the location of the vehicle on a roadway, said processor being coupled to said location determining means and being arranged to consider the location of the vehicle when determining at least one of the existence of a potential rollover situation and the manner in which to control said at least one of said vehicle control devices.
3 Assignments
0 Petitions

Accused Products

Abstract
Apparatus for sensing a potential rollover situation involving a vehicle including an inertial reference unit including three accelerometers and three gyroscopes which provide data on vehicle motion, vehicle control devices arranged to affect control of the vehicle and a processor coupled to the inertial reference unit and the vehicle control devices. The processor includes an algorithm arranged to receive data from the inertial reference unit and control the vehicle control devices to apply the throttle, brakes and steering to prevent the rollover, optionally in consideration of the position of the vehicle as provided by a map database or location determining system.
579 Citations
Driver assistance system for vehicle | ||
Patent #
US 7,873,187 B2
Filed 08/16/2010
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Integrated medical sensor and messaging system and method | ||
Patent #
US 7,899,938 B1
Filed 09/14/2001
|
Current Assignee
Fernandez Associates LLP
|
Original Assignee
Dennis Fernandez
|
Collaborative Environmental Reporting | ||
Patent #
US 20110012753A1
Filed 09/24/2010
|
Current Assignee
Samsung Electronics Co. Ltd.
|
Original Assignee
ATT Intellectual Property I LP
|
Method and apparatus providing pixel storage gate charge sensing for electronic stabilization in imagers | ||
Patent #
US 7,965,330 B2
Filed 10/29/2009
|
Current Assignee
Micron Technology Inc.
|
Original Assignee
Micron Technology Inc.
|
Driver assistance system for vehicle | ||
Patent #
US 7,949,152 B2
Filed 12/28/2010
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Heading Error Removal System for Tracking Devices | ||
Patent #
US 20110087450A1
Filed 10/22/2010
|
Current Assignee
Board of Regents of the University of Michigan
|
Original Assignee
University of Michigan
|
CONSTRAINING DISPLAY MOTION IN DISPLAY NAVIGATION | ||
Patent #
US 20110145754A1
Filed 12/08/2010
|
Current Assignee
Facebook Inc.
|
Original Assignee
AOL Inc.
|
Method of Dynamic Intersection Mapping | ||
Patent #
US 20110087433A1
Filed 10/08/2009
|
Current Assignee
Honda Motor Company
|
Original Assignee
Honda Motor Company
|
Method Of Determining Absolute Position For A Motor Vehicle | ||
Patent #
US 20110238306A1
Filed 03/26/2010
|
Current Assignee
Honda Motor Company
|
Original Assignee
Honda Motor Company
|
IMAGING SYSTEM FOR VEHICLE | ||
Patent #
US 20110216198A1
Filed 05/13/2011
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Automated rollover prevention system | ||
Patent #
US 8,019,514 B2
Filed 02/28/2007
|
Current Assignee
Caterpillar Incorporated
|
Original Assignee
Caterpillar Incorporated
|
METHOD AND APPARATUS PROVIDING PIXEL STORAGE GATE CHARGE SENSING FOR ELECTRONIC STABILIZATION IN IMAGERS | ||
Patent #
US 20110199525A1
Filed 04/22/2011
|
Current Assignee
Micron Technology Inc.
|
Original Assignee
Roger Panicacci
|
Robotics virtual rail system and method | ||
Patent #
US 7,974,738 B2
Filed 07/05/2006
|
Current Assignee
Humatics Corporation
|
Original Assignee
Battelle Energy Alliance LLC
|
Weather monitoring techniques | ||
Patent #
US 8,060,308 B2
Filed 02/18/2008
|
Current Assignee
American Vehicular Sciences LLC
|
Original Assignee
Intelligent Technologies International Inc.
|
Methods and system for digitally stabilizing video captured from rolling shutter cameras | ||
Patent #
US 8,054,335 B2
Filed 12/20/2007
|
Current Assignee
Aptina Imaging Corporation
|
Original Assignee
Aptina Imaging Corporation
|
Collaborative environmental reporting | ||
Patent #
US 8,063,793 B2
Filed 09/24/2010
|
Current Assignee
Samsung Electronics Co. Ltd.
|
Original Assignee
ATT Intellectual Property I LP
|
Generic robot architecture | ||
Patent #
US 7,801,644 B2
Filed 07/05/2006
|
Current Assignee
Humatics Corporation
|
Original Assignee
Battelle Energy Alliance LLC
|
System and Method for Improving Vehicle Performance on Grade | ||
Patent #
US 20100250056A1
Filed 03/24/2009
|
Current Assignee
Ford Global Technologies LLC
|
Original Assignee
Ford Global Technologies LLC
|
Determining position of a vehicle with reference to a landmark | ||
Patent #
US 7,826,969 B2
Filed 12/21/2006
|
Current Assignee
Deere Company
|
Original Assignee
Deere Company
|
CONTROL DEVICE FOR IMPROVING THE TRACTION OF A VEHICLE | ||
Patent #
US 20100049408A1
Filed 11/21/2007
|
Current Assignee
Peugeot Citroen Automobile SA, Robert Bosch GmbH
|
Original Assignee
Peugeot Citroen Automobile SA, Robert Bosch GmbH
|
ADAPTIVE VEHICLE CONTROL SYSTEM WITH DRIVING STYLE RECOGNITION AND ROAD CONDITION RECOGNITION | ||
Patent #
US 20100019964A1
Filed 07/24/2008
|
Current Assignee
GM Global Technology Operations LLC
|
Original Assignee
GM Global Technology Operations Incorporated
|
Robotic guarded motion system and method | ||
Patent #
US 7,668,621 B2
Filed 07/05/2006
|
Current Assignee
Humatics Corporation
|
Original Assignee
United States Department of Energy
|
Adaptive direct transaction for networked client group | ||
Patent #
US 7,769,620 B1
Filed 09/01/1998
|
Current Assignee
Fernandez Associates LLP
|
Original Assignee
Dennis Fernandez
|
DRIVE CONTROL APPARATUS, DRIVE CONTROL METHOD, DRIVE CONTROL PROGRAM, AND RECORDING MEDIUM | ||
Patent #
US 20100094502A1
Filed 09/28/2006
|
Current Assignee
Pioneer Corporation
|
Original Assignee
Pioneer Corporation
|
METHOD AND SYSTEM ENABLING USE OF WHITE SPACE RADIO SPECTRUM USING DIGITAL BROADCAST SIGNALS | ||
Patent #
US 20100048234A1
Filed 08/22/2008
|
Current Assignee
Telcom Ventures LLC
|
Original Assignee
Telcom Ventures LLC
|
Environmental characteristic determination | ||
Patent #
US 20100114487A1
Filed 11/23/2009
|
Current Assignee
Northrop Grumman Systems Corp.
|
Original Assignee
Northrop Grumman Systems Corp.
|
Cruise control plan evaluation device and method | ||
Patent #
US 20100010699A1
Filed 11/01/2007
|
Current Assignee
Ibaraki Toyota Jidosha Kabushiki Kaisha
|
Original Assignee
Ibaraki Toyota Jidosha Kabushiki Kaisha
|
SCALABLE DISRUPTIVE-RESISTANT COMMUNICATION METHOD | ||
Patent #
US 20100232404A1
Filed 03/13/2009
|
Current Assignee
Toyota Infotechnology Center USA Inc.
|
Original Assignee
Telcordia Technologies Incorporated
|
Method and system for obtaining high resolution 3-D images of moving objects by use of sensor fusion | ||
Patent #
US 7,672,504 B2
Filed 09/01/2005
|
Current Assignee
James R Glidewell Dental Ceramics Incorporated
|
Original Assignee
IOS Technologies Inc.
|
Device for longitudinally guiding a motor vehicle | ||
Patent #
US 20100191436A1
Filed 08/10/2006
|
Current Assignee
Robert Bosch GmbH
|
Original Assignee
Robert Bosch GmbH
|
Environmental characteristic determination | ||
Patent #
US 7,822,550 B2
Filed 11/23/2009
|
Current Assignee
Northrop Grumman Systems Corp.
|
Original Assignee
Northrop Grumman Corporation
|
AUTOMATIC OPERATION CONTROL APPARATUS, AUTOMATIC OPERATION CONTROL METHOD,VEHICLE CRUISE SYSTEM, AND METHOD FOR CONTROLLING THE VEHICLE CRUISE SYSTEM | ||
Patent #
US 20100036578A1
Filed 11/09/2007
|
Current Assignee
Ibaraki Toyota Jidosha Kabushiki Kaisha
|
Original Assignee
Ibaraki Toyota Jidosha Kabushiki Kaisha
|
Heading Error Removal System for Tracking Devices | ||
Patent #
US 20100256939A1
Filed 04/03/2009
|
Current Assignee
Board of Regents of the University of Michigan
|
Original Assignee
Board of Regents of the University of Michigan
|
METHOD AND SYSTEM ENABLING USE OF WHITE SPACE RADIO SPECTRUM USING AN OUT OF BAND CONTROL CHANNEL | ||
Patent #
US 20100046440A1
Filed 08/22/2008
|
Current Assignee
Telcom Ventures LLC
|
Original Assignee
Telcom Ventures LLC
|
PREDICTIVE SEMI-AUTONOMOUS VEHICLE NAVIGATION SYSTEM | ||
Patent #
US 20100228427A1
Filed 02/24/2010
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
METHOD AND APPARATUS FOR IDENTIFYING THROUGH TRAFFIC | ||
Patent #
US 20100198487A1
Filed 01/03/2007
|
Current Assignee
Robert Bosch GmbH
|
Original Assignee
Robert Bosch GmbH
|
Imaging system for vehicle | ||
Patent #
US 7,792,329 B2
Filed 10/27/2009
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Collaborative environmental reporting | ||
Patent #
US 7,825,824 B2
Filed 09/18/2007
|
Current Assignee
Samsung Electronics Co. Ltd.
|
Original Assignee
ATT Intellectual Property I LP
|
METHOD AND APPARATUS PROVIDING PIXEL STORAGE GATE CHARGE SENSING FOR ELECTRONIC STABILIZATION IN IMAGERS | ||
Patent #
US 20100045805A1
Filed 10/29/2009
|
Current Assignee
Micron Technology Inc.
|
Original Assignee
Roger Panicacci
|
Method for soft-computing supervision of dynamical processes with multiple control objectives | ||
Patent #
US 7,769,474 B2
Filed 09/20/2005
|
Current Assignee
Honeywell International Inc.
|
Original Assignee
Honeywell International Inc.
|
Film airbags | ||
Patent #
US 7,820,566 B2
Filed 05/21/2008
|
Current Assignee
Automotive Technologies International Incorporated
|
Original Assignee
Automotive Technologies International Incorporated
|
Gunner Retraction System and Apparatus | ||
Patent #
US 20090014991A1
Filed 07/10/2007
|
Current Assignee
United States Of America As Represented By The Secretary Of The Army
|
Original Assignee
United States Of America As Represented By The Secretary Of The Army
|
Collaborative Environmental Reporting | ||
Patent #
US 20090072997A1
Filed 09/18/2007
|
Current Assignee
Samsung Electronics Co. Ltd.
|
Original Assignee
ATT Intellectual Property I LP
|
Partial manual control state for automated vehicle navigation system | ||
Patent #
US 20090076673A1
Filed 09/19/2007
|
Current Assignee
Topcon Positioning Systems Incorporated
|
Original Assignee
Topcon Positioning Systems Incorporated
|
Schedule and data caching for wireless tranmission | ||
Patent #
US 20090089459A1
Filed 09/29/2007
|
Current Assignee
Intel Corporation
|
Original Assignee
Intel Corporation
|
Imaging system for vehicle | ||
Patent #
US 7,526,103 B2
Filed 04/14/2005
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
UNIVERSAL COLLISION AVOIDANCE OVERRIDE CONTROL SYSTEM FOR OVERHEAD BRIDGE CRANES | ||
Patent #
US 20090114612A1
Filed 10/30/2008
|
Current Assignee
Roger Gail Nelson
|
Original Assignee
Roger Gail Nelson
|
Integrated vehicular sensor and messaging system and method | ||
Patent #
US 7,548,961 B1
Filed 09/14/2001
|
Current Assignee
Fernandez Associates LLP
|
Original Assignee
Fernandez Associates LLP
|
Methods and system for digitally stabilizing video captured from rolling shutter cameras | ||
Patent #
US 20090160957A1
Filed 12/20/2007
|
Current Assignee
Aptina Imaging Corporation
|
Original Assignee
Micron Technology Inc.
|
Mapping Techniques Using Probe Vehicles | ||
Patent #
US 20090140887A1
Filed 12/01/2008
|
Current Assignee
American Vehicular Sciences LLC
|
Original Assignee
American Vehicular Sciences LLC
|
Vehicle control device, vehicle control method and computer program | ||
Patent #
US 20090192683A1
Filed 11/10/2008
|
Current Assignee
Aisin AW Corporation Limited
|
Original Assignee
Aisin AW Corporation Limited
|
Film Airbags | ||
Patent #
US 20090224515A1
Filed 05/21/2008
|
Current Assignee
Automotive Technologies International Incorporated
|
Original Assignee
Automotive Technologies International Incorporated
|
Occupancy change detection system and method | ||
Patent #
US 7,584,020 B2
Filed 07/05/2006
|
Current Assignee
Humatics Corporation
|
Original Assignee
Battelle Energy Alliance LLC
|
Autonomous navigation system and method | ||
Patent #
US 7,587,260 B2
Filed 07/05/2006
|
Current Assignee
Humatics Corporation
|
Original Assignee
Battelle Energy Alliance LLC
|
SYSTEM AND METHOD FOR SEAMLESS TASK-DIRECTED AUTONOMY FOR ROBOTS | ||
Patent #
US 20090234499A1
Filed 03/13/2008
|
Current Assignee
Humatics Corporation
|
Original Assignee
Battelle Energy Alliance LLC
|
Integrated vehicular sensor and messaging system and method | ||
Patent #
US 7,599,995 B1
Filed 10/23/2006
|
Current Assignee
Fernandez Associates LLP
|
Original Assignee
Dennis Fernandez
|
Driver assistance system for vehicle | ||
Patent #
US 7,616,781 B2
Filed 04/24/2009
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Robotic intelligence kernel | ||
Patent #
US 7,620,477 B2
Filed 07/05/2006
|
Current Assignee
Humatics Corporation
|
Original Assignee
Battelle Energy Alliance LLC
|
Method and apparatus providing pixel storage gate charge sensing for electronic stabilization in imagers | ||
Patent #
US 7,626,626 B2
Filed 01/13/2006
|
Current Assignee
Micron Technology Inc.
|
Original Assignee
Micron Technology Inc.
|
METHOD AND SYSTEM OF SPARSE CODE BASED OBJECT CLASSIFICATION WITH SENSOR FUSION | ||
Patent #
US 20090322871A1
Filed 06/26/2008
|
Current Assignee
Toyota Motor Corporation
|
Original Assignee
Toyota Motor Engineering Manufacturing North America Incorporated
|
Method for detecting a traffic zone | ||
Patent #
US 20090326752A1
Filed 07/21/2006
|
Current Assignee
Robert Bosch GmbH
|
Original Assignee
Robert Bosch GmbH
|
Multi-Robot Control Interface | ||
Patent #
US 20080009969A1
Filed 07/05/2006
|
Current Assignee
Humatics Corporation
|
Original Assignee
Battelle Energy Alliance LLC
|
GENERIC ROBOT ARCHITECTURE | ||
Patent #
US 20080009968A1
Filed 07/05/2006
|
Current Assignee
Humatics Corporation
|
Original Assignee
Battelle Energy Alliance LLC
|
Robotic Guarded Motion System and Method | ||
Patent #
US 20080009970A1
Filed 07/05/2006
|
Current Assignee
Humatics Corporation
|
Original Assignee
Battelle Energy Alliance LLC
|
Robotic Intelligence Kernel | ||
Patent #
US 20080009967A1
Filed 07/05/2006
|
Current Assignee
Humatics Corporation
|
Original Assignee
Battelle Energy Alliance LLC
|
Occupancy Change Detection System and Method | ||
Patent #
US 20080009966A1
Filed 07/05/2006
|
Current Assignee
Humatics Corporation
|
Original Assignee
Battelle Energy Alliance LLC
|
Autonomous Navigation System and Method | ||
Patent #
US 20080009965A1
Filed 07/05/2006
|
Current Assignee
Humatics Corporation
|
Original Assignee
Battelle Energy Alliance LLC
|
Robotics Virtual Rail System and Method | ||
Patent #
US 20080009964A1
Filed 07/05/2006
|
Current Assignee
Humatics Corporation
|
Original Assignee
Battelle Energy Alliance LLC
|
Determining position of a vehicle with reference to a landmark | ||
Patent #
US 20080154504A1
Filed 12/21/2006
|
Current Assignee
Deere Company
|
Original Assignee
Deere Company
|
Weather Monitoring Techniques | ||
Patent #
US 20080140318A1
Filed 02/18/2008
|
Current Assignee
American Vehicular Sciences LLC
|
Original Assignee
Intelligent Technologies International Inc.
|
Automated rollover prevention system | ||
Patent #
US 20080208416A1
Filed 02/28/2007
|
Current Assignee
Caterpillar Incorporated
|
Original Assignee
Caterpillar Incorporated
|
EVENT TRACKING AND MONITORING SYSTEM | ||
Patent #
US 20080278314A1
Filed 04/29/2008
|
Current Assignee
IonEarth LLC
|
Original Assignee
IonEarth LLC
|
Autonomous Agriculture Platform Guidance System | ||
Patent #
US 20080294309A1
Filed 05/22/2008
|
Current Assignee
Rocona Incorporated
|
Original Assignee
Rocona Incorporated
|
Device and method for measuring quantities of motion of a motor vehicle | ||
Patent #
US 20070027582A1
Filed 06/07/2004
|
Current Assignee
Pascal Munnix
|
Original Assignee
Pascal Munnix
|
Method for soft-computing supervision of dynamical processes with multiple control objectives | ||
Patent #
US 20070067050A1
Filed 09/20/2005
|
Current Assignee
Honeywell International Inc.
|
Original Assignee
Honeywell International Inc.
|
Method and system for obtaining high resolution 3-D images of moving objects by use of sensor fusion | ||
Patent #
US 20070064242A1
Filed 09/01/2005
|
Current Assignee
James R Glidewell Dental Ceramics Incorporated
|
Original Assignee
Sonaray Inc.
|
SYSTEM AND METHOD FOR PROVIDING INFORMATION TO AN OPERATOR OF A VEHICLE | ||
Patent #
US 20070138347A1
Filed 02/14/2007
|
Current Assignee
TomTom International BV
|
Original Assignee
TomTom International BV
|
Method and apparatus for displaying navigation information | ||
Patent #
US 7,239,963 B2
Filed 08/25/2003
|
Current Assignee
Alpine Electronics Incorporated
|
Original Assignee
Alpine Electronics Incorporated
|
Computer-implemented system and method for wayfinding | ||
Patent #
US 7,243,024 B2
Filed 08/09/2002
|
Current Assignee
William L. Endicott
|
Original Assignee
William L. Endicott
|
Method and apparatus providing pixel storage gate charge sensing for electronic stabilization in imagers | ||
Patent #
US 20070165123A1
Filed 01/13/2006
|
Current Assignee
Micron Technology Inc.
|
Original Assignee
Micron Technology Inc.
|
Probe-car system using beacon and apparatus therefore | ||
Patent #
US 20060047414A1
Filed 09/02/2004
|
Current Assignee
Matsushita Electric Industrial Company Limited
|
Original Assignee
Matsushita Electric Industrial Company Limited
|
Cyber Tracker | ||
Patent #
US 20060284763A1
Filed 02/10/2005
|
Current Assignee
Homeland Integrated Security Systems Inc.
|
Original Assignee
Homeland Integrated Security Systems Inc.
|
Suspension control apparatus and method for vehicles | ||
Patent #
US 20050021205A1
Filed 05/20/2004
|
Current Assignee
Aisin AW Corporation Limited
|
Original Assignee
Aisin AW Corporation Limited
|
Method and apparatus for displaying navigation information | ||
Patent #
US 20040088110A1
Filed 08/25/2003
|
Current Assignee
Alpine Electronics Incorporated
|
Original Assignee
Alpine Electronics Incorporated
|
Computer-implemented system and method for wayfinding | ||
Patent #
US 20030033079A1
Filed 08/09/2002
|
Current Assignee
William L. Endicott
|
Original Assignee
William L. Endicott
|
Imaging system for vehicle | ||
Patent #
US 8,090,153 B2
Filed 05/13/2011
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
METHOD FOR JUDGING VEHICLE TRAVELING POSITION AND VEHICLE TRAVELING POSITION JUDGMENT DEVICE | ||
Patent #
US 20120029813A1
Filed 06/11/2009
|
Current Assignee
Ibaraki Toyota Jidosha Kabushiki Kaisha
|
Original Assignee
Ibaraki Toyota Jidosha Kabushiki Kaisha
|
Automatic lighting system with adaptive function | ||
Patent #
US 8,070,332 B2
Filed 03/29/2011
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Method and system of sparse code based object classification with sensor fusion | ||
Patent #
US 8,081,209 B2
Filed 06/26/2008
|
Current Assignee
Toyota Motor Corporation
|
Original Assignee
Toyota Motor Engineering Manufacturing North America Incorporated
|
Multi-robot control interface | ||
Patent #
US 8,073,564 B2
Filed 07/05/2006
|
Current Assignee
Humatics Corporation
|
Original Assignee
Battelle Energy Alliance LLC
|
Method and system enabling use of white space radio spectrum using an out of band control channel | ||
Patent #
US 8,130,708 B2
Filed 08/22/2008
|
Current Assignee
Telcom Ventures LLC
|
Original Assignee
Telcom Ventures LLC
|
INTEGRATED FRAMEWORK FOR VEHICLE OPERATOR ASSISTANCE BASED ON A TRAJECTORY AND THREAT ASSESSMENT | ||
Patent #
US 20120083947A1
Filed 07/15/2010
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
Automatic lighting system | ||
Patent #
US 8,142,059 B2
Filed 11/09/2011
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Drive control apparatus, drive control method, drive control program, and recording medium | ||
Patent #
US 8,160,772 B2
Filed 09/28/2006
|
Current Assignee
Pioneer Corporation
|
Original Assignee
Pioneer Corporation
|
IMAGING SYSTEM FOR VEHICLE | ||
Patent #
US 20120098968A1
Filed 12/22/2011
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Method and system enabling use of white space radio spectrum using digital broadcast signals | ||
Patent #
US 8,170,577 B2
Filed 08/22/2008
|
Current Assignee
Telcom Ventures LLC
|
Original Assignee
Telcom Ventures LLC
|
Autonomous agriculture platform guidance system | ||
Patent #
US 8,180,514 B2
Filed 05/22/2008
|
Current Assignee
Rocona Incorporated
|
Original Assignee
Rocona Incorporated
|
Vision system for vehicle | ||
Patent #
US 8,189,871 B2
Filed 01/31/2011
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Forward facing sensing system for a vehicle | ||
Patent #
US 8,217,830 B2
Filed 07/28/2011
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
APPARATUS AND ALGORITHMIC PROCESS FOR AN ADAPTIVE NAVIGATION POLICY IN PARTIALLY OBSERVABLE ENVIRONMENTS | ||
Patent #
US 20120233102A1
Filed 03/11/2011
|
Current Assignee
Toyota Motor Engineering Manufacturing North America Incorporated
|
Original Assignee
Toyota Motor Engineering Manufacturing North America Incorporated
|
System and method for seamless task-directed autonomy for robots | ||
Patent #
US 8,271,132 B2
Filed 03/13/2008
|
Current Assignee
Humatics Corporation
|
Original Assignee
Battelle Energy Alliance LLC
|
METHOD AND SYSTEM OF ENERGY SAVING CONTROL | ||
Patent #
US 20120239268A1
Filed 01/13/2012
|
Current Assignee
Industrial Technology Research Institute
|
Original Assignee
Industrial Technology Research Institute
|
Forward facing sensing system for vehicle | ||
Patent #
US 8,294,608 B1
Filed 07/03/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Scalable disruptive-resistant communication method | ||
Patent #
US 8,295,257 B2
Filed 03/13/2009
|
Current Assignee
Toyota Infotechnology Center USA Inc.
|
Original Assignee
Toyota Infotechnology Center USA Inc., Telcordia Technologies Incorporated
|
Imaging system for vehicle | ||
Patent #
US 8,325,986 B2
Filed 12/22/2011
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Method of dynamic intersection mapping | ||
Patent #
US 8,340,894 B2
Filed 10/08/2009
|
Current Assignee
Honda Motor Company
|
Original Assignee
Honda Motor Company
|
Robots, systems, and methods for hazard evaluation and visualization | ||
Patent #
US 8,355,818 B2
Filed 09/03/2009
|
Current Assignee
Humatics Corporation
|
Original Assignee
Battelle Energy Alliance LLC
|
Alarm system controller and a method for controlling an alarm system | ||
Patent #
US 8,369,967 B2
Filed 03/07/2011
|
Current Assignee
Hoffberg Family Trust 2
|
Original Assignee
STEVEN M. HOFFBERG 2004-1 GRAT
|
TECHNIQUE FOR ENSURING SAFE TRAVEL OF A VEHICLE OR SAFETY OF AN OCCUPANT THEREIN | ||
Patent #
US 20130035827A1
Filed 10/11/2012
|
Current Assignee
American Vehicular Sciences LLC
|
Original Assignee
American Vehicular Sciences LLC
|
Automatic headlamp control | ||
Patent #
US 8,376,595 B2
Filed 05/17/2010
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Method and system enabling use of white space radio spectrum using digital broadcast signals | ||
Patent #
US 8,401,564 B2
Filed 04/03/2012
|
Current Assignee
Telcom Ventures LLC
|
Original Assignee
Telcom Ventures LLC
|
Vehicle control device, vehicle control method and computer program | ||
Patent #
US 8,423,250 B2
Filed 11/10/2008
|
Current Assignee
Aisin AW Corporation Limited
|
Original Assignee
Aisin AW Corporation Limited
|
IMAGING SYSTEM FOR VEHICLE | ||
Patent #
US 20130093893A1
Filed 11/30/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Integrated framework for vehicle operator assistance based on a trajectory prediction and threat assessment | ||
Patent #
US 8,437,890 B2
Filed 07/15/2010
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
Combined RGB and IR imaging sensor | ||
Patent #
US 8,446,470 B2
Filed 10/03/2008
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Device for longitudinally guiding a motor vehicle | ||
Patent #
US 8,447,488 B2
Filed 08/10/2006
|
Current Assignee
Robert Bosch GmbH
|
Original Assignee
Robert Bosch GmbH
|
Imaging system for vehicle | ||
Patent #
US 8,451,107 B2
Filed 09/11/2008
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
DISPLAY NAVIGATION USING NAVIGATION CONTROLS | ||
Patent #
US 20130139098A1
Filed 12/28/2012
|
Current Assignee
Facebook Inc.
|
Original Assignee
Facebook Inc.
|
METHOD AND MODULE FOR CONTROLLING A VEHICLE'S SPEED | ||
Patent #
US 20130151106A1
Filed 06/21/2011
|
Current Assignee
Scania CV AB
|
Original Assignee
Maria Sodergren, Fredrik Roos, Oskar Johansson
|
Vision system for vehicle | ||
Patent #
US 8,483,439 B2
Filed 05/25/2012
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Adaptive direct transaction for network client group | ||
Patent #
US 8,484,045 B1
Filed 08/13/2009
|
Current Assignee
Dennis Fernandez
|
Original Assignee
Dennis Fernandez
|
Method and apparatus providing pixel storage gate charge sensing for electronic stabilization in imagers | ||
Patent #
US 8,488,036 B2
Filed 04/22/2011
|
Current Assignee
Micron Technology Inc.
|
Original Assignee
Micron Technology Inc.
|
Method and apparatus for identifying through traffic | ||
Patent #
US 8,489,313 B2
Filed 01/03/2007
|
Current Assignee
Robert Bosch GmbH
|
Original Assignee
Robert Bosch GmbH
|
Method for judging vehicle traveling position and vehicle traveling position judgment device | ||
Patent #
US 8,510,027 B2
Filed 06/11/2009
|
Current Assignee
Ibaraki Toyota Jidosha Kabushiki Kaisha
|
Original Assignee
Ibaraki Toyota Jidosha Kabushiki Kaisha
|
Method of determining absolute position for a motor vehicle | ||
Patent #
US 8,521,412 B2
Filed 03/26/2010
|
Current Assignee
Honda Motor Company
|
Original Assignee
Honda Motor Company
|
Location sharing and tracking using mobile phones or other wireless devices | ||
Patent #
US 8,538,458 B2
Filed 03/11/2008
|
Current Assignee
X One Inc.
|
Original Assignee
X One Inc.
|
Methods and apparati for predicting and quantifying threat being experienced by a modeled system | ||
Patent #
US 8,543,261 B2
Filed 07/15/2010
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
Method of controlling a collision warning system using line of sight | ||
Patent #
US 8,558,718 B2
Filed 09/20/2010
|
Current Assignee
Honda Motor Company
|
Original Assignee
Honda Motor Company
|
Partial manual control state for automated vehicle navigation system | ||
Patent #
US 8,560,157 B2
Filed 09/19/2007
|
Current Assignee
Topcon Positioning Systems Incorporated
|
Original Assignee
Topcon Positioning Systems Incorporated
|
Method of controlling a collision warning system using right of way | ||
Patent #
US 8,587,418 B2
Filed 07/28/2010
|
Current Assignee
Honda Motor Company
|
Original Assignee
Honda Motor Company
|
Imaging system for vehicle | ||
Patent #
US 8,593,521 B2
Filed 11/30/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular vision system | ||
Patent #
US 8,599,001 B2
Filed 11/19/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
SYSTEM AND METHOD FOR ACTIVE LANE-CHANGING ASSISTANCE FOR A MOTOR VEHICLE | ||
Patent #
US 20130338868A1
Filed 09/15/2011
|
Current Assignee
Siemens AG
|
Original Assignee
Siemens Sas
|
Forward facing sensing system for vehicle | ||
Patent #
US 8,614,640 B2
Filed 10/22/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Traffic control database and distribution system | ||
Patent #
US 8,618,951 B2
Filed 09/17/2010
|
Current Assignee
Honda Motor Company
|
Original Assignee
Honda Motor Company
|
Method of intersection identification for collision warning system | ||
Patent #
US 8,618,952 B2
Filed 01/21/2011
|
Current Assignee
Honda Motor Company
|
Original Assignee
Honda Motor Company
|
Vehicle vision system | ||
Patent #
US 8,629,768 B2
Filed 06/18/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Driver assistance system for vehicle | ||
Patent #
US 8,636,393 B2
Filed 05/06/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assistance system for a vehicle | ||
Patent #
US 8,637,801 B2
Filed 07/08/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Multi-camera vision system for a vehicle | ||
Patent #
US 8,643,724 B2
Filed 03/13/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Aligned display navigation | ||
Patent #
US 8,648,801 B2
Filed 12/28/2012
|
Current Assignee
Facebook Inc.
|
Original Assignee
Facebook Inc.
|
Vision system for vehicle | ||
Patent #
US 8,665,079 B2
Filed 10/15/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
DRIVER ASSISTANCE SYSTEM FOR VEHICLE | ||
Patent #
US 20140071285A1
Filed 11/18/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Donnelly Corporation
|
Vehicle yaw rate correction | ||
Patent #
US 8,694,224 B2
Filed 02/28/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Methods and systems for temporarily sharing position data between mobile-device users | ||
Patent #
US 8,712,441 B2
Filed 04/11/2013
|
Current Assignee
X One Inc.
|
Original Assignee
XONE Incorporated
|
Rear vision system for a vehicle | ||
Patent #
US 8,743,203 B2
Filed 10/31/2011
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Integrated framework for vehicle operator assistance based on a trajectory prediction and threat assessment | ||
Patent #
US 8,744,648 B2
Filed 04/09/2013
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
Method and module for controlling a vehicle's speed | ||
Patent #
US 8,744,718 B2
Filed 06/21/2011
|
Current Assignee
Scania CV AB
|
Original Assignee
Scania CV AB
|
Method of controlling a collision warning system using line of sight | ||
Patent #
US 8,749,365 B2
Filed 04/26/2010
|
Current Assignee
Honda Motor Company
|
Original Assignee
Honda Motor Company
|
Methods and systems for annotating target locations | ||
Patent #
US 8,750,898 B2
Filed 01/18/2013
|
Current Assignee
X One Inc.
|
Original Assignee
X One Inc.
|
Technique for ensuring safe travel of a vehicle or safety of an occupant therein | ||
Patent #
US 8,768,573 B2
Filed 10/11/2012
|
Current Assignee
American Vehicular Sciences LLC
|
Original Assignee
American Vehicular Sciences LLC
|
SYSTEM FOR PASSIVE ENTRY AND PASSIVE START FOR A MOTOR VEHICLE | ||
Patent #
US 20140188309A1
Filed 12/26/2013
|
Current Assignee
TRW Automotive Italia SRL
|
Original Assignee
TRW Automotive Italia SRL
|
Methods and systems for sharing position data and tracing paths between mobile-device users | ||
Patent #
US 8,798,645 B2
Filed 01/30/2013
|
Current Assignee
X One Inc.
|
Original Assignee
X One Inc.
|
Tracking proximity of services provider to services consumer | ||
Patent #
US 8,798,647 B1
Filed 10/15/2013
|
Current Assignee
X One Inc.
|
Original Assignee
X One Inc.
|
Location sharing and tracking using mobile phones or other wireless devices | ||
Patent #
US 8,798,593 B2
Filed 05/07/2013
|
Current Assignee
X One Inc.
|
Original Assignee
X One Inc.
|
Systems and methods for collecting information from vehicle devices via a vehicle data bus | ||
Patent #
US 8,812,173 B2
Filed 12/21/2011
|
Current Assignee
CalAmp Corporation
|
Original Assignee
CalAmp Corporation
|
Vehicular vision system | ||
Patent #
US 8,814,401 B2
Filed 03/22/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Method of intersection estimation for a vehicle safety system | ||
Patent #
US 8,818,641 B2
Filed 12/07/2010
|
Current Assignee
Honda Motor Company
|
Original Assignee
Honda Motor Company
|
Method for detecting a traffic zone | ||
Patent #
US 8,818,694 B2
Filed 07/21/2006
|
Current Assignee
Robert Bosch GmbH
|
Original Assignee
Robert Bosch GmbH
|
Driver assistance system for vehicle | ||
Patent #
US 8,818,042 B2
Filed 11/18/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Film airbags made from ribbons | ||
Patent #
US 8,822,357 B2
Filed 10/26/2010
|
Current Assignee
Automotive Technologies International Incorporated
|
Original Assignee
Automotive Technologies International Incorporated
|
Method of estimating intersection control | ||
Patent #
US 8,823,556 B2
Filed 09/02/2010
|
Current Assignee
Honda Motor Company
|
Original Assignee
Honda Motor Company
|
Methods and apparatuses for transmission of an alert to multiple devices | ||
Patent #
US 8,831,635 B2
Filed 07/21/2011
|
Current Assignee
X One Inc.
|
Original Assignee
X One Inc.
|
Adaptive direct transaction for network client group | ||
Patent #
US 8,838,463 B2
Filed 09/26/2008
|
Current Assignee
Dennis Fernandez
|
Original Assignee
Irene Y. Hu, Dennis Fernandez
|
Vehicle vision system with yaw rate determination | ||
Patent #
US 8,849,495 B2
Filed 04/07/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Automatic vehicle exterior light control | ||
Patent #
US 8,842,176 B2
Filed 01/15/2010
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Intelligent navigation system | ||
Patent #
US 8,855,847 B2
Filed 01/20/2012
|
Current Assignee
Ibaraki Toyota Jidosha Kabushiki Kaisha
|
Original Assignee
Toyota Motor Engineering Manufacturing North America Incorporated
|
Systems and Methods for Collecting Information from Vehicle Devices Via a Vehicle Data Bus | ||
Patent #
US 20140309843A1
Filed 06/27/2014
|
Current Assignee
CalAmp Corporation
|
Original Assignee
CalAmp Corporation
|
Parking assist system | ||
Patent #
US 8,874,317 B2
Filed 07/27/2010
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assistance system for a vehicle | ||
Patent #
US 8,886,401 B2
Filed 11/04/2013
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Collision warning system using line of sight | ||
Patent #
US 8,890,712 B2
Filed 07/18/2013
|
Current Assignee
Honda Motor Company
|
Original Assignee
Honda Motor Company
|
Adaptable wireless vehicle vision system based on wireless communication error | ||
Patent #
US 8,890,955 B2
Filed 02/09/2011
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Magna Mirrors of America Incorporated
|
Adaptive pattern recognition based controller apparatus and method and human-interface therefore | ||
Patent #
US 8,892,495 B2
Filed 01/08/2013
|
Current Assignee
Hoffberg Family Trust 2
|
Original Assignee
Blanding Hovenweep LLC
|
Constrained display navigation | ||
Patent #
US 8,902,253 B2
Filed 12/31/2012
|
Current Assignee
Facebook Inc.
|
Original Assignee
Facebook Inc.
|
Method of dynamic intersection mapping | ||
Patent #
US 8,903,639 B2
Filed 11/26/2012
|
Current Assignee
Honda Motor Company
|
Original Assignee
Honda Motor Company
|
Rear vision system for a vehicle | ||
Patent #
US 8,896,700 B2
Filed 06/02/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Imaging system for vehicle | ||
Patent #
US 8,908,040 B2
Filed 05/17/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
VISION SYSTEM FOR VEHICLE | ||
Patent #
US 20140362221A1
Filed 08/25/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Crash sensor systems utilizing vehicular inertial properties | ||
Patent #
US 8,914,196 B1
Filed 11/01/2013
|
Current Assignee
Automotive Technologies International Incorporated
|
Original Assignee
Automotive Technologies International Incorporated
|
System and method for active lane-changing assistance for a motor vehicle | ||
Patent #
US 8,914,181 B2
Filed 09/15/2011
|
Current Assignee
Siemens AG
|
Original Assignee
Siemens Sas
|
Vehicular vision system | ||
Patent #
US 8,917,169 B2
Filed 12/02/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Method and system enabling use of white space radio spectrum using an out of band control channel | ||
Patent #
US 8,938,270 B2
Filed 02/02/2012
|
Current Assignee
Telcom Ventures LLC
|
Original Assignee
Telcom Ventures LLC
|
DRIVING ASSISTANCE APPARATUS | ||
Patent #
US 20150046038A1
Filed 03/30/2012
|
Current Assignee
Ibaraki Toyota Jidosha Kabushiki Kaisha
|
Original Assignee
Ibaraki Toyota Jidosha Kabushiki Kaisha
|
Real time explosive hazard information sensing, processing, and communication for autonomous operation | ||
Patent #
US 8,965,578 B2
Filed 03/16/2011
|
Current Assignee
Battelle Energy Alliance LLC
|
Original Assignee
Battelle Energy Alliance LLC
|
Rear vision system for a vehicle | ||
Patent #
US 8,976,247 B1
Filed 11/24/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assistance system for vehicle | ||
Patent #
US 8,977,008 B2
Filed 07/08/2013
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
MANOEUVER GENERATION FOR AUTOMATED DRIVING | ||
Patent #
US 20150073663A1
Filed 09/05/2014
|
Current Assignee
Volvo Car Corporation
|
Original Assignee
Volvo Car Corporation
|
DYNAMIC UPLOADING PROTOCOL | ||
Patent #
US 20150088335A1
Filed 09/26/2013
|
Current Assignee
Lytx Inc.
|
Original Assignee
Lytx Inc.
|
Driver assistance system for a vehicle | ||
Patent #
US 8,993,951 B2
Filed 07/16/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision system for vehicle | ||
Patent #
US 9,008,369 B2
Filed 08/25/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assistance system for vehicle | ||
Patent #
US 9,014,904 B2
Filed 09/23/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular imaging system with camera misalignment correction and capturing image data at different resolution levels dependent on distance to object in field of view | ||
Patent #
US 9,018,577 B2
Filed 02/25/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Apparatus and method for obtaining content on a cellular wireless device based on proximity to other wireless devices | ||
Patent #
US 9,031,581 B1
Filed 11/07/2014
|
Current Assignee
X One Inc.
|
Original Assignee
X One Inc.
|
Display navigation using navigation controls | ||
Patent #
US 9,041,737 B2
Filed 12/28/2012
|
Current Assignee
Facebook Inc.
|
Original Assignee
Facebook Inc.
|
Display navigation | ||
Patent #
US 9,041,738 B2
Filed 12/31/2012
|
Current Assignee
Facebook Inc.
|
Original Assignee
Facebook Inc.
|
Imaging and display system for vehicle | ||
Patent #
US 9,041,806 B2
Filed 08/31/2010
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
System for passive entry and passive start for a motor vehicle | ||
Patent #
US 9,045,102 B2
Filed 12/26/2013
|
Current Assignee
TRW Automotive Italia SRL
|
Original Assignee
TRW Automotive Italia SRL
|
Inertial dynamics measurement and structural configuration variation for hydrodynamic stability evaluation of a towed body | ||
Patent #
US 9,057,738 B1
Filed 11/02/2012
|
Current Assignee
the united states of america as represented by the secretary of the navy
|
Original Assignee
the united states of america as represented by the secretary of the navy
|
Systems, devices and methods for vehicles | ||
Patent #
US 9,079,494 B2
Filed 06/02/2011
|
Current Assignee
Mill Mountain Capital LLC
|
Original Assignee
Mill Mountain Capital LLC
|
Rear vision system with trailer angle detection | ||
Patent #
US 9,085,261 B2
Filed 01/25/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Braking control system for vehicle | ||
Patent #
US 9,090,234 B2
Filed 11/18/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular vision system | ||
Patent #
US 9,092,986 B2
Filed 01/31/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
VISION SYSTEM FOR VEHICLE | ||
Patent #
US 20150215588A1
Filed 04/03/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Dynamic uploading protocol | ||
Patent #
US 9,098,956 B2
Filed 09/26/2013
|
Current Assignee
Lytx Inc.
|
Original Assignee
Lytx Inc.
|
Mapping techniques using probe vehicles | ||
Patent #
US 9,103,671 B1
Filed 11/27/2012
|
Current Assignee
American Vehicular Sciences LLC
|
Original Assignee
American Vehicular Sciences LLC
|
Detecting road weather conditions | ||
Patent #
US 9,110,196 B2
Filed 09/20/2012
|
Current Assignee
Google LLC
|
Original Assignee
Google Inc.
|
System and method for collaborative vehicle crash planning and sequence deployment | ||
Patent #
US 9,108,582 B1
Filed 02/25/2014
|
Current Assignee
International Business Machines Corporation
|
Original Assignee
International Business Machines Corporation
|
Warning system for a motor vehicle determining an estimated intersection control | ||
Patent #
US 9,111,448 B2
Filed 02/07/2014
|
Current Assignee
Honda Motor Company
|
Original Assignee
Honda Motor Company
|
Vehicular rear view camera display system with lifecheck function | ||
Patent #
US 9,117,123 B2
Filed 07/05/2011
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driving assistance apparatus | ||
Patent #
US 9,126,594 B2
Filed 03/30/2012
|
Current Assignee
Ibaraki Toyota Jidosha Kabushiki Kaisha
|
Original Assignee
Ibaraki Toyota Jidosha Kabushiki Kaisha
|
Alert system for vehicle | ||
Patent #
US 9,126,525 B2
Filed 02/25/2010
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Multi-camera vision system for a vehicle | ||
Patent #
US 9,131,120 B2
Filed 05/15/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle collision management responsive to adverse circumstances in an avoidance path | ||
Patent #
US 9,139,202 B2
Filed 01/21/2014
|
Current Assignee
Elwha LLC
|
Original Assignee
Elwha LLC
|
Forward facing sensing system for vehicle | ||
Patent #
US 9,140,789 B2
Filed 12/16/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assist system with algorithm switching | ||
Patent #
US 9,146,898 B2
Filed 10/25/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Methods and systems for sharing position data between subscribers involving multiple wireless providers | ||
Patent #
US 9,167,558 B2
Filed 06/12/2014
|
Current Assignee
X One Inc.
|
Original Assignee
X One Inc.
|
Vision system for vehicle | ||
Patent #
US 9,171,217 B2
Filed 03/03/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Systems and methods for collecting information from vehicle devices via a vehicle data bus | ||
Patent #
US 9,171,460 B2
Filed 06/27/2014
|
Current Assignee
CalAmp Corporation
|
Original Assignee
CalAmp Corporation
|
Lane keeping system and lane centering system | ||
Patent #
US 9,180,908 B2
Filed 11/17/2011
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Apparatus and method to transmit content to a cellular wireless device based on proximity to other wireless devices | ||
Patent #
US 9,185,522 B1
Filed 11/07/2014
|
Current Assignee
X One Inc.
|
Original Assignee
X One Inc.
|
Rear vision system for a vehicle | ||
Patent #
US 9,183,749 B2
Filed 03/09/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assistance system for vehicle | ||
Patent #
US 9,187,028 B2
Filed 02/14/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular vision system | ||
Patent #
US 9,191,574 B2
Filed 03/13/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision system for vehicle | ||
Patent #
US 9,191,634 B2
Filed 04/03/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assistance system for vehicle | ||
Patent #
US 9,193,303 B2
Filed 04/20/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Step filter for estimating distance in a time-of-flight ranging system | ||
Patent #
US 9,194,943 B2
Filed 04/11/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle collision management responsive to traction conditions in an avoidance path | ||
Patent #
US 9,199,642 B2
Filed 01/21/2014
|
Current Assignee
Elwha LLC
|
Original Assignee
Elwha LLC
|
Vehicle vision system using kinematic model of vehicle motion | ||
Patent #
US 9,205,776 B2
Filed 05/20/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Real time explosive hazard information sensing, processing, and communication for autonomous operation | ||
Patent #
US 9,213,934 B1
Filed 02/17/2015
|
Current Assignee
Battelle Energy Alliance LLC
|
Original Assignee
Battelle Energy Alliance LLC
|
Cruise control plan evaluation device and method | ||
Patent #
US 9,224,299 B2
Filed 11/01/2007
|
Current Assignee
Ibaraki Toyota Jidosha Kabushiki Kaisha
|
Original Assignee
Ibaraki Toyota Jidosha Kabushiki Kaisha
|
Driver assistance system for a vehicle | ||
Patent #
US 9,245,448 B2
Filed 06/17/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Forward facing sensing system for vehicle | ||
Patent #
US 9,244,165 B1
Filed 09/21/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Apparatus and method for obtaining content on a cellular wireless device based on proximity | ||
Patent #
US 9,253,616 B1
Filed 03/24/2015
|
Current Assignee
X One Inc.
|
Original Assignee
X One Inc.
|
Predictive reasoning for controlling speed of a vehicle | ||
Patent #
US 9,254,846 B2
Filed 05/03/2013
|
Current Assignee
Google LLC
|
Original Assignee
Google Inc.
|
Vehicle vision system with collision mitigation | ||
Patent #
US 9,260,095 B2
Filed 06/13/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision display system for vehicle | ||
Patent #
US 9,264,672 B2
Filed 12/21/2011
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Mirrors of America Incorporated
|
System and method for improving vehicle performance on grade | ||
Patent #
US 9,278,693 B2
Filed 03/24/2009
|
Current Assignee
Ford Global Technologies LLC
|
Original Assignee
Ford Global Technologies LLC
|
Dynamic uploading protocol | ||
Patent #
US 9,280,857 B2
Filed 06/30/2015
|
Current Assignee
Lytx Inc.
|
Original Assignee
Lytx Inc.
|
System, method, and apparatus to prevent commercial vehicle rollover | ||
Patent #
US 9,283,825 B2
Filed 02/25/2015
|
Current Assignee
Isam Mousa
|
Original Assignee
Isam Mousa
|
Vehicle vision system with lens pollution detection | ||
Patent #
US 9,319,637 B2
Filed 03/27/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular collision mitigation system | ||
Patent #
US 9,318,020 B2
Filed 07/27/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Rear collision avoidance system for vehicle | ||
Patent #
US 9,327,693 B2
Filed 04/09/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Forward facing sensing system for vehicle | ||
Patent #
US 9,335,411 B1
Filed 01/25/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle lane keep assist system | ||
Patent #
US 9,340,227 B2
Filed 08/12/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with yaw rate determination | ||
Patent #
US 9,346,468 B2
Filed 09/29/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Method and system for dynamically calibrating vehicular cameras | ||
Patent #
US 9,357,208 B2
Filed 01/20/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Display navigation | ||
Patent #
US 9,360,993 B2
Filed 12/28/2012
|
Current Assignee
Facebook Inc.
|
Original Assignee
Facebook Inc.
|
METHOD OF GUIDANCE FOR PLACING A SATELLITE ON STATION | ||
Patent #
US 20160178750A1
Filed 12/11/2015
|
Current Assignee
Thales SA
|
Original Assignee
Thales SA
|
Driver assist system for vehicle | ||
Patent #
US 9,376,060 B2
Filed 11/16/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Wide-view LIDAR with areas of special attention | ||
Patent #
US 9,383,753 B1
Filed 09/26/2012
|
Current Assignee
Google LLC
|
Original Assignee
Google Inc.
|
Sports monitoring system using GPS with location beacon correction | ||
Patent #
US 9,424,397 B2
Filed 12/22/2011
|
Current Assignee
Adidas AG
|
Original Assignee
Adidas AG
|
Vision system for vehicle | ||
Patent #
US 9,428,192 B2
Filed 11/16/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Back-end event risk assessment with historical coaching profiles | ||
Patent #
US 9,428,195 B1
Filed 07/24/2014
|
Current Assignee
Lytx Inc.
|
Original Assignee
Lytx Inc.
|
Vehicle vision system | ||
Patent #
US 9,436,880 B2
Filed 01/13/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Multi-camera vision system for a vehicle | ||
Patent #
US 9,440,586 B2
Filed 11/09/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with dirt detection | ||
Patent #
US 9,445,057 B2
Filed 02/19/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision system for vehicle | ||
Patent #
US 9,440,535 B2
Filed 01/27/2014
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Trailer angle detection system | ||
Patent #
US 9,446,713 B2
Filed 09/25/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
SYSTEM AND METHOD FOR PROVIDING CENTRALIZED MANAGEMENT AND DISTRIBUTION OF INFORMATION TO REMOTE USERS | ||
Patent #
US 20160275782A1
Filed 03/18/2016
|
Current Assignee
United States Postal Service
|
Original Assignee
United States Postal Service
|
Parking assist system | ||
Patent #
US 9,457,717 B2
Filed 10/27/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Methods and systems for temporarily sharing position data between mobile-device users | ||
Patent #
US 9,467,832 B2
Filed 09/05/2014
|
Current Assignee
X One Inc.
|
Original Assignee
X One Inc.
|
Driver assistance system for a vehicle | ||
Patent #
US 9,463,744 B2
Filed 01/18/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision display system for vehicle | ||
Patent #
US 9,469,250 B2
Filed 02/12/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Manoeuver generation for automated driving | ||
Patent #
US 9,469,296 B2
Filed 09/05/2014
|
Current Assignee
Volvo Car Corporation
|
Original Assignee
Volvo Car Corporation
|
Vehicle vision system utilizing camera synchronization | ||
Patent #
US 9,481,301 B2
Filed 12/05/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Braking control system for vehicle | ||
Patent #
US 9,481,344 B2
Filed 07/27/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle control system with adaptive wheel angle correction | ||
Patent #
US 9,487,235 B2
Filed 04/01/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle camera alignment system | ||
Patent #
US 9,491,450 B2
Filed 07/30/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Calibration system and method for vehicular surround vision system | ||
Patent #
US 9,491,451 B2
Filed 11/14/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular camera with on-board microcontroller | ||
Patent #
US 9,495,876 B2
Filed 07/27/2010
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle monitoring system | ||
Patent #
US 9,499,139 B2
Filed 12/05/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Detecting road weather conditions | ||
Patent #
US 9,499,172 B2
Filed 09/20/2012
|
Current Assignee
Google LLC
|
Original Assignee
Google Inc.
|
Vehicular multi-camera vision system | ||
Patent #
US 9,508,014 B2
Filed 05/05/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Forward facing sensing system for vehicle | ||
Patent #
US 9,507,021 B2
Filed 05/09/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Method and module for controlling a vehicle's speed based on rules and/or costs | ||
Patent #
US 9,511,668 B2
Filed 12/22/2011
|
Current Assignee
Scania CV AB
|
Original Assignee
Scania CV AB
|
Mapping techniques using probe vehicles | ||
Patent #
US 9,528,834 B2
Filed 12/15/2014
|
Current Assignee
Intelligent Technologies International Inc.
|
Original Assignee
Intelligent Technologies International Inc.
|
Internet appliance system and method | ||
Patent #
US 9,535,563 B2
Filed 11/12/2013
|
Current Assignee
Hoffberg Family Trust 2
|
Original Assignee
Blanding Hovenweep LLC
|
Collision avoidance system for vehicle | ||
Patent #
US 9,545,921 B2
Filed 05/02/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Image processing method for detecting objects using relative motion | ||
Patent #
US 9,547,795 B2
Filed 01/20/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Method and apparatus providing pixel storage gate charge sensing for electronic stabilization in imagers | ||
Patent #
US 9,554,071 B2
Filed 06/14/2013
|
Current Assignee
Micron Technology Inc.
|
Original Assignee
Micron Technology Inc.
|
Vehicle vision system with trailer angle detection | ||
Patent #
US 9,558,409 B2
Filed 12/11/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assistance system for vehicle | ||
Patent #
US 9,555,803 B2
Filed 05/16/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular vision system | ||
Patent #
US 9,563,809 B2
Filed 04/18/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with targetless camera calibration | ||
Patent #
US 9,563,951 B2
Filed 05/20/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Predictive reasoning for controlling speed of a vehicle | ||
Patent #
US 9,561,797 B2
Filed 06/01/2016
|
Current Assignee
Google LLC
|
Original Assignee
Google Inc.
|
Rendez vous management using mobile phones or other mobile devices | ||
Patent #
US 9,584,960 B1
Filed 12/23/2013
|
Current Assignee
X One Inc.
|
Original Assignee
X One Inc.
|
CONTROL SYSTEM | ||
Patent #
US 20170057435A1
Filed 06/28/2016
|
Current Assignee
Renesas Electronics Corporation
|
Original Assignee
Renesas Electronics Corporation
|
Vehicle component control methods and systems | ||
Patent #
US 9,593,521 B2
Filed 04/14/2015
|
Current Assignee
Automotive Technologies International Incorporated
|
Original Assignee
American Vehicular Sciences LLC
|
Vision display system for vehicle | ||
Patent #
US 9,598,014 B2
Filed 10/17/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision system for vehicle | ||
Patent #
US 9,609,289 B2
Filed 08/29/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Techniques for communication within closed groups of mobile devices | ||
Patent #
US 9,615,204 B1
Filed 07/22/2015
|
Current Assignee
X One Inc.
|
Original Assignee
X One Inc.
|
Vehicle vision system with image classification | ||
Patent #
US 9,619,716 B2
Filed 08/11/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Personalized driver assistance system for vehicle | ||
Patent #
US 9,623,878 B2
Filed 04/01/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Display navigation | ||
Patent #
US 9,626,073 B2
Filed 12/31/2012
|
Current Assignee
Facebook Inc.
|
Original Assignee
Facebook Inc.
|
Sensing system for road construction equipment | ||
Patent #
US 9,637,873 B2
Filed 12/14/2011
|
Current Assignee
Danfoss Power Solutions Inc.
|
Original Assignee
Sauer-Danfoss Incorporated
|
METHOD AND SYSTEM FOR PREDICTING DRIVING PATH OF NEIGHBORING VEHICLE | ||
Patent #
US 20170120926A1
Filed 07/12/2016
|
Current Assignee
Hyundai Motor Company
|
Original Assignee
Hyundai Motor Company
|
Vision system for vehicle | ||
Patent #
US 9,643,605 B2
Filed 10/26/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Systems and methods for determining vehicle operational status | ||
Patent #
US 9,644,977 B2
Filed 05/22/2015
|
Current Assignee
CalAmp Corporation
|
Original Assignee
CalAmp Corporation
|
Techniques for sharing position data between first and second devices | ||
Patent #
US 9,654,921 B1
Filed 09/20/2016
|
Current Assignee
X One Inc.
|
Original Assignee
X One Inc.
|
Driver assist system for vehicle | ||
Patent #
US 9,656,608 B2
Filed 06/13/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Constraining display motion in display navigation | ||
Patent #
US 9,678,621 B2
Filed 12/08/2010
|
Current Assignee
Facebook Inc.
|
Original Assignee
Facebook Inc.
|
Vehicle camera image quality improvement in poor visibility conditions by contrast amplification | ||
Patent #
US 9,681,062 B2
Filed 09/25/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Calibration system and method for multi-camera vision system | ||
Patent #
US 9,688,200 B2
Filed 03/03/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle collision management responsive to traction conditions in an avoidance path | ||
Patent #
US 9,694,814 B2
Filed 11/13/2015
|
Current Assignee
Elwha LLC
|
Original Assignee
Elwha LLC
|
Vehicle vision system using kinematic model of vehicle motion | ||
Patent #
US 9,701,246 B2
Filed 12/07/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle camera lens dirt protection via air flow | ||
Patent #
US 9,707,896 B2
Filed 10/14/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Process for determining state of a vehicle | ||
Patent #
US 9,715,769 B2
Filed 05/23/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Multi-camera image stitching calibration system | ||
Patent #
US 9,723,272 B2
Filed 10/04/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision display system for vehicle | ||
Patent #
US 9,731,653 B2
Filed 03/16/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision system for vehicle | ||
Patent #
US 9,736,435 B2
Filed 03/20/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Techniques for sharing relative position between mobile devices | ||
Patent #
US 9,736,618 B1
Filed 07/16/2015
|
Current Assignee
X One Inc.
|
Original Assignee
X One Inc.
|
Vehicle vision system with enhanced display functions | ||
Patent #
US 9,743,002 B2
Filed 11/18/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Rendez vous management using mobile phones or other mobile devices | ||
Patent #
US 9,749,790 B1
Filed 01/12/2017
|
Current Assignee
X One Inc.
|
Original Assignee
X One Inc.
|
Vehicle vision system with reduced image color data processing by use of dithering | ||
Patent #
US 9,751,465 B2
Filed 04/16/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Animated display navigation | ||
Patent #
US 9,753,606 B2
Filed 12/31/2012
|
Current Assignee
Facebook Inc.
|
Original Assignee
Facebook Inc.
|
Film airbags | ||
Patent #
US RE46,533 E1
Filed 12/07/2015
|
Current Assignee
Automotive Technologies International Incorporated
|
Original Assignee
Automotive Technologies International Incorporated
|
Lane keeping system and lane centering system | ||
Patent #
US 9,758,163 B2
Filed 11/09/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assistant system using influence mapping for conflict avoidance path determination | ||
Patent #
US 9,761,142 B2
Filed 09/03/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with customized display | ||
Patent #
US 9,762,880 B2
Filed 12/07/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle yaw rate estimation system | ||
Patent #
US 9,764,744 B2
Filed 02/24/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
System and method for providing centralized management and distribution of information to remote users | ||
Patent #
US 9,767,678 B2
Filed 03/18/2016
|
Current Assignee
United States Postal Service
|
Original Assignee
United States Postal Service
|
Vehicular multi-camera vision system | ||
Patent #
US 9,769,381 B2
Filed 11/28/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Method for enhancing vehicle camera image quality | ||
Patent #
US 9,774,790 B1
Filed 06/12/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with trailer angle detection | ||
Patent #
US 9,779,313 B2
Filed 01/24/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Imaging and display system for vehicle | ||
Patent #
US 9,789,821 B2
Filed 05/22/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Imaging system for vehicle | ||
Patent #
US 9,796,332 B2
Filed 05/24/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Multi-camera vision system for a vehicle | ||
Patent #
US 9,796,331 B2
Filed 09/12/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Method of guidance for placing a satellite on station | ||
Patent #
US 9,798,008 B2
Filed 12/11/2015
|
Current Assignee
Thales SA
|
Original Assignee
Thales SA
|
Collision avoidance system for vehicle | ||
Patent #
US 9,802,609 B2
Filed 01/16/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Trailer angle detection system calibration | ||
Patent #
US 9,802,542 B2
Filed 09/19/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Sports monitoring system with location beacon | ||
Patent #
US 9,814,937 B2
Filed 06/16/2016
|
Current Assignee
Adidas AG
|
Original Assignee
Adidas AG
|
Vehicular control system | ||
Patent #
US 9,824,285 B2
Filed 01/26/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with collision mitigation | ||
Patent #
US 9,824,587 B2
Filed 02/12/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driving assist system for vehicle | ||
Patent #
US 9,834,142 B2
Filed 05/19/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Autonomous emergency braking apparatus and method | ||
Patent #
US 9,834,186 B2
Filed 06/09/2016
|
Current Assignee
Hyundai Motor Company
|
Original Assignee
Hyundai Motor Company
|
Vehicular control system using cameras and radar sensor | ||
Patent #
US 9,834,216 B2
Filed 01/24/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Method and system for dynamically calibrating vehicular cameras | ||
Patent #
US 9,834,153 B2
Filed 04/25/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Constraining display in display navigation | ||
Patent #
US 9,851,864 B2
Filed 12/28/2012
|
Current Assignee
Facebook Inc.
|
Original Assignee
Facebook Inc.
|
Formation of wireless device location sharing group | ||
Patent #
US 9,854,402 B1
Filed 01/27/2017
|
Current Assignee
X One Inc.
|
Original Assignee
X One Inc.
|
Ad hoc location sharing group between first and second cellular wireless devices | ||
Patent #
US 9,854,394 B1
Filed 02/09/2017
|
Current Assignee
X One Inc.
|
Original Assignee
X One Inc.
|
Parking assist system | ||
Patent #
US 9,868,463 B2
Filed 09/28/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Rendez vous management using mobile phones or other mobile devices | ||
Patent #
US 9,883,360 B1
Filed 01/05/2017
|
Current Assignee
X One Inc.
|
Original Assignee
X One Inc.
|
Constrained display navigation | ||
Patent #
US 9,886,163 B2
Filed 12/31/2012
|
Current Assignee
Facebook Inc.
|
Original Assignee
Facebook Inc.
|
Vehicle vision system using image data transmission and power supply via a coaxial cable | ||
Patent #
US 9,900,490 B2
Filed 02/22/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
System and method of establishing a multi-camera image using pixel remapping | ||
Patent #
US 9,900,522 B2
Filed 12/01/2011
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
DISPLAY DEVICE AND DISPLAY SYSTEM | ||
Patent #
US 20180052003A1
Filed 08/18/2017
|
Current Assignee
Ibaraki Toyota Jidosha Kabushiki Kaisha
|
Original Assignee
Ibaraki Toyota Jidosha Kabushiki Kaisha
|
Driver active safety control system for vehicle | ||
Patent #
US 9,911,050 B2
Filed 09/04/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system utilizing camera synchronization | ||
Patent #
US 9,912,841 B2
Filed 10/31/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Process for determining state of a vehicle | ||
Patent #
US 9,916,699 B2
Filed 07/24/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with calibration algorithm | ||
Patent #
US 9,916,660 B2
Filed 01/15/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assist system with image processing and wireless communication | ||
Patent #
US 9,919,705 B2
Filed 09/28/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle collision avoidance system with enhanced pedestrian avoidance | ||
Patent #
US 9,925,980 B2
Filed 09/15/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assistance system for vehicle | ||
Patent #
US 9,940,528 B2
Filed 11/20/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Location sharing group for services provision | ||
Patent #
US 9,942,705 B1
Filed 02/09/2017
|
Current Assignee
X One Inc.
|
Original Assignee
X One Inc.
|
Vision system for vehicle | ||
Patent #
US 9,948,904 B2
Filed 08/14/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Method for controlling a vehicle in accordance with parameters preferred by an identified driver | ||
Patent #
US 9,950,707 B2
Filed 04/17/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Trailering assist system with trailer angle detection | ||
Patent #
US 9,950,738 B2
Filed 07/20/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Methods, systems and apparatuses for the formation and tracking of location sharing groups | ||
Patent #
US 9,955,298 B1
Filed 08/28/2014
|
Current Assignee
X One Inc.
|
Original Assignee
X One Inc.
|
Determining Vehicle Power | ||
Patent #
US 20180118027A1
Filed 10/28/2016
|
Current Assignee
Michael A. Hall
|
Original Assignee
Michael Hall, Seth Myer
|
Location sharing group map management | ||
Patent #
US 9,967,704 B1
Filed 01/27/2017
|
Current Assignee
X One Inc.
|
Original Assignee
X One Inc.
|
Control system | ||
Patent #
US 9,969,387 B2
Filed 06/28/2016
|
Current Assignee
Renesas Electronics Corporation
|
Original Assignee
Renesas Electronics Corporation
|
Vehicular imaging system comprising an imaging device with a single image sensor and image processor for determining a totally blocked state or partially blocked state of the single image sensor as well as an automatic correction for misalignment of the imaging device | ||
Patent #
US 9,972,100 B2
Filed 04/23/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with targetless camera calibration | ||
Patent #
US 9,979,957 B2
Filed 01/26/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Wide-view LIDAR with areas of special attention | ||
Patent #
US 9,983,590 B2
Filed 06/01/2016
|
Current Assignee
Waymo LLC
|
Original Assignee
Waymo LLC
|
Vehicle control system with traffic driving control | ||
Patent #
US 9,988,047 B2
Filed 12/12/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
System and method for controlling vehicle using neural network | ||
Patent #
US 9,989,964 B2
Filed 11/03/2016
|
Current Assignee
Mitsubishi Electric Research Laboratories
|
Original Assignee
Mitsubishi Electric Research Laboratories
|
Imaging system for vehicle | ||
Patent #
US 10,003,755 B2
Filed 12/08/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assistance system for vehicle | ||
Patent #
US 10,005,394 B2
Filed 11/16/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular control system | ||
Patent #
US 10,015,452 B1
Filed 04/16/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with lens pollution detection | ||
Patent #
US 10,021,278 B2
Filed 04/18/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Braking control system for vehicle | ||
Patent #
US 10,023,161 B2
Filed 10/31/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system utilizing corner detection | ||
Patent #
US 10,025,994 B2
Filed 12/02/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Spectral filtering for vehicular driver assistance systems | ||
Patent #
US 10,027,930 B2
Filed 03/28/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
System and method for image analysis | ||
Patent #
US 10,037,471 B2
Filed 07/05/2017
|
Current Assignee
Nauto Inc.
|
Original Assignee
Nauto Global Limited
|
Image processing method for detecting objects using relative motion | ||
Patent #
US 10,043,082 B2
Filed 01/16/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Control system for vehicle | ||
Patent #
US 10,046,702 B2
Filed 12/04/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Imaging and display system for vehicle | ||
Patent #
US 10,053,012 B2
Filed 10/16/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Systems and methods for crash determination | ||
Patent #
US 10,055,909 B2
Filed 07/08/2016
|
Current Assignee
CalAmp Corporation
|
Original Assignee
CalAmp Corporation
|
Constraining display motion in display navigation | ||
Patent #
US 10,055,090 B2
Filed 06/13/2017
|
Current Assignee
Facebook Inc.
|
Original Assignee
Facebook Inc.
|
Vehicle vision system with enhanced lane tracking | ||
Patent #
US 10,055,651 B2
Filed 03/01/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
System and method for providing centralized management and distribution of information to remote users | ||
Patent #
US 10,055,972 B2
Filed 09/01/2017
|
Current Assignee
United States Postal Service
|
Original Assignee
United States Postal Service
|
Vehicular multi-camera vision system | ||
Patent #
US 10,057,489 B2
Filed 09/18/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision system for vehicle | ||
Patent #
US 10,071,676 B2
Filed 09/12/2016
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision system for vehicle | ||
Patent #
US 10,071,687 B2
Filed 11/27/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle parking assist system with vision-based parking space detection | ||
Patent #
US 10,078,789 B2
Filed 07/14/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assistance system for vehicle | ||
Patent #
US 10,086,747 B2
Filed 08/25/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Trailer parking assist system for vehicle | ||
Patent #
US 10,086,870 B2
Filed 08/16/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular control system with trailering assist function | ||
Patent #
US 10,089,541 B2
Filed 10/02/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with dirt detection | ||
Patent #
US 10,089,540 B2
Filed 09/12/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with front and rear camera integration | ||
Patent #
US 10,089,537 B2
Filed 05/15/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision system for vehicle | ||
Patent #
US 10,099,614 B2
Filed 11/27/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assistance system for a vehicle | ||
Patent #
US 10,099,610 B2
Filed 10/10/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Systems and methods for location reporting of detected events in vehicle operation | ||
Patent #
US 10,102,689 B2
Filed 07/29/2016
|
Current Assignee
CalAmp Corporation
|
Original Assignee
CalAmp Corporation
|
Vehicle vision system with enhanced display functions | ||
Patent #
US 10,104,298 B2
Filed 08/21/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular camera with on-board microcontroller | ||
Patent #
US 10,106,155 B2
Filed 11/11/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Systems and methods for efficient characterization of acceleration events | ||
Patent #
US 10,107,831 B2
Filed 11/21/2012
|
Current Assignee
CalAmp Corporation
|
Original Assignee
CalAmp Corporation
|
Forward facing sensing system for vehicle | ||
Patent #
US 10,107,905 B2
Filed 11/28/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular control system | ||
Patent #
US 10,110,860 B1
Filed 07/02/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assistant system using influence mapping for conflict avoidance path determination | ||
Patent #
US 10,115,310 B2
Filed 09/11/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
RFID LOCATION SYSTEMS AND METHODS | ||
Patent #
US 20180313947A1
Filed 04/26/2018
|
Current Assignee
Innovo Surgical Inc.
|
Original Assignee
Radiofy LLC
|
Steerable rotating projectile | ||
Patent #
US 10,118,696 B1
Filed 03/31/2017
|
Current Assignee
Steven M Hoffberg
|
Original Assignee
Steven M Hoffberg
|
Vehicular control system using cameras and radar sensor | ||
Patent #
US 10,118,618 B2
Filed 12/04/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Method for vehicular control | ||
Patent #
US 10,127,738 B2
Filed 03/12/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with customized display | ||
Patent #
US 10,129,518 B2
Filed 09/11/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
System and method for automatic driver identification | ||
Patent #
US 10,133,942 B2
Filed 07/05/2017
|
Current Assignee
Nauto Inc.
|
Original Assignee
Nauto Global Limited
|
Vehicle monitoring system | ||
Patent #
US 10,137,892 B2
Filed 11/18/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision display system for vehicle | ||
Patent #
US 10,144,352 B2
Filed 08/14/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle dynamic control system for emergency handling | ||
Patent #
US 10,144,419 B2
Filed 11/22/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Multi-camera vision system for a vehicle | ||
Patent #
US 10,144,353 B2
Filed 10/23/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Location sharing service between GPS-enabled wireless devices, with shared target location exchange | ||
Patent #
US 10,149,092 B1
Filed 02/09/2017
|
Current Assignee
X One Inc.
|
Original Assignee
X One Inc.
|
Trailer backup assist system | ||
Patent #
US 10,160,382 B2
Filed 02/04/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle control system with reverse assist | ||
Patent #
US 10,160,437 B2
Filed 02/27/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Methods, systems and apparatuses for the formation and tracking of location sharing groups | ||
Patent #
US 10,165,059 B2
Filed 10/24/2014
|
Current Assignee
X One Inc.
|
Original Assignee
X One Inc.
|
Vehicle vision system utilizing multiple cameras and ethernet links | ||
Patent #
US 10,171,709 B2
Filed 03/05/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
METHOD FOR ACQUIRING AND PROVIDING A DATABASE WHICH RELATES TO A PREDETERMINED SURROUNDING AREA AND CONTAINS ENVIRONMENTAL DATA | ||
Patent #
US 20190005818A1
Filed 01/25/2017
|
Current Assignee
Audi AG
|
Original Assignee
Audi AG
|
Multi-camera dynamic top view vision system | ||
Patent #
US 10,179,543 B2
Filed 02/27/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Multi-camera vehicle vision system with image gap fill | ||
Patent #
US 10,187,590 B2
Filed 10/26/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular control system | ||
Patent #
US 10,187,615 B1
Filed 10/22/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Map presentation on cellular device showing positions of multiple other wireless device users | ||
Patent #
US 10,200,811 B1
Filed 02/09/2017
|
Current Assignee
X One Inc.
|
Original Assignee
X One Inc.
|
Vehicle control system with adaptive wheel angle correction | ||
Patent #
US 10,202,147 B2
Filed 11/07/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Method for dynamically calibrating vehicular cameras | ||
Patent #
US 10,202,077 B2
Filed 05/23/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
System and method for precision localization and mapping | ||
Patent #
US 10,209,081 B2
Filed 08/09/2017
|
Current Assignee
Nauto Inc.
|
Original Assignee
Nauto Inc.
|
Collision avoidance system for vehicle | ||
Patent #
US 10,207,705 B2
Filed 10/25/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Systems and methods for impact detection with noise attenuation of a sensor signal | ||
Patent #
US 10,214,166 B2
Filed 06/11/2015
|
Current Assignee
CalAmp Corporation
|
Original Assignee
CalAmp Corporation
|
Parking assist system for vehicle | ||
Patent #
US 10,214,206 B2
Filed 07/11/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Systems and methods for radio access interfaces | ||
Patent #
US 10,219,117 B2
Filed 02/10/2017
|
Current Assignee
CalAmp Corporation
|
Original Assignee
CalAmp Corporation
|
System for locating a parking space based on a previously parked space | ||
Patent #
US 10,222,224 B2
Filed 04/15/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
System and method for providing centralized management and distribution of information to remote users | ||
Patent #
US 10,223,900 B2
Filed 07/17/2018
|
Current Assignee
United States Postal Service
|
Original Assignee
United States Postal Service
|
Rear vision system for vehicle with dual purpose signal lines | ||
Patent #
US 10,232,797 B2
Filed 04/29/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with calibration algorithm | ||
Patent #
US 10,235,775 B2
Filed 03/07/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Method and system for determining a position relative to a digital map | ||
Patent #
US 10,240,934 B2
Filed 04/30/2015
|
Current Assignee
Tomtom Global Content B.V
|
Original Assignee
Tomtom Global Content B.V
|
System and method for driver distraction determination | ||
Patent #
US 10,246,014 B2
Filed 11/07/2017
|
Current Assignee
Nauto Inc.
|
Original Assignee
Nauto Inc.
|
Method for enhancing vehicle camera image quality | ||
Patent #
US 10,257,432 B2
Filed 09/25/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Calibration system and method for vehicular surround vision system | ||
Patent #
US 10,264,249 B2
Filed 11/07/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system using kinematic model of vehicle motion | ||
Patent #
US 10,266,115 B2
Filed 07/10/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Systems and methods for near-crash determination | ||
Patent #
US 10,268,909 B2
Filed 02/09/2018
|
Current Assignee
Nauto Inc.
|
Original Assignee
Nauto Inc.
|
Multi-camera image stitching calibration system | ||
Patent #
US 10,284,818 B2
Filed 07/31/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision using image data transmission and power supply via a coaxial cable | ||
Patent #
US 10,284,764 B2
Filed 02/19/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with video compression | ||
Patent #
US 10,286,855 B2
Filed 03/22/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
System and method for estimating distance between a mobile unit and a vehicle using a TOF system | ||
Patent #
US 10,288,724 B2
Filed 11/20/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Server-implemented methods and systems for sharing location amongst web-enabled cell phones | ||
Patent #
US 10,299,071 B2
Filed 11/24/2018
|
Current Assignee
X One Inc.
|
Original Assignee
X One Inc.
|
Multi-sensor interior mirror device with image adjustment | ||
Patent #
US 10,300,859 B2
Filed 06/08/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Trailer driving assist system | ||
Patent #
US 10,300,855 B2
Filed 10/25/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular display system | ||
Patent #
US 10,300,856 B2
Filed 08/20/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Systems and methods for determining vehicle operational status | ||
Patent #
US 10,304,264 B2
Filed 05/03/2017
|
Current Assignee
CalAmp Corporation
|
Original Assignee
CalAmp Corporation
|
Vehicular control system | ||
Patent #
US 10,306,190 B1
Filed 01/21/2019
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Rear backup system for a vehicle | ||
Patent #
US 10,308,180 B2
Filed 11/29/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Location sharing and map support in connection with services request | ||
Patent #
US 10,313,826 B2
Filed 12/21/2018
|
Current Assignee
X One Inc.
|
Original Assignee
X One Inc.
|
Vehicular vision system with enhanced display functions | ||
Patent #
US 10,321,064 B2
Filed 10/11/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with reduction of temporal noise in images | ||
Patent #
US 10,326,969 B2
Filed 08/11/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Parking assist system with annotated map generation | ||
Patent #
US 10,328,932 B2
Filed 06/01/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular vision system with rear backup video display | ||
Patent #
US 10,336,255 B2
Filed 11/29/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Location sharing with facilitated meeting point definition | ||
Patent #
US 10,341,809 B2
Filed 12/13/2018
|
Current Assignee
X One Inc.
|
Original Assignee
X One Inc.
|
Location sharing for commercial and proprietary content applications | ||
Patent #
US 10,341,808 B2
Filed 11/27/2018
|
Current Assignee
X One Inc.
|
Original Assignee
X One Inc.
|
Vehicular control system using cameras and radar sensor | ||
Patent #
US 10,351,135 B2
Filed 11/01/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Adaptive pattern recognition based control system and method | ||
Patent #
US 10,361,802 B1
Filed 02/02/2000
|
Current Assignee
Hoffberg Family Trust 2
|
Original Assignee
Blanding Hovenweep LLC
|
Constraining display motion in display navigation | ||
Patent #
US 10,365,785 B2
Filed 02/10/2014
|
Current Assignee
Facebook Inc.
|
Original Assignee
Facebook Inc.
|
Method for acquiring and providing a database which relates to a predetermined surrounding area and contains environmental data | ||
Patent #
US 10,395,533 B2
Filed 01/25/2017
|
Current Assignee
Audi AG
|
Original Assignee
Audi AG
|
Systems and methods for crash determination with noise filtering | ||
Patent #
US 10,395,438 B2
Filed 08/19/2016
|
Current Assignee
CalAmp Corporation
|
Original Assignee
CalAmp Corporation
|
Vehicle vision system with lens pollution detection | ||
Patent #
US 10,397,451 B2
Filed 07/09/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular lane change system | ||
Patent #
US 10,406,980 B2
Filed 10/11/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular control system responsive to yaw rate estimation system | ||
Patent #
US 10,407,080 B2
Filed 09/18/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Lane keeping system and lane centering system | ||
Patent #
US 10,427,679 B2
Filed 09/11/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with reduced image color data processing by use of dithering | ||
Patent #
US 10,434,944 B2
Filed 08/30/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Processing method for distinguishing a three dimensional object from a two dimensional object using a vehicular system | ||
Patent #
US 10,452,931 B2
Filed 08/06/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with multi-paned view | ||
Patent #
US 10,457,209 B2
Filed 03/28/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular control system | ||
Patent #
US 10,462,426 B2
Filed 05/16/2019
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Systems and methods for low latency 3-axis accelerometer calibration | ||
Patent #
US 10,466,269 B2
Filed 02/19/2013
|
Current Assignee
CalAmp Corporation
|
Original Assignee
CalAmp Corporation
|
Systems and methods for tracking multiple collocated assets | ||
Patent #
US 10,473,750 B2
Filed 12/08/2016
|
Current Assignee
CalAmp Corporation
|
Original Assignee
CalAmp Corporation
|
Vehicular vision system with rear backup video display | ||
Patent #
US 10,486,597 B1
Filed 07/01/2019
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Multi-camera dynamic top view vision system | ||
Patent #
US 10,486,596 B2
Filed 01/14/2019
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle camera system with image manipulation | ||
Patent #
US 10,493,916 B2
Filed 02/22/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular trailer backup assist system | ||
Patent #
US 10,493,917 B2
Filed 12/20/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular collision mitigation system | ||
Patent #
US 10,497,262 B2
Filed 11/20/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
System and method for determining probability that a vehicle driver is associated with a driver identifier | ||
Patent #
US 10,503,990 B2
Filed 10/15/2018
|
Current Assignee
Nauto Inc.
|
Original Assignee
Nauto Inc.
|
Vehicular vision system | ||
Patent #
US 10,509,972 B2
Filed 04/09/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Method of controlling inter-vehicle gap(s) | ||
Patent #
US 10,515,553 B2
Filed 02/24/2016
|
Current Assignee
Volvo Truck Corporation
|
Original Assignee
Volvo Truck Corporation
|
Vehicle vision system with front and rear camera integration | ||
Patent #
US 10,515,279 B2
Filed 08/30/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle data recording system | ||
Patent #
US 10,523,904 B2
Filed 04/10/2019
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Display device and display system | ||
Patent #
US 10,527,447 B2
Filed 08/18/2017
|
Current Assignee
Ibaraki Toyota Jidosha Kabushiki Kaisha
|
Original Assignee
Ibaraki Toyota Jidosha Kabushiki Kaisha
|
System and method for managing emergency vehicle alert geofence | ||
Patent #
US 10,531,224 B1
Filed 03/11/2019
|
Current Assignee
Whelen Engineering Company Incorporated
|
Original Assignee
Whelen Engineering Company Incorporated
|
Vehicle vision system with customized display | ||
Patent #
US 10,542,244 B2
Filed 11/12/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Determining vehicle power | ||
Patent #
US 10,543,846 B2
Filed 10/28/2016
|
Current Assignee
Michael A. Hall
|
Original Assignee
Hall Labs LLC
|
Rear backup system for a vehicle | ||
Patent #
US 10,556,542 B2
Filed 06/03/2019
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Method of synchronizing multiple vehicular cameras with an ECU | ||
Patent #
US 10,560,610 B2
Filed 12/28/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Rollover control algorithm | ||
Patent #
US 10,562,524 B2
Filed 06/29/2017
|
Current Assignee
Nio Usa Inc.
|
Original Assignee
Nio Usa Inc.
|
Coaxial cable with bidirectional data transmission | ||
Patent #
US 10,567,705 B2
Filed 06/06/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system using image data transmission and power supply via a coaxial cable | ||
Patent #
US 10,567,633 B2
Filed 05/02/2019
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Targetless vehicular camera calibration method | ||
Patent #
US 10,567,748 B2
Filed 05/21/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Parking assist system | ||
Patent #
US 10,569,804 B2
Filed 01/15/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Method for displaying video images for a vehicular vision system | ||
Patent #
US 10,574,885 B2
Filed 08/20/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular control system with trailering assist function | ||
Patent #
US 10,586,119 B2
Filed 10/01/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular rear backup vision system with video display | ||
Patent #
US 10,589,678 B1
Filed 11/25/2019
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Fitness activity monitoring systems and methods | ||
Patent #
US 10,596,417 B2
Filed 10/25/2017
|
Current Assignee
Adidas AG
|
Original Assignee
Adidas AG
|
Systems and methods for failsafe firmware upgrades | ||
Patent #
US 10,599,421 B2
Filed 12/06/2017
|
Current Assignee
CalAmp Corporation
|
Original Assignee
CalAmp Corporation
|
Vehicle vision system with accelerated object confirmation | ||
Patent #
US 10,609,335 B2
Filed 03/22/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Video processor module for vehicle | ||
Patent #
US 10,611,306 B2
Filed 08/09/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Imaging system for vehicle | ||
Patent #
US 10,616,507 B2
Filed 06/18/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assistance system for vehicle | ||
Patent #
US 10,623,704 B2
Filed 03/09/2015
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Method for dynamically calibrating vehicular cameras | ||
Patent #
US 10,640,041 B2
Filed 02/04/2019
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision system for vehicle | ||
Patent #
US 10,640,040 B2
Filed 09/10/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Systems and methods for radio access interfaces | ||
Patent #
US 10,645,551 B2
Filed 02/25/2019
|
Current Assignee
CalAmp Corporation
|
Original Assignee
CalAmp Corporation
|
Method and system for dynamically ascertaining alignment of vehicular cameras | ||
Patent #
US 10,654,423 B2
Filed 12/04/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Autonomous intersection warning system for connected vehicles | ||
Patent #
US 10,657,821 B2
Filed 06/13/2018
|
Current Assignee
Whelen Engineering Company Incorporated
|
Original Assignee
Whelen Engineering Company Incorporated
|
Forward sensing system for vehicle | ||
Patent #
US 10,670,713 B2
Filed 10/22/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular driving assist system using forward-viewing camera | ||
Patent #
US 10,683,008 B2
Filed 07/15/2019
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular driver assist system | ||
Patent #
US 10,685,243 B2
Filed 08/20/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle control system with traffic driving control | ||
Patent #
US 10,688,993 B2
Filed 06/04/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with collision mitigation | ||
Patent #
US 10,692,380 B2
Filed 11/20/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
System and method for driver distraction determination | ||
Patent #
US 10,703,268 B2
Filed 01/03/2019
|
Current Assignee
Nauto Inc.
|
Original Assignee
Nauto Inc.
|
Vehicular multi-camera vision system including rear backup camera | ||
Patent #
US 10,703,274 B2
Filed 02/10/2020
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
System and method for map-based geofencing for emergency vehicle | ||
Patent #
US 10,706,722 B1
Filed 03/06/2019
|
Current Assignee
Whelen Engineering Company Incorporated
|
Original Assignee
Whelen Engineering Company Incorporated
|
System and method for managing emergency vehicle alert geofence | ||
Patent #
US 10,715,952 B1
Filed 11/05/2019
|
Current Assignee
Whelen Engineering Company Incorporated
|
Original Assignee
Whelen Engineering Company Incorporated
|
Vehicular parking assist system that determines a parking space based in part on previously parked spaces | ||
Patent #
US 10,718,624 B2
Filed 03/04/2019
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular imaging system with blockage determination and misalignment correction | ||
Patent #
US 10,726,578 B2
Filed 05/14/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Systems and methods for safe route determination | ||
Patent #
US 10,733,460 B2
Filed 05/30/2018
|
Current Assignee
Nauto Inc.
|
Original Assignee
Nauto Inc.
|
Driver assistant system using influence mapping for conflict avoidance path determination | ||
Patent #
US 10,733,892 B2
Filed 10/29/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular control system with traffic lane detection | ||
Patent #
US 10,735,695 B2
Filed 10/28/2019
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular control system with temperature input | ||
Patent #
US 10,744,940 B2
Filed 06/25/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Temporary location sharing group with event based termination | ||
Patent #
US 10,750,310 B2
Filed 11/27/2019
|
Current Assignee
X One Inc.
|
Original Assignee
X One Inc.
|
Application-based tracking and mapping function in connection with vehicle-based services provision | ||
Patent #
US 10,750,311 B2
Filed 02/04/2020
|
Current Assignee
X One Inc.
|
Original Assignee
X One Inc.
|
Ad hoc location sharing group establishment for wireless devices with designated meeting point | ||
Patent #
US 10,750,309 B2
Filed 11/27/2019
|
Current Assignee
X One Inc.
|
Original Assignee
X One Inc.
|
Trailering assist system for vehicle | ||
Patent #
US 10,755,110 B2
Filed 06/27/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Imaging system for vehicle | ||
Patent #
US 10,766,417 B2
Filed 10/23/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Systems and methods for near-crash determination | ||
Patent #
US 10,769,456 B2
Filed 06/15/2018
|
Current Assignee
Nauto Inc.
|
Original Assignee
Nauto Inc.
|
Vehicle control system with reverse assist | ||
Patent #
US 10,773,707 B2
Filed 12/20/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Method for stitching images captured by multiple vehicular cameras | ||
Patent #
US 10,780,827 B2
Filed 11/25/2019
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Method for determining misalignment of a vehicular camera | ||
Patent #
US 10,780,826 B2
Filed 04/22/2019
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Adaptive forward lighting system for vehicle comprising a control that adjusts the headlamp beam in response to processing of image data captured by a camera | ||
Patent #
US 10,787,116 B2
Filed 09/10/2018
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Location sharing for commercial and proprietary content applications | ||
Patent #
US 10,791,414 B2
Filed 04/23/2019
|
Current Assignee
X One Inc.
|
Original Assignee
X One Inc.
|
Imaging system for vehicle | ||
Patent #
US 10,793,067 B2
Filed 07/25/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Method and system for predicting driving path of neighboring vehicle | ||
Patent #
US 10,793,162 B2
Filed 07/12/2016
|
Current Assignee
Hyundai Motor Company
|
Original Assignee
Hyundai Motor Company
|
Vehicular vision system including rear backup camera | ||
Patent #
US 10,800,331 B1
Filed 07/06/2020
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Trailer driving assist system | ||
Patent #
US 10,800,332 B2
Filed 05/16/2019
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular collision mitigation system | ||
Patent #
US 10,803,744 B2
Filed 12/02/2019
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular adaptive headlighting system | ||
Patent #
US 10,807,515 B2
Filed 10/01/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular rear backup vision system with video display | ||
Patent #
US 10,814,785 B2
Filed 03/16/2020
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with incident recording function | ||
Patent #
US 10,819,943 B2
Filed 05/05/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular vision system using image data transmission and power supply via a coaxial cable | ||
Patent #
US 10,827,108 B2
Filed 02/17/2020
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Collision imminent steering control systems and methods | ||
Patent #
US 10,836,383 B2
Filed 05/04/2018
|
Current Assignee
Board of Regents of the University of Michigan
|
Original Assignee
Board of Regents of the University of Michigan
|
Vehicular control system | ||
Patent #
US 10,839,233 B2
Filed 03/05/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Application-based two-way tracking and mapping function with selected individuals | ||
Patent #
US 10,856,099 B2
Filed 02/04/2020
|
Current Assignee
X One Inc.
|
Original Assignee
X One Inc.
|
Trailering assist system with trailer angle detection | ||
Patent #
US 10,858,042 B2
Filed 04/23/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Method for determining alignment of vehicular cameras | ||
Patent #
US 10,868,974 B2
Filed 02/19/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular control system with remote processor | ||
Patent #
US 10,870,427 B2
Filed 11/26/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular trailering system | ||
Patent #
US 10,870,449 B2
Filed 10/01/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Wide-view LIDAR with areas of special attention | ||
Patent #
US 10,871,779 B2
Filed 11/14/2018
|
Current Assignee
Waymo LLC
|
Original Assignee
Waymo LLC
|
Method of synchronizing multiple vehicular cameras with an ECU | ||
Patent #
US 10,873,682 B2
Filed 02/10/2020
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular vision system | ||
Patent #
US 10,875,455 B2
Filed 05/16/2019
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Collision avoidance system for vehicle | ||
Patent #
US 10,875,527 B2
Filed 02/18/2019
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular vision system | ||
Patent #
US 10,875,526 B2
Filed 10/22/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Forward sensing system for vehicle | ||
Patent #
US 10,877,147 B2
Filed 06/01/2020
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Systems and methods for remote management of emergency equipment and personnel | ||
Patent #
US 10,887,747 B2
Filed 04/20/2018
|
Current Assignee
Whelen Engineering Company Incorporated
|
Original Assignee
Whelen Engineering Company Incorporated
|
Vehicular control system for emergency handling | ||
Patent #
US 10,889,293 B2
Filed 11/29/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Method and system for controlling a vehicle | ||
Patent #
US 6,768,944 B2
Filed 08/09/2002
|
Current Assignee
American Vehicular Sciences LLC
|
Original Assignee
Intelligent Technologies International Inc.
|
Automotive lane change aid | ||
Patent #
US 20030025597A1
Filed 07/31/2002
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Donnelly Corporation
|
Method and apparatus for determination and warning of potential violation of intersection traffic control devices | ||
Patent #
US 6,516,273 B1
Filed 11/04/1999
|
Current Assignee
Calpine Corporation
|
Original Assignee
Veridian Engineering Incorporated
|
Global positioning system roadside integrated precision positioning system | ||
Patent #
US 6,560,535 B2
Filed 07/03/2002
|
Current Assignee
Johns Hopkins University
|
Original Assignee
Johns Hopkins University
|
Driver's aid using image processing | ||
Patent #
US 20030112132A1
Filed 12/14/2001
|
Current Assignee
Koninklijke Philips N.V.
|
Original Assignee
Koninklijke Philips N.V.
|
Accident avoidance system | ||
Patent #
US 6,370,475 B1
Filed 10/22/1998
|
Current Assignee
American Vehicular Sciences LLC
|
Original Assignee
Intelligent Technologies International Inc.
|
Accident avoidance system | ||
Patent #
US 6,405,132 B1
Filed 10/04/2000
|
Current Assignee
American Vehicular Sciences LLC
|
Original Assignee
Intelligent Technologies International Inc.
|
Navigation system and method for tracking the position of an object | ||
Patent #
US 6,453,238 B1
Filed 09/15/2000
|
Current Assignee
Samsung Electronics Co. Ltd.
|
Original Assignee
SiRF Technology
|
Self-contained positioning method and system thereof for water and land vehicles | ||
Patent #
US 6,459,990 B1
Filed 09/25/2000
|
Current Assignee
American GNC Corporation
|
Original Assignee
American GNC Corporation
|
Method and apparatus for controlling a vehicular component | ||
Patent #
US 20010002451A1
Filed 01/02/2001
|
Current Assignee
Automotive Technologies International Incorporated
|
Original Assignee
Automotive Technologies International Incorporated
|
Positioning process and system thereof | ||
Patent #
US 6,311,129 B1
Filed 04/06/1999
|
Current Assignee
American GNC Corporation
|
Original Assignee
American GNC Corporation
|
Navigator apparatus informing or peripheral situation of the vehicle and method for controlling the same | ||
Patent #
US 6,014,608 A
Filed 06/27/1997
|
Current Assignee
Samsung Electronics Co. Ltd.
|
Original Assignee
Samsung Electronics Co. Ltd.
|
Vehicle rollover sensing using short-term integration | ||
Patent #
US 6,038,495 A
Filed 02/06/1998
|
Current Assignee
Delphi Technologies Inc.
|
Original Assignee
Delco Electronics Corporation
|
Apparatus for determining the distance of a vehicle from a roadway side marking | ||
Patent #
US 5,890,083 A
Filed 03/07/1996
|
Current Assignee
Daimler Chrysler Company LLC
|
Original Assignee
Daimler-Benz AG
|
Vehicle control system, vehicle mounting apparatus, base station apparatus and vehicle control method | ||
Patent #
US 5,926,117 A
Filed 06/10/1998
|
Current Assignee
Hitachi America Limited
|
Original Assignee
Hitachi America Limited
|
GPS vehicle collision avoidance warning and control system and method | ||
Patent #
US 5,983,161 A
Filed 09/24/1996
|
Current Assignee
Robert D. Pedersen, Jerome H. Lemelson
|
Original Assignee
Robert D. Pedersen, Jerome H. Lemelson
|
Navigation system with solution separation apparatus for detecting accuracy failures | ||
Patent #
US 5,760,737 A
Filed 09/11/1996
|
Current Assignee
Honeywell Incorporated
|
Original Assignee
Honeywell Incorporated
|
Electronic equipment for prevention of collisions between vehicles | ||
Patent #
US 5,841,367 A
Filed 01/17/1995
|
Current Assignee
Caico Giovanni
|
Original Assignee
Caico Giovanni
|
True north heading estimator utilizing GPS output information and inertial sensor system output information | ||
Patent #
US 5,617,317 A
Filed 01/24/1995
|
Current Assignee
Honeywell Incorporated
|
Original Assignee
Honeywell Incorporated
|
Automobile navigation guidance, control and safety system | ||
Patent #
US 5,504,482 A
Filed 06/11/1993
|
Current Assignee
CSR Technology Incorporated
|
Original Assignee
Rockwell International Corporation
|
Motor vehicle performance monitor and method | ||
Patent #
US 5,570,087 A
Filed 02/18/1994
|
Current Assignee
Jerome H. Lemelson
|
Original Assignee
Jerome H. Lemelson
|
Real time three dimensional geo-referenced digital orthophotograph-based positioning, navigation, collision avoidance and decision support system | ||
Patent #
US 5,381,338 A
Filed 11/18/1993
|
Current Assignee
Unitech Research Inc.
|
Original Assignee
Unitech Research Inc.
|
Traffic control system utilizing on-board vehicle information measurement apparatus | ||
Patent #
US 5,332,180 A
Filed 12/28/1992
|
Current Assignee
Union Switch Signal Inc.
|
Original Assignee
Union Switch Signal Inc.
|
Automobile navigation system using real time spoken driving instructions | ||
Patent #
US 5,177,685 A
Filed 08/09/1990
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
INERTIAL/DOPPLER-SATELLITE NAVIGATION SYSTEM | ||
Patent #
US 3,702,477 A
Filed 06/23/1969
|
Current Assignee
Robert G. Brown
|
Original Assignee
Iowa State University Research Foundation Incorporated
|
23 Claims
-
1. An apparatus for sensing a potential rollover situation involving a vehicle, comprising:
-
an inertial reference unit including three accelerometers and three gyroscopes which provide data on vehicle motion; vehicle control devices arranged to affect control of the vehicle; a processor coupled to said inertial reference unit and said vehicle control devices and including an algorithm arranged to receive data from said inertial reference unit and control at least one of said vehicle control devices to apply at least one of the throttle, brakes and steering to prevent the rollover; and location determining means for determining the location of the vehicle on a roadway, said processor being coupled to said location determining means and being arranged to consider the location of the vehicle when determining at least one of the existence of a potential rollover situation and the manner in which to control said at least one of said vehicle control devices. - View Dependent Claims (2, 3, 4, 5)
-
-
6. A vehicle, comprising:
-
tires; a brake system arranged in connection with said tires to apply a braking force to said tires to reduce rotation of said tires; and an apparatus for sensing a potential rollover situation involving a vehicle including an inertial reference unit including three accelerometers and three gyroscopes which provide data on vehicle motion; and a processor coupled to said inertial reference unit and said brake system arranged to receive data from said inertial reference unit and control said brake system to apply the braking force to said tires to prevent the rollover. - View Dependent Claims (7, 8)
-
-
9. A vehicle, comprising:
-
an engine system arranged in connection with said tires to apply a motive force to said tires; and an apparatus for sensing a potential rollover situation involving a vehicle including an inertial reference unit including three accelerometers and three gyroscopes which provide data on vehicle motion; and a processor coupled to said inertial reference unit and said engine system and arranged to receive data from said inertial reference unit and control said engine system to regulate motive force being applied to said tires to prevent the rollover. - View Dependent Claims (10, 11)
-
-
12. A vehicle, comprising:
-
an inertial reference unit including three accelerometers and three gyroscopes which provide data on vehicle motion; location determining means for determining the location of the vehicle on a roadway; vehicle control systems arranged to affect control of the vehicle; and a processor coupled to said inertial reference unit, said location determining means and said vehicle control systems and arranged to receive data from said inertial reference unit and control at least one of said vehicle control systems to prevent a rollover, said processor being arranged to consider the determined location of the vehicle when determining at least one of the existence of a potential rollover situation and the manner in which to control said vehicle control systems. - View Dependent Claims (13, 14, 15)
-
-
16. A vehicle, comprising:
-
an inertial reference unit including three accelerometers and three gyroscopes which provide data on vehicle motion; vehicle control systems arranged to affect control of the vehicle; a processor coupled to said inertial reference unit and said vehicle control systems and arranged to receive data from said inertial reference unit and control at least one of said vehicle control systems to prevent a rollover; and a navigation system coupled to said processor and arranged to provide information about a roadway on which the vehicle is traveling from a map database to said processor, said processor being arranged to process the data on vehicle motion and the roadway information and control a warning system to provide a warning to the driver upon detection of a potential rollover situation. - View Dependent Claims (17, 18, 19)
-
-
20. An apparatus for sensing a potential rollover situation involving a vehicle, comprising:
-
an inertial reference unit including three accelerometers and three gyroscopes which provide data on vehicle motion; vehicle control devices arranged to affect control of the vehicle; a processor coupled to said inertial reference unit and said vehicle control devices and including an algorithm arranged to receive data from said inertial reference unit and control at least one of said vehicle control devices to apply at least one of the throttle, brakes and steering to prevent the rollover; and a navigation system coupled to said processor and arranged to provide information about a roadway on which the vehicle is traveling from a map database to said processor, said processor being arranged to process the data on vehicle motion and the roadway information and control a warning system to provide a warning to the driver upon detection of the potential rollover situation. - View Dependent Claims (21, 22, 23)
-
1 Specification
This application is a continuation-in-part of:
1) U.S. patent application Ser. No. 10/118,858 filed Apr. 9, 2002, now U.S. Pat. No. 6,720,920, which is:
- A) a continuation-in-part of U.S. patent application Ser. No. 09/177,041 filed Oct. 22, 1998, now U.S. Pat. No. 6,370,475, which claims priority under 35 U.S.C. §119(e) of U.S. provisional patent application Ser. No. 60/062,729 filed Oct. 22, 1997;
- B) a continuation-in-part of U.S. patent application Ser. No. 09/679,317 filed Oct. 4, 2000, now U.S. Pat. No. 6,405,132, which is a continuation-in-part of:
- a) U.S. patent application Ser. No. 09/523,559 filed Mar. 10, 2000, now abandoned, which claims priority under 35 U.S.C. §119(e) of U.S. provisional patent application Ser. No. 60/123,882 filed Mar. 11, 1999, and which is a continuation-in-part of U.S. patent application Ser. No. 09/177,041 filed Oct. 22, 1998, now U.S. Pat. No. 6,370,475, which claims priority under 35 U.S.C. §119(e) of U.S. provisional patent application Ser. No. 60/062,729 filed Oct. 22, 1997; and
- C) a continuation-in-part of U.S. patent application Ser. No. 09/909,466 filed Jul. 19, 2001, now U.S. Pat. No. 6,526,352; and
2) U.S. patent application Ser. No. 10/216,633 filed Aug. 9, 2002, now U.S. Pat. No. 6,768,944, which is a continuation-in-part of U.S. patent application Ser. No. 10/118,858 filed Apr. 9, 2002, now U.S. Pat. No. 6,720,920.
This invention is in the fields of automobile safety, intelligent highway safety systems, accident avoidance, accident elimination, collision avoidance, blind spot detection, anticipatory sensing, automatic vehicle control, intelligent cruise control, vehicle navigation, vehicle to vehicle communication, vehicle to non-vehicle communication and non-vehicle to vehicle communication and other automobile, truck and train safety, navigation, communication and control related fields.
The invention relates generally to methods for vehicle-to-vehicle communication and communication between a vehicle and non-vehicles and more particularly to apparatus and methods using coded spread spectrum, ultrawideband, noise radar or similar technologies. The coding scheme can use may be implemented using multiple access communication methods analogous to frequency division multiple access (FDMA), time division multiple access (TDMA), or code division multiple access (CDMA) in a manner to permit simultaneous communication with and between a multiplicity of vehicles generally without the use of a carrier frequency.
The invention also relates generally to an apparatus and method for precisely determining the location and orientation of a host vehicle operating on a roadway and location of multiple moving or fixed obstacles that represent potential collision hazards with the host vehicle to thereby eliminate collisions with such hazards. In the early stages of implementation of the apparatus and method and when collisions with such hazards cannot be eliminated, the apparatus and method will generate warning signals and possibly initiate avoidance maneuvers to minimize the probability of a collision and the consequences thereof. More particularly, the invention relates to the use of a Global Positioning System (“GPS”), differential GPS (“DGPS”), other infrastructure-based location aids, cameras, radar, laser radar, terahertz radar and an inertial navigation system as the primary host vehicle and target locating system with centimeter level accuracy. The invention is further supplemented by a processor to detect, recognize and track all relevant potential obstacles, including other vehicles, pedestrians, animals, and other objects on or near the roadway. More particularly, the invention further relates to the use of centimeter-accurate maps for determining the location of the host vehicle and obstacles on or adjacent the roadway. Even more particularly, the invention further relates to an inter-vehicle and vehicle to infrastructure communication systems for transmitting GPS or DGPS position data, velocities, headings, as well as relevant target data to other vehicles for information and control action. The present invention still further relates to the use of Kalman filters, neural networks, combination neural networks and neural-fuzzy rule sets or algorithms for recognizing and categorizing obstacles and generating and developing optimal avoidance maneuvers where necessary.
All of the patents, patent applications, technical papers and other references referenced below are incorporated herein by reference in their entirety. Various patents, patent applications, patent publications and other published documents are discussed below as background of the invention. No admission is made that any or all of these references are prior art and indeed, it is contemplated that they may not be available as prior art when interpreting 35 U.S.C. §102 in consideration of the claims of the present application.
Automobile accidents are one of the most serious problems facing society today, both in terms of deaths and injuries, and in financial losses suffered as a result of accidents. The suffering caused by death or injury from such accidents is immense. The costs related to medical treatment, permanent injury to accident victims and the resulting loss of employment opportunities, and financial losses resulting from damage to property involved in such accidents are staggering. Providing the improved systems and methods to eventually eliminate these deaths, injuries and other losses deserves the highest priority. The increase in population and use of automobiles worldwide with the concomitant increased congestion on roadways makes development of systems for collision elimination even more urgent. While many advances have been made in vehicle safety, including, for example, the use of seatbelts, airbags and safer automobile structures, much room for improvement exists in automotive safety and accident prevention systems.
There are two major efforts underway that will significantly affect the design of automobiles and highways. The first is involved with preventing deaths and serious injuries from automobile accidents. The second involves the attempt to reduce the congestion on highways. In the first case, there are approximately forty two thousand (42,000) people killed each year in the United States by automobile accidents and another several hundred thousand are seriously injured. In the second case, hundreds of millions of man-hours are wasted every year by people stuck in traffic jams on the world'"'"'s roadways. There have been many attempts to solve both of these problems; however, no single solution has been able to do so.
When a person begins a trip using an automobile, he or she first enters the vehicle and begins to drive, first out of the parking space and then typically onto a local or city road and then onto a highway. In leaving the parking space, he or she may be at risk from an impact of a vehicle traveling on the road. The driver must check his or her mirrors to avoid such an event and several electronic sensing systems have been proposed which would warn the driver that a collision is possible. Once on the local road, the driver is at risk of being impacted from the front, side and rear, and electronic sensors are under development to warn the driver of such possibilities. Similarly, the driver may run into a pedestrian, bicyclist, deer or other movable object and various sensors are under development that will warn the driver of these potential events. These various sensors include radar, optical, terahertz or other electromagnetic frequencies, infrared, ultrasonic, and a variety of other sensors, each of which attempts to solve a particular potential collision event. It is important to note that as yet, in none of these cases is there sufficient confidence in the decision that the control of the vehicle is taken away from the driver. Thus, action by the driver is still invariably required.
In some proposed future Intelligent Transportation System (ITS) designs, hardware of various types is embedded into the highway and sensors which sense this hardware are placed onto the vehicle so that it can be accurately guided along a lane of the highway. In various other systems, cameras are used to track lane markings or other visual images to keep the vehicle in its lane. However, for successful ITS, additional information is needed by the driver, or the vehicle control system, to take into account weather, road conditions, congestion etc., which typically involves additional electronic hardware located on or associated with the highway as well as the vehicle. From this discussion, it is obvious that a significant number of new electronic systems are planned for installation onto automobiles. However, to date, no product has been proposed or designed which combines all of the requirements into a single electronic system. This is one of the intents of some embodiments of this invention.
The safe operation of a vehicle can be viewed as a process in the engineering sense. To achieve safe operation, first the process must be designed and then a vehicle control system must be designed to implement the process. The goal of a process designer is to design the process so that it does not fail. The fact that so many people are being seriously injured and killed in traffic accidents and the fact that so much time is being wasted in traffic congestion is proof that the current process is not working and requires a major redesign. To design this new process, the information required by the process must be identified, the source of that information determined and the process designed so that the sources of information can communicate effectively with the user of the information, which will most often be a vehicle control system. Finally, the process must have feedback that self-corrects the process when it is tending toward failure.
Although it is technologically feasible, it is probably socially unacceptable at this time for a vehicle safety system to totally control the vehicle. An underlying premise of embodiments of this invention, therefore, is that people will continue to operate their vehicle and control of the vehicle will only be seized by the control system when such an action is required to avoid an accident or when such control is needed for the orderly movement of vehicles through potentially congested areas on a roadway. When this happens, the vehicle operator will be notified and given the choice of exiting the road at the next opportunity. In some implementations, especially when this invention is first implemented on a trail basis, control will not be taken away from the vehicle operator but a warning system will alert the driver of a potential collision, road departure or other infraction.
Let us consider several scenarios and what information is required for the vehicle control process to prevent accidents. In one case, a driver is proceeding down a country road and falls asleep and the vehicle begins to leave the road, perhaps heading toward a tree. In this case, the control system would need to know that the vehicle was about to leave the road and for that, it must know the position of the vehicle relative to the road. One method of accomplishing this would be to place a wire down the center of the road and to place sensors within the vehicle to sense the position of the wire relative to the vehicle, or vice versa. An alternate approach would be for the vehicle to know exactly where it is on the surface of the earth and to also know exactly where the edge of the road is.
These approaches are fundamentally different because in the former solution every road in the world would require the placement of appropriate hardware as well as the maintenance of this hardware. This is obviously impractical. In the second case, the use of the global positioning satellite system (GPS), augmented by additional systems to be described below, will provide the vehicle control system with an accurate knowledge of its location. While it would be difficult to install and maintain hardware such as a wire down the center of the road for every road in the world, it is not difficult to survey every road and record the location of the edges, and the lanes for that matter, of each road. This information must then be made available through one or more of a variety of techniques to the vehicle control system.
Another case might be where a driver is proceeding down a road and decides to change lines while another vehicle is in the driver'"'"'s blind spot. Various companies are developing radar, ultrasonic or optical sensors to warn the driver if the blind spot is occupied. The driver may or may not heed this warning, perhaps due to an excessive false alarm rate, or he or she may have become incapacitated, or the system may fail to detect a vehicle in the blind spot and thus the system will fail.
Consider an alternative technology where again each vehicle knows precisely where it is located on the earth surface and additionally can communicate this information to all other vehicles within a certain potential danger zone relative to the vehicle. Now, when the driver begins to change lanes, his or her vehicle control system knows that there is another vehicle in the blind spot and therefore will either warn the driver or else prevent him or her from changing lanes thereby avoiding the accident.
Similarly, if a vehicle is approaching a stop sign, other traffic marker or red traffic light and the operator fails to bring the vehicle to a stop, if the existence of this traffic light and its state (red in this example) or stop sign has been made available to the vehicle control system, the system can warn the driver or seize control of the vehicle to stop the vehicle and prevent a potential accident. Additionally, if an operator of the vehicle decides to proceed across an intersection without seeing an oncoming vehicle, the control system will once again know the existence and location and perhaps velocity of the oncoming vehicle and warn or prevent the operator from proceeding across the intersection.
Consider another example where water on the surface of a road is beginning to freeze. Probably the best way that a vehicle control system can know that the road is about to become slippery, and therefore that the maximum vehicle speed must be significantly reduced, is to get information from some external source. This source can be sensors located on the highway that are capable of determining this condition and transmitting it to the vehicle. Alternately, the probability of icing occurring can be determined analytically from meteorological data and a historical knowledge of the roadway and communicated to the vehicle over a LEO or GEO satellite system, the Internet or an FM sub-carrier or other means. A combination of these systems can also be used.
Studies have shown that a combination of meteorological and historic data can accurately predict that a particular place on the highway will become covered with ice. This information can be provided to properly equipped vehicles so that the vehicle knows to anticipate slippery roads. For those roads that are treated with salt to eliminate frozen areas, the meteorological and historical data will not be sufficient. Numerous systems are available today that permit properly equipped vehicles to measure the coefficient of friction between the vehicle'"'"'s tires and the road. It is contemplated that perhaps police or other public vehicles will be equipped with such a friction coefficient measuring apparatus and can serve as probes for those roadways that have been treated with salt. Information from these probe vehicles will be fed into the information system that will then be made available to control speed limits in those areas.
Countless other examples exist; however, from those provided above it can be seen that for the vehicle control system to function without error, certain types of information must be accurately provided. These include information permitting the vehicle to determine its absolute location and means for vehicles near each other to communicate this location information to each other. Additionally, map information that accurately provides boundary and lane information of the road must be available. Also, critical weather or road-condition information is necessary. The road location information need only be generated once and changed whenever the road geometry is altered. This information can be provided to the vehicle through a variety of techniques including prerecorded media such as CD-ROM or DVD disks or through communications from transmitters located in proximity to the vehicle, satellites, radio and cellular phones.
Consider now the case of the congested highway. Many roads in the world are congested and are located in areas where the cost of new road construction is prohibitive or such construction is environmentally unacceptable. It has been reported that an accident on such a highway typically ties up traffic for a period of approximately four times the time period required to clear the accident. Thus, by eliminating accidents, a substantial improvement of the congested highway problem is obtained. This of course is insufficient. On such highways, each vehicle travels with a different spacing, frequently at different speeds and in the wrong lanes. If the proper spacing of the vehicles could be maintained, and if the risk of an accident could be substantially eliminated, vehicles under automatic control could travel at substantially higher velocities and in a more densely packed configuration thereby substantially improving the flow rate of vehicles on the highway by as much as a factor of 3 to 4 times. This not only will reduce congestion but also improve air pollution. Once again, if each vehicle knows exactly where it is located, can communicate its location to surrounding vehicles and knows precisely where the road is located, then the control system in each vehicle has sufficient information to accomplish this goal.
Again, an intention of the system and process described here is to totally eliminate automobile accidents as well as reduce highway congestion. This process is to be designed to have no defective decisions. The process employs information from a variety of sources and utilizes that information to prevent accidents and to permit the maximum vehicle throughput on highways.
The information listed above is still insufficient. The geometry of a road or highway can be determined once and for all, until erosion or construction alters the road. Properly equipped vehicles can know their location and transmit that information to other properly equipped vehicles. There remains a variety of objects whose location is not fixed, which have no transmitters and which can cause accidents. These objects include broken down vehicles, animals such as deer which wander onto highways, pedestrians, bicycles, objects which fall off of trucks, and especially other vehicles which are not equipped with location determining systems and transmitters for transmitting that information to other vehicles. Part of this problem can be solved for congested highways by restricting access to these highways to vehicles that are properly equipped. Also, these highways are typically in urban areas and access by animals can be effectively eliminated. Heavy fines can be imposed on vehicles that drop objects onto the highway. Finally, since every vehicle and vehicle operator becomes part of the process, each such vehicle and operator becomes a potential source of information to help prevent catastrophic results. Thus, each vehicle should also be equipped with a system of essentially stopping the process in an emergency. Such a system could be triggered by vehicle sensors detecting a problem or by the operator strongly applying the brakes, rapidly turning the steering wheel or by activating a manual switch when the operator observes a critical situation but is not himself in immediate danger. An example of the latter case is where a driver witnesses a box falling off of a truck in an adjacent lane.
To solve the remaining problems, therefore, each vehicle should also be equipped with an anticipatory collision sensing system, or collision forecasting system, which is capable of identifying or predicting and reacting to a pending accident. As the number of vehicles equipped with the control system increases, the need for the collision forecasting system will diminish.
Once again, the operator will continue to control his vehicle provided he or she remains within certain constraints. These constraints are like a corridor. As long as the operator maintains his vehicle within this allowed corridor, he or she can operate that vehicle without interference from the control system. That corridor may include the entire width of the highway when no other vehicles are present or it may be restricted to all eastbound lanes, for example. In still other cases, that corridor may be restricted to a single line and additionally, the operator may be required to keep his vehicle within a certain spacing tolerance from the preceding vehicle. If a vehicle operator wishes to exit a congested highway, he could operate his turn signal that would inform the control system of this desire and permit the vehicle to safely exit from the highway. It can also inform other adjacent vehicles of the operator'"'"'s intent, which could then automatically cause those vehicles to provide space for lane changing, for example. The highway control system is thus a network of individual vehicle control systems rather than a single highway resident computer system.
Considering now the U.S. Department of Transportation (DOT) policy, in the DOT FY 2000 Budget in Brief Secretary Rodney Slater states that “Historic levels of federal transportation investment . . . are proposed in the FY 2000 budget.” Later, Secretary Slater states that “Transportation safety is the number one priority.” DOT has estimated that $165 billion per year are lost in fatalities and injuries on U.S. roadways. Another $50 billion are lost in wasted time of people on congested highways. Presented herein is a plan to eliminate fatalities and injuries and to substantially reduce congestion. The total cost of implementing this plan is minuscule compared to the numbers stated above. This plan has been named the “Road to Zero Fatalities™”, or RtZF™ for short.
The DOT Performance Plan FY 2000, Strategic Goal: Safety, states that “The FY 2000 budget process proposes over $3.4 billion for direct safety programs to meet this challenge.” The challenge is to “Promote the public health and safety by working toward the elimination of traffic related deaths, injuries and property damage”. The goal of the RtZF™, as described below and which is a part of the present invention, is the same and herein a plan is presented for accomplishing this goal. The remainder of the DOT discussion centers around wishful thinking to reduce the number of transportation related deaths, injuries, etc. However, the statistics presented show that in spite of this goal, the number of deaths is now increasing. As discussed below, this is the result of a failed process.
Reading through the remainder of the DOT Performance Plan FY 2000, one is impressed by the billions of dollars that are being spent to solve the highway safety problem coupled with the enormous improvement that has been made until the last few years. It can also be observed that the increase in benefits from these expenditures has now disappeared. For example, the fatality rate per 100 million vehicle miles traveled fell from 5.5 to 1.7 in the period from the mid-1960s to 1994. But this decrease has now substantially stopped! This is an example of the law of diminishing returns and signals the need to take a totally new approach to solving this problem.
The U.S. Intelligent Vehicle Initiative (IVI) policy states that significant funds have been spent on demonstrating various ITS technologies. It is now time for implementation. With over 40,000 fatalities and almost four million people being injured every year on US roadways, it is certainly time to take affirmative action to stop this slaughter. The time for studies and demonstrations is past. However, the deployment of technologies that are inconsistent with the eventual solution of the problem will only delay implementation of the proper systems and thereby result in more deaths and injuries.
A primary goal of the Intelligent Vehicle Initiative was to reduce highway related fatalities per 100 million vehicle miles traveled from 1.7 in 1996 to 1.6 in 2000. Of course, the number of fatalities may still increase due to increased road use. If this reduction in fatalities comes about due to slower travel speeds, because of greater congestion, then has anything really been accomplished? Similar comments apply to the goal of reducing the rate of injury per 100 million vehicle miles from 141 in 1996 to 128 in 2000. An alternate goal, as described herein, is to have the technology implemented on all new vehicles by the year 2010 that will eventually eliminate all fatalities and injuries. As an intermediate milestone, it is proposed to have the technology implemented on all new vehicles by 2007 to reduce or eliminate fatalities caused by road departure, center (yellow) line crossing, stop sign infraction, rear end and excessive speed accidents. Inventions described herein will explain how these are goals can be attained.
In the IVI Investment Strategy, Critical Technology Elements And Activities of the DOT, it says “The IVI will continue to expand these efforts particularly in areas such as human factors, sensor performance, modeling and driver acceptance”. An alternate, more effective, concentration for investments would be to facilitate the deployment of those technologies that will reduce and eventually eliminate highway fatalities. Driver acceptance and human factors will be discussed below. Too much time and resources have already been devoted to these areas. Modeling can be extremely valuable and sensor performance is in a general sense a key to eliminating fatalities.
On Jul. 15, 1998, the IVI light vehicle steering committee met and recommended that the IVI program should be conducted as a government industry partnership like the PNGV. This is believed to be quite wrong and it is believed that the IVI should now move vigorously toward the deployment of proven technology.
The final recommendations of the committee was “In the next five years, the IVI program should be judged on addressing selected impediments preventing deployment, not on the effect of IVI services on accident rates.” This is believed to be a mistake. The emphasis for the next five years should be to deploy proven technologies and to start down the Road to Zero Fatalities™. Five years from now technology should be deployed on production vehicles sold to the public that have a significant effect toward reducing fatalities and injuries.
As described in the paper “Preview Based Control of A Tractor Trailer Using DGPS For Preventing Road Departure Accidents” the basis of the technology proposed has been demonstrated.
1. Vehicle Collision Warning and Control
The world is experiencing an unacceptable growth in traffic congestion and attention is increasingly turning to smart highway systems to solve the problem. It has been estimated that approximately $240 billion will be spent on smart highways over the next 20 years. All of the initiatives currently being considered involve a combination of vehicle-mounted sensors and sensors and other apparatus installed in or on the roadway. Such systems are expensive to install, difficult and expensive to maintain and will thus only be used on major highways, if at all. Although there will be some safety benefit from such systems, it will be limited to the highways which have the system and perhaps to only a limited number of lanes.
The RtZF™ system in accordance with the invention eliminates the shortcomings of the prior art by providing a system that does not require modifications to the highway. The information as to the location of the highway is determined, as discussed above, by mapping the edges of the roadway and the edges of the lanes of the roadway using a process whereby the major roads of the entire country can be mapped at very low cost. Thus, the system has the capability of reducing congestion as well as saving lives on all major roads, not just those which have been selected as high-speed guided lanes.
The ALVINN project of Carnegie Mellon University (Jochem, Todd M., Pomerleau, Dean A., and Thorpe, Charles E., “Vision-Based Neural Network Road and Intersection Detection and Traversal”, IEEE Conference on Intelligent Robots and Systems, Aug. 5–9, 1995, Pittsburgh, Pa., USA)) describes an autonomous land vehicle using a neural network. The neural network is trained based on how a driver drives the vehicle given the output from a video camera. The output of the neural network is the direction that the vehicle should head based on the input information from the video camera and the training based on what a good driver would do. A similar system can be used in some embodiments of the present invention to guide a vehicle to a safe stop in the event that the driver becomes incapacitated or some other emergency situation occurs wherein the driver is unable to control the vehicle. The input to the neural network in this case would be the map information rather than a video camera. Additionally, a laser radar or terahertz radar imaging system of this invention could also be an input to the system. This neural network system can additionally take over in the event that an accident becomes inevitable. Simple neural networks are probably not sufficient for this purpose and neural fuzzy, modular neural networks or combination neural networks are probably required.
US05479173 to Yoshioka, et al. uses a steering angle sensor, a yaw rate sensor and a velocity of the vehicle sensor to predict the path that the vehicle will take. It uses a radar unit to identify various obstacles that may be in the path of the vehicle, and it uses a CCD camera to try to determine that the road is changing direction in front of the vehicle. No mention is made of the accuracy with which these determinations are made. It is unlikely that sub-meter accuracy is achieved. If an obstacle is sensed, the brakes can be automatically activated.
US05540298 to Yoshioka, et al. is primarily concerned with changing the suspension and steering characteristics of the vehicle in order to prevent unstable behavior of the vehicle in response to the need to exercise a collision avoidance maneuver. The collision anticipation system consists of an ultrasonic unit and two optical laser radar units.
US05572428 to Ishida is concerned with using a radar system plus a yaw rate sensor and a velocity sensor to determine whether a vehicle will collide with another vehicle based on the area occupied by each vehicle. Naturally, since radar cannot accurately determine this area, it has to be assumed by the system.
US05613039 to Wang, et al. is a collision warning radar system utilizing a real time adaptive probabilistic neural network. Wang discusses that about 60% of roadway collisions could be avoided if the operator of the vehicle was provided warning at least one-half second prior to a collision. The radar system used by Wang consists of two separate frequencies. The reflective radar signals are analyzed by a probabilistic neural network that provides an output signal indicative of the likelihood and threat of a collision with a particular object. The invention further includes a Fourier transform circuit that converts the digitized reflective signal from a time series to a frequency representation. It is important to note that in this case, as in the others above, true collision avoidance will not occur since, without a knowledge of the roadway, two vehicles can be approaching each other on a collision course, each following a curved lane on a highway and yet the risk of collision is minimal due to the fact that each vehicle remains in its lane. Thus, true collision avoidance cannot be obtained without an accurate knowledge of the road geometry.
US05983161 to Lemelson describes a GPS-based collision avoidance and warning system that contains some of the features of embodiments of the present invention. This patent is primarily concerned with using centimeter-accuracy DGPS systems to permit vehicles on a roadway to learn and communicate their precise locations to other vehicles. In that manner, a pending collision can, in some cases, be predicted.
Lemelson does not use an inertial navigation system for controlling the vehicle between GPS updates. Thus, the vehicle can travel a significant distance before its position can be corrected. This can lead to significant errors. Lemelson also does not make use of accurate map database and thus it is unable to distinguish cases where two cars are on separate lanes but on an apparent collision course. Although various radar and lidar systems are generally discussed, the concept of range gating is not considered. Thus, the Lemelson system is unable to provide the accuracy and reliability required by the Road to Zero Fatalities™ system described herein.
Since many of the concepts disclosed in the inventions herein make use of neural networks, a background of neural networks is important to the reader. The theory of neural networks including many examples can be found in several books on the subject including: (1) Techniques and Application of Neural Networks, edited by Taylor, M. and Lisboa, P., Ellis Horwood, West Sussex, England, 1993; (2) Naturally Intelligent Systems, by Caudill, M. and Butler, C., MIT Press, Cambridge Mass., 1990; (3) J. M. Zaruda, Introduction to Artificial Neural Systems, West publishing Co., N.Y., 1992, (4) Digital Neural Networks, by Kung, S. Y., PTR Prentice Hall, Englewood Cliffs, N.J., 1993, Eberhart, R., Simpson, P., (5) Dobbins, R., Computational Intelligence PC Tools, Academic Press, Inc., 1996, Orlando, Fla., (6) Cristianini, N. and Shawe-Taylor, J. An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods, Cambridge University Press, Cambridge England, 2000; (7) Proceedings of the 2000 6th IEEE International Workshop on Cellular Neural Networks and their Applications (CNNA 2000), IEEE, Piscataway N.J.; and (8) Sinha, N. K. and Gupta, M. M. Soft Computing & Intelligent Systems, Academic Press 2000 San Diego, Calif. The neural network pattern recognition technology is one of the most developed of pattern recognition technologies. The invention described herein uses combinations of neural networks to improve the pattern recognition process.
2. Accurate Navigation
US05504482 to Schreder describes an automobile equipped with an inertial and satellite navigation system as well as a local area digitized street map. The main use of this patent is for route guidance in the presence of traffic jams, etc. Schreder describes how information as to the state of the traffic on a highway can be transmitted and utilized by a properly equipped vehicle to change the route the driver would take in going to his destination. Schreder does not disclose sub-meter vehicle location accuracy determination, nevertheless, this patent provides a good picture of the state of the art as can be seen from the following quoted paragraphs:
“ . . . there exists a wide range of technologies that have disadvantageously not been applied in a comprehensive integrated manner to significantly improve route guidance, reduce pollution, improve vehicular control and increase safety associated with the common automobile experience. For example, it is known that gyro based inertial navigation systems have been used to generate three-dimensional position information, including exceedingly accurate acceleration and velocity information over a relatively short travel distance, and that GPS satellite positioning systems can provide three-dimensional vehicular positioning and epoch timing, with the inertial system being activated when satellite antenna reception is blocked during “drop out” for continuous precise positioning. It is also known that digitized terrain maps can be electronically correlated to current vehicular transient positions, as have been applied to military styled transports and weapons. For another example, it is also known that digitally encoded information is well suited to RF radio transmission within specific transmission carrier bands, and that automobiles have been adapted to received AM radio, FM radio, and cellular telecommunication RF transmissions. For yet another example, it is further known that automobile electronic processing has been adapted to automatically control braking, steering, suspension and engine operation, for example, anti-lock braking, four-wheel directional steering, dynamic suspension stiffening during turns and at high speeds, engine governors limiting vehicular speed, and cruise control for maintaining a desired velocity. For still another example, traffic monitors, such as road embedded magnetic traffic light sensor loops and road surface traffic flow meters have been used to detect traffic flow conditions. While these sensors, meters, elements, systems and controls have served limited specific purposes, the prior art has disadvantageously failed to integrate them in a comprehensive fashion to provide a complete dynamic route guidance, dynamic vehicular control, and safety improvement system.”
“Recently, certain experimental integrated vehicular dynamic guidance systems have been proposed. Motorola has discussed an Intelligent Vehicle Highway System in block diagram form in copyright dated 1993 brochure. Delco Electronics has discussed another Intelligent Vehicle Highway System also in block diagram form in Automotive News published on Apr. 12, 1993. These systems use compass technology for vehicular positioning. However, displacement wheel sensors are plagued by tire slippage, tire wear and are relatively inaccurate requiring recalibration of the current position. Compasses are inexpensive, but suffer from drifting particularly when driving on a straight road for extended periods. Compasses can sense turns, and the system may then be automatically recalibrated to the current position based upon sensing a turn and correlating that turn to the nearest turn on a digitized map, but such recalibration, is still prone to errors during excessive drifts. Moreover, digitized map systems with the compass and wheel sensor positioning methods operate in two dimensions on a three dimensional road terrain injecting further errors between the digitized map position and the current vehicular position due to a failure to sense the distance traveled in the vertical dimension.”
“These Intelligent Vehicle Highway Systems appear to use GPS satellite reception to enhance vehicular tracking on digitized road maps as part of a guidance and control system. These systems use GPS to determine when drift errors become excessive and to indicate that recalibration is necessary. However, the GPS reception is not used for automatic accurate recalibration of current vehicular positioning, even though C-MIGITS and like devices have been used for GPS positioning, inertial sensing and epoch time monitoring, which can provide accurate continuous positioning.”
“These Intelligent Vehicle Highway Systems use the compass and wheel sensors for vehicular positioning for route guidance, but do not use accurate GPS and inertial route navigation and guidance and do not use inertial measuring units for dynamic vehicular control. Even though dynamic electronic vehicular control, for example, anti-lock braking, anti-skid steering, and electronic control suspension have been contemplated by others, these systems do not appear to functionally integrate these dynamic controls with an accurate inertial route guidance system having an inertial measuring unit well suited for dynamic motion sensing. There exists a need to further integrate and improve these guidance systems with dynamic vehicular control and with improved navigation in a more comprehensive system.”
“These Intelligent Vehicle Highway Systems also use RF receivers to receive dynamic road condition information for dynamic route guidance, and contemplate infrastructure traffic monitoring, for example, a network for road magnetic sensing loops, and contemplate the RF broadcasting of dynamic traffic conditions for dynamic route guidance. The discussed two-way RF communication through the use of a transceiver suggests a dedicated two-way RF radio data system. While two-way RF communication is possible, the flow of necessary information between the vehicles and central system appears to be exceedingly lopsided. The flow of information from the vehicles to a central traffic radio data control system may be far less than the required information from traffic radio data control system to the vehicles. It seems that the amount of broadcasted dynamic traffic flow information to the vehicles would be far greater than the information transmitted from the vehicles to the central traffic control center. For example, road side incident or accident emergency messages to a central system may occur far less than the occurrences of congested traffic points on a digitized map having a large number of road coordinate points.”
“Conserving bandwidth capacity is an objective of RF communication systems. The utilization of existing infra structure telecommunications would seem cost-effective. AT&T has recently suggested improving the existing cellular communication network with high-speed digital cellular communication capabilities. This would enable the use of cellular telecommunications for the purpose of transmitting digital information encoding the location of vehicular incidents and accidents. It then appears that a vehicular radio data system would be cost-effectively used for unidirectional broadcasting of traffic congestion information to the general traveling public, while using existing cellular telecommunication systems for transmitting emergency information. The communication system should be adapted for the expected volume of information. The Intelligent Vehicular Highway Systems disadvantageously suggest a required two-way RF radio data system. The vast amount of information that can be transmitted may tend to expand and completely occupy a dedicated frequency bandwidth. To the extent that any system is bi-directional in operation tends to disadvantageously require additional frequency bandwidth capacity and system complexity.”
2.1 GPS
Referring to
The Global Positioning System (GPS) is a satellite-based navigation and time transfer system developed by the U.S. Department of Defense. GPS serves marine, airborne and terrestrial users, both military and civilian. Specifically, GPS includes the Standard Positioning Service (SPS) that provides civilian users with 100 meter accuracy as to the location or position of the user. It also serves military users with the Precise Positioning Service that provides 20-meter accuracy for the user. Both of these services are available worldwide with no requirement for any local equipment.
2.2 DGPS, WAAS, LAAS and Pseudolites
Differential operation of GPS is used to improve the accuracy and integrity of GPS. Differential GPS places one or more high quality GPS receivers at known surveyed locations to monitor the received GPS signals. This reference station(s) estimates the slowly varying components of the satellite range measurements, and forms a correction for each GPS satellite in view. The correction is broadcast to all DGPS users within the coverage area of the broadcast facilities.
For a good discussion of DGPS, for following paragraphs are reproduced from OMNISTAR:
“The new OMNISTAR Model 6300A offers unprecedented versatility for portable, real-time, DGPS positioning. It can improve the accuracy of a GPS receiver by as much as 100 times.
“OMNISTAR is a Differential GPS (DGPS) System. It is capable of improving regular GPS to sub-meter accuracy. GPS computes a user'"'"'s position by measuring ranges (actually, pseudoranges; which are ranges that are calculated by an iterative process) to three or more GPS satellites simultaneously.
“A DGPS System generates corrections for GPS errors. This is accomplished by the use of one or more GPS “Base Stations” that measure the errors in the GPS system and generates corrections. A “real-time” DGPS System not only generates the corrections, but provides some methodology for getting those corrections to users as quickly as possible. This always involves some type of radio transmission system. They may use microwave systems for short ranges, low frequencies for medium ranges and geostationary satellites for coverage of entire continents.
“The method of generating corrections is similar in most DGPS systems. A GPS base station tracks all GPS Satellites that are in view at its location. The internal processor knows the precise surveyed location of the base station antenna, and it can calculate the location in space of all GPS satellites at any time by using the epheremis that is a part of the normal broadcast message from all GPS satellites. From these two pieces of information, an expected range to each satellite can be computed at any time. The difference between that computed range and the measured range is the range error. If that information can quickly be transmitted to other nearby users, they can use those values as corrections to their own measured GPS ranges to the same satellites. The key word is “quickly”, because of the rapid change in the SA errors. In most radio systems, bandwidth is a finite limitation which dictates how much data can be sent in a given time period. That limitation can be eased somewhat by having the GPS base station software calculate the rate of change of the errors and add that information as part of the correction message. That term is called the range rate value and it is calculated and sent along with the range correction term. The range correction is an absolute value, in meters, for a given satellite at a given time of day. The range rate term is the rate that correction is changing, in meters per second. That allows GPS user sets to continue to use the “correction, plus the rate-of-change” for some period of time while it'"'"'s waiting for a new message. The length of time you can continue to use that data without an update depends on how well the range rate was estimated. In practice, it appears that OMNISTAR would allow about 12 seconds before the DGPS error would cause a one meter position error. In other words, the “age of data” can be up to 12 seconds before the error from that term would cause a one meter position error. OMNISTAR transmits a new correction message every two and one/half seconds, so even if an occasional message is missed, the user'"'"'s “age of data” is still well below 12 seconds.
“The OMNISTAR DGPS System was designed with the following objectives: (1) continental coverage; (2) sub-meter accuracy over the entire coverage area; and (3) a portable system (backpack). The first objective dictated that the transmission system had to be from a geostationary satellite. We purchased a transponder on satellite Spacenet 3, which is located at 87 degrees West longitude. It has an antenna pattern that covers most of North America; specifically, all of the 48 states, the northern half of Mexico and the southern half of Canada. It also has sufficient power within that footprint that a tiny omnidirectional antenna can be used at the user'"'"'s receiver.
“The methodology developed by John E. Chance & Assoc. of using multiple GPS base stations in a user'"'"'s solution and reducing errors due to the GPS signal traveling through the atmosphere, met the second objective. It was the first widespread use of a “Wide Area DGPS Solution”. It is able to use data from a relatively small number of base stations and provide consistent accuracy over extreme distances. A unique method of solving for atmospheric delays and weighting of distant base stations, achieves sub-meter capability over the entire coverage area—regardless of the user'"'"'s proximity to any base station. This achieves a truly nationwide system with consistent characteristics. A user can take the equipment anywhere within the coverage area and get consistent results, without any intervention or intimate knowledge of GPS or DGPS.
“The units being sold today are sufficiently portable that they can used in a backpack. They can include an internal GPS engine (optional) that will provide a complete solution in a single system package. All that is needed is a data collector or notebook computer for display and storage of corrected GPS data.
“The OMNISTAR Network consists of ten permanent base stations that are scattered throughout the Continental US, plus one in Mexico. These stations track all GPS Satellites above 5 degrees elevation and compute corrections every 600 milliseconds. The corrections are in the form of an industry standard message format called RTCM-104, Version II. The corrections are sent to the OMNISTAR Network Control Center in Houston via lease lines, with a dial back-up. At the NCC these messages are checked, compressed, and formed into a packet for transmission up to our satellite transponder. This occurs approximately every 2 to 3 seconds. A packet will contain the latest data from each of the 11 base stations.
“All OMNISTAR user sets receive these packets of data from the satellite transponder. The messages are first decoded from the spread-spectrum transmission format and then uncompressed. At that point, the message is an exact duplicate of the data as it was generated at each base station. Next, the atmospheric errors must be corrected. Every base station automatically corrects for atmospheric errors at it'"'"'s location; but the user is not at any of those locations, so the corrections are not optimized for the user—and, OMNISTAR has no information as to each individual'"'"'s location. If these errors are to be optimized for each user, then it must be done in each user'"'"'s OMNISTAR. For this reason, each OMNISTAR user set must be given an approximation of its location. The approximation only needs to be within 50 to 100 miles of its true position. Given that information, the OMNISTAR user set can remove most of the atmospheric correction from each Base Station message and substitute a correction for his own location. In spite of the loose approximation of the user'"'"'s location, this information is crucial to the OMNISTAR process. It makes the operation totally automatic and it is necessary for sub-meter positioning. If it is totally ignored, errors of up to ten meters can result.
“Fortunately, this requirement of giving the user'"'"'s OMNISTAR an approximate location is easily solved. If OMNISTAR is purchased with the optional internal GPS receiver installed, the problem is taken care of automatically by using the position output of the GPS receiver as the approximation. It is wired internally to do exactly that. An alternate method—when the internal GPS receiver is not present—is to use the user'"'"'s external GPS receiver for this function. In that case, the user'"'"'s receiver must have an output message in one of the approved formats (NMEA) and protocols that OMNISTAR can recognize.
“That output can be connected back to the OMNISTAR set by using the same cable that normally supplies the RTCM-104 from OMNISTAR to the user'"'"'s GPS receiver. This method works perfectly well when all the requirements on format and protocol are met. There is a third method, where a user uses a notebook computer to type in an estimated location into the OMNISTAR user set. Any location entered by this method is preserved—with an internal battery—until it is changed. This method works fine where the user does not intend to go more than 50–100 miles from some central location.
“After the OMNISTAR processor has taken care of the atmospheric corrections, it then uses it'"'"'s location versus the eleven base station locations, in an inverse distance-weighted least-squares solution. The output of that least-squares calculation is a synthesized RTCM-104 Correction Message that is optimized for the user'"'"'s location. It is always optimized for the user'"'"'s location that is input from the user'"'"'s GPS receiver or as an approximation that is typed in from a notebook computer. This technique is called the “Virtual Base Station Solution”. It is this technique that enables the OMNISTAR user to operate independently and consistently over the entire coverage area without regard to where he is in relation to our base stations. As far as we have determined, users are obtaining the predicted accuracy over the entire area.”
The above description is provided to illustrate the accuracy which can be obtained from the DGPS system. It is expected that the WAAS system when fully implemented will provide the same benefits as provided by the OMNISTAR system. However, when the standard deviation of approximately 0.5 meter is considered, it is evident that this WAAS system is insufficient by itself and will have to be augmented by other systems to improve the accuracy at least at this time.
GLONASS is a Russian system similar to GPS. This system provides accuracy that is not as good as GPS.
The Projected Position Accuracy of GPS and GLONASS, Based on the Current Performance is:
The system described here will achieve a higher accuracy than reported in the above table due to the combination of the inertial guidance system that permits accurate changes in position to be determined and through multiple GPS readings. In other words, the calculated position will converge to the real position over time. The addition of DGPS will provide an accuracy improvement of at least a factor of 10, which, with the addition of a sufficient number of DGPS stations in some cases is sufficient without the use of the carrier frequency correction. A further refinement where the vehicle becomes its own DGPS station through the placement of infrastructure stations at appropriate locations on roadways will further significantly enhance the system accuracy to the required level.
Multipath is the situation where more than one signal from a satellite comes to a receiver with one of the signals resulting from a reflection off of a building or the ground, for example. Since multipath is a function of geometry, the system can be designed to eliminate its effects based on highway surveying and appropriate antenna design. Multipath from other vehicles can also be eliminated since the location of the other vehicles will be known.
As discussed below, the Wide Area Augmentation System (WAAS) is being installed by the US Government to provide DGPS for airplane landings. The intent is to cover the entire continental U.S. (CONUS). This may be useful for much of the country for the purposes of this invention. Another alternative would be to use the cellular phone towers, since there are so many of them, if they could be programmed to act as pseudolites.
An important feature of DGPS is that the errors from the GPS satellites change slowly with time and therefore, only the corrections need be sent to the user from time to time. Using reference receivers separated by 25–120 km, accuracies from 2 cm to 1 m are achievable using local area DGPS which is marginal for RtZF™. Alternately, through the placement of appropriate infrastructure as described below even better accuracies are obtainable.
A type of wide area DGPS (WADGPS) system has been developed spans the entire US continent which provides position RMS accuracy to better than 50 cm. This system is described in the Bertiger, et al, “A Prototype Real-Time Wide Area Differential GPS System,” Proceedings of the National Technical Meeting, Navigation and Positioning in the Information Age, Institute of Navigation, Jan. 14–16, 1997 pp. 645–655. A RMS error of 50 cm would be marginally accurate for RtZF™. Many of the teachings of this invention, especially if the road edge and lane location error were much less, could be accomplished using more accurate surveying equipment. The OmniSTAR system is another WADGPS system that claims 6 cm (1σ) accuracy.
A similar DGPS system which is now being implemented on a nationwide basis is described in “DGPS Architecture Based on Separating Error Components, Virtual Reference Stations and FM Subcarrier Broadcast”, by Differential Corrections Inc., 10121 Miller Ave., Cupertino, Calif. 95041. The system described in this paper promises an accuracy on the order of 10 cm.
Suggested DGPS update rates are usually less than twenty seconds. DGPS removes common-mode errors, those errors common to both the reference and remote receivers (not multipath or receiver noise). Errors are more often common when receivers are close together (less than 100 km). Differential position accuracies of 1–10 meters are possible with DGPS based on C/A code SPS signals.
Using the CNET commercial system, 1 foot accuracies are possible if base stations are no more than 30 miles from the vehicle unit. This would require approximately 1000 base stations to cover CONUS. Alternately, the same accuracy is obtainable if the vehicle can become its own DGPS system every 30 miles as described herein.
Unfortunately, the respective error sources mentioned above rapidly decorrelate as the distances between the reference station and the vehicle increases. Conventional DGPS is the terminology used when the separation distances are sufficiently small that the errors cancel. The terms single-reference and multi-reference DGPS are occasionally used in order to emphasize whether there is a single reference station or whether there are multiple ones. If it is desired to increase the area of coverage and, at the same time, to minimize the number of fixed reference receivers, it becomes necessary to model the spatial and temporal variations of the residual errors. Wide Area Differential GPS (WADGPS) is designed to accomplish this. Funds have now been appropriated for the US Government to deploy a national DGPS system.
The Wide Area Augmentation System (WAAS) is being deployed to replace the Instrument Landing System used at airports across the country. The WAAS system provides an accuracy of from about 1 to 2 meters for the purpose of aircraft landing. If the vertical position of the vehicle is known, as would be in the case of automobiles at a known position on a road, this accuracy can be improved significantly. Thus, for many of the purposes of this invention, the WAAS can be used to provide accurate positioning information for vehicles on roadways. The accuracy of the WAAS is also enhanced by the fact that there is an atomic clock in every WAAS receiver station that would be available to provide great accuracy using carrier phase data. With this system sub-meter accuracies are possible for some locations.
The WAAS is based on a network of approximately 35 ground reference stations. Signals from GPS satellites are received by aircraft receivers as well as by ground reference stations. Each of these reference stations is precisely surveyed, enabling each to determine any error in the GPS signals being received at its own location. This information is then passed to a wide area master station. The master station calculates correction algorithms and assesses the integrity of the system. This data is then put into a message format and sent to a ground earth station for uplink to a geostationary communications satellite. The corrective information is forwarded to the receiver on board the aircraft, which makes the needed adjustments. The communications satellites also act as additional navigation satellites for the aircraft, thus, providing additional navigation signals for position determination.
This system will not meet all of FAA'"'"'s requirements. For category III landings, the requirement is 1.6-m vertical and horizontal accuracy. To achieve this, FAA is planning to implement a network of local area differential GPS stations that will provide the information to aircraft. This system is referred to as the Local Area Augmentation System (LAAS).
The WAAS system, which consists of a network of earth stations and geo-synchronous satellites, is currently being funded by the U.S. Government for aircraft landing purposes. Since the number of people that die yearly in automobile accidents greatly exceeds those killed in airplane accidents, there is clearly a greater need for a WAAS type system for solving the automobile safety problem using the teachings of this invention. Also, the reduction in required highway funding resulting from the full implementation of this invention would more than pay for the extension and tailoring of the WAAS to cover the nation'"'"'s highways.
The Local Area Augmented System (LAAS) is also being deployed in addition to the WAAS system to provide even greater coverage for the areas surrounding major airports. According to Newsletter of the Institute of Navigation, 1997, “the FAA'"'"'s schedule for (LAAS) for Category II and III precision instrument approaches calls for development of standards by 1998 that will be sufficient to complete a prototype system by 2001. The next step will be to work out standards for an operational system to be fielded in about 2005, that could serve nationwide up to about 200 runways for Cat II–III approaches.”
In a country like the United States, which has many airfields, a WAAS can serve a large market and is perhaps most effective for the control of airplane landings. The best way for other countries, with fewer airports, to participate in the emerging field of GPS-based aviation aids may be to build LAAS. In countries with a limited number of airports, LAAS is not very expensive while the costs of building a WAAS to get Category 1 type accuracy is very expensive. However, with the added benefit of less highway construction and greater automobile safety, the added costs for a WAAS system may well be justified for much of the world.
For the purposes of the RtZF™ system, both the WAAS and LAAS would be useful but probably insufficient unless the information is used in a different mathematical system such as used by the OmniSTAR™ WADGPS system. Unlike an airplane, there are many places where it might not be possible to receive LAAS and WAAS information or even more importantly the GPS signals themselves with sufficient accuracy and reliability. Initial RtZF™ systems may therefore rely on the WAAS and LAAS but as the system develops more toward the goal of zero fatalities, road based systems which permit a vehicle to pinpoint its location will be preferred. However, there is considerable development ongoing in this field so that all systems are still candidates for use with RtZF™ system and the most cost effective will be determined in time.
Pseudolites are artificial satellite like structures, located on the earth surface, that can be deployed to enhance the accuracy of the DGPS system. Such structures could become part of the RtZF™ system.
2.3 Carrier Phase Measurements
An extremely accurate form of GPS is Carrier Based Differential GPS. This form of GPS utilizes the 1.575 GHz carrier component of the GPS signal on which the Pseudo Random Number (PRN) code and the data component are superimposed. Current versions of Carrier Based Differential GPS involve generating position determinations based on the measured phase differences at two different antennas, a base station or pseudolite and the vehicle, for the carrier component of a GPS signal. This technique initially requires determining how many integer wave-lengths of the carrier component exist between the two antennas at a particular point in time. This is called integer ambiguity resolution. A number of approaches currently exist for integer ambiguity resolution. Some examples can be found in US05583513 and US05619212. Such systems can achieve sub-meter accuracies and, in some cases, accuracies of about 1 cm or less. US05477458 discusses a DGPS system that is accurate to about 5 cm with the base stations located on a radius of about 3000 km. With such a system, very few base stations would be required to cover the continental United States. This system still suffers from the availability of accurate signals at the vehicle regardless of its location on the roadway and the location of surrounding vehicles and objects. Nevertheless, the principle of using the carrier frequency to precisely determine the location of a vehicle can be used with the highway based systems described below to provide extreme location accuracies.
Several attempts to improve the position accuracy of GPS are discussed here, for example, the Wide Area Augmentation System (WAAS), the Local Area Augmentation System (LAAS) and various systems that make use of the carrier phase.
A paper by S. Malys et al., titled “The GPS Accuracy Improvement Initiative” provides a good discussion of the errors inherent in the GPS system without using differential corrections. It is there reported that the standard GPS provides a 9-meter RMS 3-D navigational accuracy to authorize precise positioning service users. This reference indicates that there are improvements planned in the GPS system that will further enhance its accuracy. The accuracies of these satellites independently of the accuracies of receiving units is expected to be between 1 and 1.5 meters RMS. Over the past eight years of GPS operations, a 50% (4.6 meter to 2.3 meter) performance improvement has been observed for the signal in space range errors. This, of course, is the RMS error. The enhancements contained in the accuracy improvement initiative will provide another incremental improvement from the current 2.3 meters to 1.3 meters and perhaps to as low as 40 centimeters.
Pullen, Samuel, Enge, Per and Parkinson, Bradford, “Simulation-Based Evaluation of WAAS Performance: Risk and Integrity Factors” discusses the accuracy that can be expected from the WAAS system. This paper indicates that the standard deviation for WAAS is approximately 1 meter. To get more accurate results requires more closely spaced differential stations. Using DGPS stations within 1,500 kilometers from the vehicle, high accuracy receivers can determine a location within 3 meters accuracy for DGPS according to the paper. Other providers of DGPS corrections claim considerably better accuracies.
From a paper by J. F. Zumberge, M. M. Watkins and F. H. Webb, titled “Characteristics and Applications of Precise GPS Clock Solutions Every 30 Seconds”, Journal of the Institute of Navigation, Vol. 44, No. 4, Winter 1997–1998, it appears that by using the techniques described in this reference, the WAAS system could eventually be improved to provide accuracies in the sub-decimeter range for moving vehicles without the need for other DGPS systems. This data would be provided every 30 seconds.
W. I. Bertiger et al., “A Real-Time Wide Area Differential GPS System”, Journal of the Institute of Navigation, Vol. 44, No. 4, Winter 1997–1998. This paper describes the software that is to be used with the WAAS System. The WAAS System is to be completed by 2001. The goal of the research described in this paper is to achieve sub-decimeter accuracies worldwide, effectively equaling local area DGPS performance worldwide. The full computation done on a Windows NT computer adds only about 3 milliseconds. The positioning accuracy is approximately 25 centimeters in the horizontal direction. That is, the RMS value so that gives an error at ±3 sigma of 1.5 meters. Thus, this real time wide area differential GPS system is not sufficiently accurate for the purposes of some embodiments of this invention. Other systems claim higher accuracies.
According to the paper by R. Braff, titled “Description of the FAA'"'"'s Local Area Augmentation System (LAAS)”, Journal of the Institute of Navigation, Vol. 44, No. 4, Winter 1997–1998, the LAAS System is the FAA'"'"'s ground-based augmentation system for local area differential GPS. It is based on providing corrections of errors that are common to both ground-based and aircraft receivers. These corrections are transmitted to the user receivers via very high frequency (VHF), line of sight radio broadcast. LAAS has the capability of providing accuracy on the order of 1 meter or better on the final approach segment and through rollout. LAAS broadcasts navigational information in a localized service volume within approximately 30 nautical miles of the LAAS ground segment.
O'"'"'Connor, Michael, Bell, Thomas, Elkaim, Gabriel and Parkinson, Bradford, “Automatic Steering of Farm Vehicles Using GPS” describes an automatic steering system for farm vehicles where the vehicle lateral position error never deviated by more than 10 centimeters, using a carrier phase differential GPS system whereby the differential station was nearby.
The following quote is from Y. M. Al-Haifi et al., “Performance Evaluation of GPS Single-Epoch On-the Fly Ambiguity Resolution”, Journal of the Institute of Navigation, Vol. 44, No. 4, Winter 1997–1998. This technique demonstrates sub-centimeter precision results all of the time provided that at least five satellites are available and multipath errors are small. A resolution of 0.001 cycles is not at all unusual for geodetic GPS receivers. This leads to a resolution on the order of 0.2 millimeters. In practice, multipath affects, usually from nearby surfaces, limit the accuracy achievable to around 5 millimeters. It is currently the case that the reference receiver can be located within a few kilometers of the mobile receiver. In this case, most of the other GPS error sources are common. The only major problem, which needs to be solved to carry out high precision kinematic GPS, is the integer ambiguity problem. This is because at any given instant, the whole number of cycles between the satellite and the receiver is unknown. The recovery of the unknown whole wavelengths or integer ambiguities is therefore of great importance to precise phase positioning. Recently, a large amount of research has focused on so called on the fly (OTF) ambiguity resolution methodologies in which the integer ambiguities are solved for while the unknown receiver is in motion.”
The half-second processing time required for this paper represents 44 feet of motion for a vehicle traveling at 60 mph, which would be intolerable unless supplemented by an inertial navigation system. The basic guidance system in this case would have to be the laser or MEMS gyro on the vehicle. With a faster PC, one-tenth a second processing time would be achievable, corresponding to approximately 10 feet of motion of the vehicle, putting less reliance on the laser gyroscope. Nowhere in this paper is the use of this system on automobiles suggested. The technique presented in this paper is a single epoch basis (OTF) ambiguity resolution procedure that is insensitive to cycle slips. This system requires the use of five or more satellites which suggests that additional GPS satellites may need to be launched to make the smart highway system more accurate.
F. van Diggelen, “GPS and GPS+GLONASS RTK”, ION-GPS, September 1997 “New Products Descriptions”, gives a good background of real time kinematic systems using the carrier frequency. The products described in this paper illustrate the availability of centimeter level accuracies for the purposes of the RtZF™ system. The product described in F. van Diggelen requires a base station that is no further than 20 kilometers away.
A paper by J. Wu and S. G. Lin, titled “Kinematic Positioning with GPS Carrier Phases by Two Types of Wide Laning”, Journal of the Institute of Navigation, Vol. 44, No. 4, Winter 1997 discusses that the solution of the integer ambiguity problem can be simplified by performing other constructs other than the difference between the two phases. One example is to use three times one phase angle, subtracted from four times another phase angle. This gives a wavelength of 162.8 centimeters vs. 86.2 for the single difference. Preliminary results with a 20-kilometer base line show a success rate as high as 95% for centimeter level accuracies.
A paper by R. C. Hayward et al., titled “Inertially Aided GPS Based Attitude Heading Reference System (AHRS) for General Aviation Aircraft” provides the list of inertial sensors that can be used with the teachings of embodiments of this invention.
K. Ghassemi et al., “Performance Projections of GPS IIF”, describes the performance objectives for a new class of GPS 2F satellites scheduled to be launched in late 2001.
Significant additional improvement can be obtained for the WAAS system using the techniques described in the paper “Incorporation of orbital dynamics to improve wide-area differential GPS” by J. Ceva, W. Bertinger, R. Mullerschoen, T. Yunck and B. Parkinson, Institute on Navigation, Meeting on GPS Technology, Palm Springs, Calif., September 1995.
Singh, Daljit and Grewal, Harkirat, “Autonomous Vehicle using WADGPS”, discusses ground vehicle automation using wide-area DGPS. Though this reference describes many of the features of embodiments of the present invention, it does not disclose sub-meter accuracy or sub-meter accurate mapping.
US05272483 to Kato describes an automobile navigation system. This system attempts to correct for the inaccuracies in the GPS system through the use of an inertial guidance, geomagnetic sensor, or vehicle crank shaft speed sensor. However, it is unclear as to whether the second position system is actually more accurate than the GPS system. This combined system, however, cannot be used for sub-meter positioning of an automobile.
US05383127 to Shibata uses map matching algorithms to correct for errors in the GPS navigational system to provide a more accurate indication of where the vehicle is or, in particular, on what road the vehicle is. This procedure does not give sub-meter accuracy. Its main purpose is for navigation and, in particular, in determining the road on which the vehicle is traveling.
US05416712 to Geier, et al. relates generally to navigation systems and more specifically to global positioning systems that use dead reckoning apparatus to fill in as backup during periods of GPS shadowing such as occur amongst obstacles, e.g., tall buildings in large cities. This patent shows a method of optimally combining the information available from GPS even when less than 3 or 4 satellites are available with information from a low-cost, inertial gyro, having errors that range from 1–5%. This patent provides an excellent analysis of how to use a modified Kalman filter to optimally use the available information.
US05606506 to Kyrtsos provides a good background of the GPS satellite system. It describes a method for improving the accuracy of the GPS system using an inertial guidance system. This is based on the fact that the GPS signals used by Kyrtsos do not contain a differential correction and the selective access feature is on. Key paragraphs from this application that describe subject matter applicable to embodiments of the instant invention follow.
“Several national governments, including the United States (U.S.) of America, are presently developing a terrestrial position determination system, referred to generically as a global positioning system (GPS). A GPS is a satellite-based radio-navigation system that is intended to provide highly accurate three-dimensional position information to receivers at or near the surface of the Earth.
“The U.S. government has designated its GPS the “NAVSTAR.” The NAVSTAR GPS is expected to be declared fully operational by the U.S. government in 1993. The government of the former Union of Soviet Socialist Republics (USSR) is engaged in the development of a GPS known as “GLONASS”. Further, two European systems known as “NAVSAT” and “GRANAS” are also under development.” For ease of discussion, the following disclosure focuses specifically on the NAVSTAR GPS. The invention, however, has equal applicability to other global positioning systems.
“In the NAVSTAR GPS, it is envisioned that four orbiting GPS satellites will exist in each of six separate circular orbits to yield a total of twenty-four GPS satellites. Of these, twenty-one will be operational and three will serve as spares. The satellite orbits will be neither polar nor equatorial but will lie in mutually orthogonal inclined planes.”
“Each GPS satellite will orbit the Earth approximately once every 12 hours. This coupled with the fact that the Earth rotates on its axis once every twenty-four hours causes each satellite to complete exactly two orbits while the Earth turns one revolution.”
“The position of each satellite at any given time will be precisely known and will be continuously transmitted to the Earth. This position information, which indicates the position of the satellite in space with respect to time (GPS time), is known as ephemeris data.”
“In addition to the ephemeris data, the navigation signal transmitted by each satellite includes a precise time at which the signal was transmitted. The distance or range from a receiver to each satellite may be determined using this time of transmission which is included in each navigation signal. By noting the time at which the signal was received at the receiver, a propagation time delay can be calculated. This time delay when multiplied by the speed of propagation of the signal will yield a “pseudorange” from the transmitting satellite to the receiver.”
“The range is called a “pseudorange” because the receiver clock may not be precisely synchronized to GPS time and because propagation through the atmosphere introduces delays into the navigation signal propagation times. These result, respectively, in a clock bias (error) and an atmospheric bias (error). Clock biases may be as large as several milliseconds.”
“Using these two pieces of information (the ephemeris data and the pseudorange) from at least three satellites, the position of a receiver with respect to the center of the Earth can be determined using passive triangulation techniques.”
“Triangulation involves three steps. First, the position of at least three satellites in “view” of the receiver must be determined. Second, the distance from the receiver to each satellite must be determined. Finally, the information from the first two steps is used to geometrically determine the position of the receiver with respect to the center of the Earth.”
“Triangulation, using at least three of the orbiting GPS satellites, allows the absolute terrestrial position (longitude, latitude, and altitude with respect to the Earth'"'"'s center) of any Earth receiver to be computed via simple geometric theory. The accuracy of the position estimate depends in part on the number of orbiting GPS satellites that are sampled. Using more GPS satellites in the computation can increase the accuracy of the terrestrial position estimate.”
“Conventionally, four GPS satellites are sampled to determine each terrestrial position estimate. Three of the satellites are used for triangulation, and a fourth is added to correct for the clock bias described above. If the receiver'"'"'s clock were precisely synchronized with that of the GPS satellites, then this fourth satellite would not be necessary. However, precise (e.g., atomic) clocks are expensive and are, therefore, not suitable for all applications.”
“For a more detailed discussion on the NAVSTAR GPS, see Parkinson, Bradford W. and Gilbert, Stephen W., “NAVSTAR: Global Positioning System-Ten Years Later, “Proceedings of the IEEE, Vol. 71, No. 10, October 1983; and GPS: A Guide to the Next Utility, published by Trimble Navigation Ltd., Sunnyvale, Calif., 1989, pp. 147. For a detailed discussion of a vehicle positioning/navigation system which uses the NAVSTAR GPS, see commonly owned U.S. patent application Ser. No. 07/628,560, entitled “Vehicle Position Determination System and Method,” filed Dec. 3, 1990.”
“The NAVSTAR GPS envisions two modes of modulation for the carrier wave using pseudorandom signals. In the first mode, the carrier is modulated by a “C/A signal” and is referred to as the “Coarse/Acquisition mode”. The Coarse/Acquisition or C/A mode is also known as the “Standard Positioning Service”. The second mode of modulation in the NAVSTAR GPS is commonly referred to as the “precise” or “protected” (P) mode. The P-mode is also known as the “Precise Positioning Service”.
The P-mode is intended for use only by Earth receivers specifically authorized by the United States government. Therefore, the P-mode sequences are held in secrecy and are not made publicly available. This forces most GPS users to rely solely on the data provided via the C/A mode of modulation (which results in a less accurate positioning system)
“In addition to the clock error and atmospheric error, other errors which affect GPS position computations include receiver noise, signal reflections, shading, and satellite path shifting (e.g., satellite wobble). These errors result in computation of incorrect pseudoranges and incorrect satellite positions. Incorrect pseudoranges and incorrect satellite positions, in turn, lead to a reduction in the precision of the position estimates computed by a vehicle positioning system.”
US05757646 to Talbot, et al. illustrates the manner in which centimeter level accuracy on the fly in real time is obtained. It is accomplished by double differencing the code and carrier measurements from a pair of fixed and roving GPS receivers. This patent also presents an excellent discussion of the problem and various prior solutions as in the following paragraphs:
“When originally conceived, the global positioning system (GPS) that was made operational by the United States Government was not foreseen as being able to provide centimeter-level position accuracies. Such accuracies are now commonplace.”
“Extremely accurate GPS receivers depend on phase measurements of the radio carriers that they receive from various orbiting GPS satellites. Less accurate GPS receivers simply develop the pseudoranges to each visible satellite based on the time codes being sent. Within the granularity of a single time code, the carrier phase can be measured and used to compute range distance as a multiple of the fundamental carrier wavelength. GPS signal transmissions are on two synchronous, but separate carrier frequencies “L1” and “L2”, with wavelengths of nineteen and twenty-four centimeters, respectively. Thus, within nineteen or twenty-four centimeters, the phase of the GPS carrier signal will change 360°.”
“However the numbers of whole cycle (360°) carrier phase shifts between a particular GPS satellite and the GPS receiver must be resolved. At the receiver, every cycle will appear the same. Therefore there is an “integer ambiguity”. The computational resolution of the integer ambiguity has traditionally been an intensive arithmetic problem for the computers used to implement GPS receivers. The traditional approaches to such integer ambiguity resolution have prevented on-the-fly solution measurement updates for moving GPS receivers with centimeter accurate outputs. Very often such highly accurate GPS receivers have required long periods of motionlessness to produce a first and subsequent position fix.”
“There are numerous prior art methods for resolving integer ambiguities. These include integer searches, multiple antennas, multiple GPS observables, motion-based approaches, and external aiding. Search techniques often require significant computation time and are vulnerable to erroneous solutions when only a few satellites are visible. More antennas can improve reliability considerably. If carried to an extreme, a phased array of antennas results whereby the integers are completely unambiguous and searching is unnecessary. But for economy the minimum number of antennas required to quickly and unambiguously resolve the integers, even in the presence of noise, is preferred.”
“One method for integer resolution is to make use of the other observables that modulate a GPS timer. The pseudo-random code can be used as a coarse indicator of differential range, although it is very susceptible to multipath problems. Differentiating the L1 and L2 carriers provides a longer effective wavelength, and reduces the search space. However dual frequency receivers are expensive because they are more complicated. Motion-based integer resolution methods make use of additional information provided by platform or satellite motion. But such motion may not always be present when it is needed.”
This system is used in an industrial environment where the four antennas are relatively close to each other. Practicing teachings of this invention permits a navigational computer to solve for the position of the rover vehicle to within a few centimeters on the fly ten times a second. An example is given where the rover is an airplane.
The above comments related to the use of multiple antennas to eliminate the integer ambiguity suggest that if a number of vehicles are nearby and their relative positions are known, the ambiguity can be resolved in this manner.
2.4 Inertial Navigation System
An example of how various sensors other than the GPS and PPS systems described in this invention can be found in “Magnetometer and Differential Carrier-Phase GPS-Aided INS for Advanced Vehicle Control”, IEEE Transactions On Robotics and Automation, VOL. 19, NO. 2, April 2003.
3. Maps and Mapping
It is intended that the map database of embodiments of the instant invention will conform to the open GIS specification. This will permit such devices to additionally obtain on-line consumer information services such as driving advisories, digital yellow pages that give directions, local weather pictures and forecasts and video displays of local terrain since such information will also be in the GIS database format.
A paper by O'"'"'Shea, Michael and Shuman, Valerie entitled “Looking Ahead: Map Databases in Predictive Positioning And Safety Systems” discusses map databases which can assist radar and image-processing systems of this invention since the equipped vehicle would know where the road ahead is and can therefore distinguish the lane of the preceding vehicle. No mention, however, is made in this reference of how this is accomplished through range gating or other means. This reference also mentions that within five years it may be possible to provide real time vehicle location information of one-meter accuracy. However, it mentions that this will be limited to controlled access roads such as interstate highways. In other words, the general use of this information on all kinds of roads for safety purposes is not contemplated. This reference also states that “road geometry, for example, may have to be accurate to within one meter or less as compared to the best available accuracy of 15 meters today”. This reference also mentions the information about lane configuration that can be part of the database including the width of each lane, the number of lanes, etc., and that this can be used to determine driver drowsiness. This reference also states that “at normal vehicle speeds, the vehicle location must be updated every few milliseconds”. It is also stated that the combination of radar and map data can help to interpret radar information such as the situation where a radar system describes an overpass as a semi truck. Image processing in this reference is limited to assessing road conditions such as rain, snow, etc. The use of a laser radar system, for example, is not contemplated by this reference. The use of this information for road departures warnings is also mentioned, as is lane following. The reference also mentions that feedback from vehicles can be used to improve map configurations.
A great flow of commercially available data will begin with the new generation of high resolution (as fine as about 1 meter) commercial earth imaging satellites from companies like EarthWatch and SPOT Image. Sophisticated imaging software is being put in place to automatically process these imaging streams into useful data products. This data can be used to check for gross errors in the map database.
According to Al Gore, in “The Digital Earth: Understanding our Planet in the 21st Century”, California Science Center, Jan. 31, 1998, the Clinton Administration licensed commercial satellites to provide one meter resolution imaging beginning in 1998. Such imaging can be combined with digital highway maps to provide an accuracy and reality check.
US05367463 to Tsuji describes a vehicle azimuth determining system. It uses regression lines to find the vehicle on a map when there are errors in the GPS and map data. This patent does not give sub-meter accuracy. The advantage of this invention is that it shows a method of combining both map matching data and GPS along with a gyro and vehicle velocity and odometer data to improve the overall location accuracy of the vehicle.
4. Precise Positioning
For the purposes herein, a Precise Positioning Station, or PPS, will mean any system that involves the existence of or placement of a detectable infrastructure on or near a roadway that when used in conjunction with an accurate map permits a vehicle to determine its precise location. In other words, PPS can be any system that can recognize anything in or on the infrastructure and thereby, in conjunction with an accurate map, can locate the vehicle. Such detectable infrastructure can comprise a MIR triad, radar reflectors, SAW devices, RFID devices, devices or marks detectable visibly such as bar codes or other recognizable objects including edges of buildings, poles, signs or the like, magnetic markers or any other object whose position is precisely known and/or is detectable in a manner that permits the vehicle to determine its position relative to the device or absolutely and where the object is noted on a map database residing within the vehicle. An alternative procedure is to map the reflective signature of the road environment and, using a laser, radar, terahertz or similar system, a vehicle can compare the sensed reflective signature with that recorded and thereby determine its location. Naturally as the environment changes with the seasons there will be segments of the signature that are unreliable but since a reasonable adjustment distance might be once per mile it is quite likely that somewhere during a mile of travel that the reflective signature will be invariant over time. Bridge abutments, roadside signs or light poles, for example, would not typically change from one tome of the year to another and thus could be used as quite accurate markers of position along the road. Such a system has the advantage that no additions to the infrastructure would be required. When PPS or Precise Positioning Station is referred to below it will be meant to include all of these devices and/or methods.
If two vehicles are traveling near each other and have established communication, and assuming that each vehicle can observe at least four of the same GPS satellites, each vehicle can send the satellite identification and the time of arrival of the signal at a particular epoch to the other. Then, each vehicle can determine the relative position of the other vehicle as well as the relative clock error. As one vehicle passes a Precise Positioning Station (PPS), it knows exactly where it is and thus the second vehicle also knows exactly where it is and can correct for satellite errors. All vehicles that are in communication with the vehicle at the PPS similarly can determine their exact position and the system approaches perfection. This concept is based on the fact that the errors in the satellite signals are identical for all vehicles that are within a mile or so of each other. Furthermore, each vehicle can set its onboard clock since the vehicle passing the PPS can do so, and communicate the exact time to the others, and then each vehicle can know the carrier phase of each satellite signal at the PPS and thus invoke carrier phase DGPS.
When the operator begins operating his vehicle with a version of the RtZF™ system of this invention, he or she will probably not be near a reference point as determined by one of the radar reflector, MIR or RFID or other landmark locator systems as discussed below as part of this invention, for example. In this situation, he or she will use the standard GPS system with the WAAS or other DGPS corrections such as available from OmniStar™, the US Government or other provider. This will provide accuracy of between a few meters to 6 centimeters. This accuracy might be further improved as he or she travels down the road through map-matching or through communication with other vehicles. The vehicle will know, however, that is not operating in the high accuracy mode. As soon as the vehicle (vehicle #1) passes a radar reflector, SAW, MIR, RFID or equivalent precise positioning system, it will be able to calculate exactly where it is within a few centimeters and the vehicle will know that it is in the accurate mode. Similarly, when another vehicle passes through a precise positioning station and learns its precise location it can communicate this fact with other vehicles in its vicinity (5 miles, for example) along with the latest GPS satellite transmissions. Each other vehicle will then be able to calculate its relative location extremely accurately and thus know its position almost as accurately as the vehicle that just passed through the precise positioning station. Furthermore, if vehicle #1 also has an accurate clock, as further described below, it can record the phase of each carrier wave from each satellite and predict that phase for perhaps an hour into the future. This then permits vehicle #1 to switch to carrier phase DGPS and know its precise position relative to the precise positioning station, and thus on the earth, until the clock accuracy degrades its knowledge of the carrier phase at the precise positioning station. Through continuous communication between vehicle #1 and other vehicles, all vehicles in the vicinity can similarly operate in the carrier phase DGPS mode without the need for the installation and maintenance of local DGPS stations. Thus, the addition of a few precise positioning stations at very low cost permits each vehicle traveling on the road to know its precise location on the earth and for the system to approach perfection, a necessary requirement for achieving zero fatalities. For high-speed travel on a controlled highway, frequent precise positioning stations can be inexpensively provided and each vehicle can thereby be accurately contained within its proper corridor. Also, the size of the corridors that the vehicle is permitted to travel in can be a function of the accuracy state of the vehicle.
A paper by Han, Shaowei entitled “Ambiguity Recovery For Long-Range GPS Kinematic Positioning” appears to say that if a mobile receiver is initially synchronized with a fixed receiver such that there is no integer ambiguity, and if the mobile receiver then travels away from the fixed receiver, and during the process it loses contact with the satellites for a period of up to five minutes, that the carrier phase can be recovered and the ambiguity eliminated, providing again centimeter-range accuracies. Presumably, the fixed station is providing the differential corrections. This is important for embodiments of the instant invention since the integer ambiguity can be eliminated each time the vehicle passes a Precise Positioning Station (PPS) as explained below. After that, a five-minute loss of GPS signals should never occur. Thus, carrier phase accuracies will eventually be available to all vehicles. Note that the integer ambiguity problem disappears when the GPS satellites provide more frequencies. If, for example, each satellite would broadcast two frequencies with each frequency being a prime number of cycles per second, there would be no integer ambiguity problem. Due to the problem of identifying large prime numbers, other schemes can be used such that the relative phase of one carrier to the other does not repeat in the space from the vehicle to the satellite or if it does repeat, it repeats only a few times. This problem becomes simpler as more frequencies are added as for three frequencies, for example, the phase relation between any two can repeat as long as the phase relationships between all three don'"'"'t repeat very often. Also with multiple frequencies the DGPS corrections become less important and in some cases may not be needed. This is because each frequency is diffracted a different amount by the ionosphere and therefore the diffraction or cash frequency can be determined. A new civilian frequency is scheduled to be introduced by the US Government as part of the NAVSTAR system and the forthcoming European GALILEO system is planned to have multiple frequencies for civilian use.
US05361070 to McEwan, although describing a motion detector, discusses technology which is used as part of a system to permit a vehicle to precisely know where it is on the face of the earth at particular locations. The ultra wideband 200 picosecond radar pulse emitted by the low power radar device of McEwan is inherently a spread spectrum pulse which generally spans hundreds of megahertz to several gigahertz. A frequency allocation by the FCC is not relevant. Furthermore, many of these devices may be co-located without interference. The concept of this device is actually discussed in various forms in the following related patents to McEwan. The following comments will apply to these patents as a group.
US05510802 to McEwan describes a time of flight radio-location system similar to what is described below. In this case, however, a single transmitter sends out a pulse, which is received by three receivers to provide sub-millimeter resolution. The range of this device is less than about 10 feet.
The concept described in McEwan'"'"'s US05519400 is that the MIR signal can be modulated with a coded sequence to permit positive identification of the sending device. In an additional McEwan patent, US05589838, a short-range radio-location system is described. Additionally, in US05774091, McEwan claims that the MIR system will operate to about 20 feet and give resolutions on the order of 0.01 inches.
5. Radar and Laser Radar Detection and Identification of Objects External to the Vehicle
The RtZF system described herein can include an energy beam or flood that is projected from the vehicle into the environment for the purpose of illuminating the environment around the vehicle and objects therein. In some cases this can be a beam of radar operating at 24 GHz or 77 GHz, for example. In other cases this can be a laser beam in the infrared portion of the spectrum. Other frequencies can also be used and there are particularly interesting developments in the terahertz frequency range. Terahertz devices are under development that can create a terahertz beam of radiation using laser technology. Similarly devices are now available fro sensing terahertz radiation with an array of pixels. The terahertz frequency is particularly interesting for interrogating the vicinity of a vehicle since it can be transmitted in a very narrow beam like a laser and yet it has the ability to penetrate fog, for example, more like radar thus providing the advantages of both systems. In the form of a flood light to illuminate areas closer to the vehicle for blind spot interrogation or for sue as a headlight for animal and pedestrian identification is also interesting since such a system would work in both daylight and at night since there is little natural radiation in the terahertz part of the electromagnetic spectrum. When used as a beam, terahertz will be referred herein as terahertz radar. For the purposes herein, the terahertz frequency range will be taken as the range from about 300 GHz (0.3 THz) to about 3000 GHz (3 THz) which is about where the infrared range begins.
A paper by Amamoto, Naohiro and Matsumoto, Koji entitled “Obstruction Detector By Environmental Adaptive Background Image Updating” describes a method for distinguishing between moving object pixels, stationary object pixels, and pixels that change due to illumination changes in a video image. This paper appears to handle the case of a camera fixed relative to the earth, not one mounted on a vehicle. This allows the system to distinguish between a congested area and an area where cars are moving freely. The video sampling rate was 100 milliseconds.
A paper by Doi, Ayumu, Yamamomo, Yasunori, and Butsuen, Tetsuro entitled “Development Of Collision Warning System and Its Collision Avoidance Effect” describes a collision warning system that has twice the accuracy of conventional systems. It uses scanning a laser radar. In the system described in this paper, the authors do not appear to use phase measurements, range gating or time of flight to separate one vehicle from another.
A paper by Min, Joon, Cho, Hyung, and Choi, Jong, entitled “A Learning Algorithm Using Parallel Neuron Model” describes a method of accurately categorizing vehicles based on the loop in the highway. This system uses a form of neural network, but not a back propagation neural network. This would essentially be categorizing a vehicle by its magnetic signature. Much information is lost in this system, however, due to the lack of knowledge of the vehicle'"'"'s velocity.
Work has been done at JPL (Jet Propulsion Laboratories) to develop a target recognition system. Neural networks play a key role in this target recognition process. The recognition of vehicles on a roadway is a considerably simpler process. Most of the cluttering information can be eliminated through range gating. The three-dimensional image obtained as described below will permit simple rotations of the image to artificially create a frontal view of the object being investigated. Also, the targets of interest here are considerably closer than was considered by JPL. Nevertheless, the techniques described in this reference and in the references cited by this reference, are applicable here in a simplified form. The JPL study achieved over a 90% success rate at 60 frames per minute.
US04521861 to Logan describes a method and apparatus for enhancing radiometric imaging and a method and apparatus for enhancing target detection through the utilization of an imaging radiometer. The radiometer, which is a passive thermal receiver, detects the reflected and emitted thermal radiation of targets. Prior to illumination, foliage will appear hot due to its high emissivity and metals will appear cold due to their low emissivities. When the target is momentarily illuminated foliage appears dark while metals appear hot. By subtracting the non-illuminated image from the illuminated image, metal targets are enhanced. The teachings of this patent thus have applicability to embodiments of the instant invention as discussed below.
US05463384 to Juds uses a plurality of infrared beams to alert a truck driver that a vehicle is in his blind spot when he begins to turn the vehicle. The system is typically activated by the vehicle'"'"'s turn signal. No attempt is made to measure exactly where the object is, only whether it is in the blind spot or not.
US05467072 to Michael relates to a phased array radar system that permits the steering of a radar beam without having to rotate antennas. Aside from that, it suffers from all the disadvantages of radar systems as described here. In particular, it is not capable of giving accurate three-dimensional measurements of an object on the roadway.
US05486832 to Hulderman employs millimeter wave radar and optical techniques to eliminate the need for a mechanical scanning system. A 35-degree arc is illuminated in the azimuth direction and 6 degrees in elevation. The reflected waves are separated into sixteen independent, simultaneously overlapping 1.8 degree beams. Each beam, therefore, covers a width of about 3 feet at 100 feet distance from the vehicle, which is far too large to form an image of the object in the field of view. As a result, it is not possible to identify the objects in the field of view. All that is known is that an object exists. Also, no attempt has been made to determine whether the object is located on the roadway or not. Therefore, this invention suffers from the limitations of other radar systems.
US05530447 to Henderson, et al. shows a system used to classify targets as threatening or non-threatening, depending on whether the target is moving relative to the ground. This system is only for vehicles in an adjacent lane and is primarily meant to protect against blind-spot type accidents. No estimation is made by the system of the position of the target vehicle or the threatening vehicle, only its relative velocity.
US05576972 to Harrison provides a good background of how neural networks are used to identify various objects. Although not directly related to intelligent transportation systems or to accident-avoidance systems such as described herein, these techniques will be applied to embodiments of the invention described herein as discussed below.
US05585798 to Yoshioka, et al. uses a combination of a CCD camera and a laser radar unit. The invention attempts to make a judgment as to the danger of each of the many obstacles that are detected. The load on the central processor is monitored by looking at different obstacles with different frequencies depending on their danger to the present system. A similar arrangement is contemplated for embodiments of the invention as disclosed herein.
US05767953 to McEwan describes a laser tape measure for measuring distance. It is distinct from laser radars in that the width of the pulse is measured in sub-nanosecond times, whereas laser radars are typically in the microsecond range. The use of this technology in the current invention would permit a much higher scanning rate than by convention radar systems and thus provide the opportunity for obtaining an image of the obstructions on the highway. It is also less likely that multiple vehicles having the same system would interfere with each other. For example, if an area 20 feet by 5 feet were scanned with a 0.2 inch pixel size, this would give about one million pixels. If using laser radar, one pixel per microsecond is sent out, it would take one second to scan the entire area during which time the vehicle has traveled 88 feet at 60 miles an hour. On the other hand, if scanning this array at 100 feet, it would take 200 nanoseconds for the light to travel to the obstacle and back. Therefore, if a pulse is sent out every fifth of a microsecond, it will take a fifth of a second to obtain a million pixels, during which time the vehicle has traveled about 17 feet. If 250,000 pixels are used, the vehicle will only have traveled about 4 feet.
US04352105 and US04298280 to Harney describe an infrared radar system and a display system for use by aircraft. In particular, these patents describe an infrared radar system that provides high resolution, bad whether penetration, day-night operation and which can provide simultaneous range, intensity and high resolution angular information. The technology uses CO2 laser and a 10.6 micron heterodyne detection. It is a compact imaging infrared radar system that can be used with embodiments of the invention described herein. Harney applies this technology to aircraft and does not contemplate its application to collision avoidance or for other uses with automobiles.
Although, there appears not to be any significant prior art involving a vehicle communicating safety information to another vehicle on the roadway, several patents discuss methods of determining that a collision might take place using infrared and radar. US05249128 to Markandey et al., for example, discusses methods of using infrared to determine the distance to a vehicle in front and US05506584 to Boles describes a radar-based system. Both systems suffer from a high false alarm rate and could be substantially improved if a pattern recognition system such as neural networks were used. Also, neither system makes use of noise modulation technologies as taught herein.
6. Smart Highways
A paper entitled “Precursor Systems Analyses of Automated Highway Systems (Executive Summary)” discusses that “an AHS (automated highway system) can double or triple the efficiency of today'"'"'s most congested lanes while significantly increasing safety and trip quality”.
There are one million, sixty-nine thousand, twenty-two miles of paved non-local roads in the US. Eight hundred twenty-one thousand and four miles of these are classified as “rural” and the remaining two hundred forty-eight thousand, eighteen miles are “urban”.
The existing interstate freeway system consists of approximately 50,000 miles which is 1% of the total of 3.8 million miles of roads. Freeways make up 3% of the total urban/suburban arterial mileage and carry approximately 30% of the total traffic.
In one study, dynamic route guidance systems were targeting at reducing travel time of the users by 4%. Under the system of this invention, the travel times would all be known and independent of congestion once a vehicle had entered the system. Under the current system, the dynamic delays can change measurably after a vehicle is committed to a specific route. According to the Federal Highway Administration Intelligent Transportation Systems (ITS Field Operational Test), dynamic route guidance systems have not been successful.
There are several systems presented in the Federal Highway Administration Intelligent Transportation Systems (ITS Field Operational Test) for giving traffic information to commuters, called “Advance Traveler Information System” (ATIS). In none of these articles does it discuss the variation in travel time during rush hour for example, from one day to the next. The variability in this travel time would have to be significant to justify such a system. Naturally, a system of this type would be unnecessary in situations where embodiments of the instant invention has been deployed. The single most important cause of variability from day to day is traffic incidents such as accidents, which are eliminated or at least substantially reduced by the instant invention. One of the conclusions in a study published in the “Federal Highway Administration Intelligent Transportation Systems (ITS Field Operational Test)” entitled “Direct Information Radio Using Experimental Communication Technologies” was that drivers did not feel that the system was a significant advance over commercial radio traffic information. They did think the system was an improvement over television traffic information and changeable message signs. The drivers surveyed on average having changed their route only one time in the eight week test period due to information they received from the system.
7. Weather and Road Condition Monitoring
A paper by Miyata, Yasuhiro and Otomo, Katsuya, Kato, Haijime, Imacho, Nobuhiro, Murata, Shigeo, entitled “Development of Road Icing Prediction System” describes a method of predicting road icing conditions several hours in advance based on an optical fiber sensor laid underneath the road and the weather forecast data of that area.
There is likely a better way of determining ice on the road than described in this paper. The reflection of an infrared wave off the road varies significantly depending on whether there is ice on the road or snow, or the road is wet or dry. A neural network could be a better solution. The system of this paper measures the road surface temperature, air temperature and solar radiation. A combination of active and passive infrared would probably be sufficient. Perhaps, a specially designed reflective surface could be used on the road surface in an area where it is not going to be affected by traffic.
What this paper shows is that if the proper algorithm is used, the actual road temperature can be predicted without the need to measure the road surface temperature. This implies that icing conditions can be predicted and the sensors would not be necessary. Perhaps, a neural network algorithm that monitors a particular section of road and compares it to the forecasted data would be all that is required. In other words, given certain meteorological data, the neural network ought to be able to determine the probability of icing. What is needed, therefore, is to pick a section of roadway and monitor that roadway with a state-owned vehicle throughout the time period when icing is likely to occur and determine if icing has occurred and compare that with the meteorological data using a neural network that is adapted for each section of road.
8. Communication with other Vehicles
The RtZF system of this invention can incorporate vehicle to vehicle communication allowing vehicles to inform other vehicles of their location, velocity, mass etc.
US05506584 to Boles relates to a system for communication between vehicles through a transmit and transponder relationship. The patent mentions that there may be as many as 90 vehicles within one half mile of an interrogation device in a multi-lane environment, where many of them may be at the same or nearly the same range. Boles utilizes a transponder device, the coded responses which are randomized in time, and an interrogation device which processes the return signals to provide vehicle identification, speed, location and transponder status information on vehicles to an operator or for storage in memory. No mention is made of how a vehicle knows its location or how accurate that knowledge is and therefore how it can transmit that location to other vehicles.
US05128669 to Dabbs provides for 2-way communication and addressing messages to specific vehicles. This is unnecessary and the communications can be general since the amount of information that is unique to one vehicle is small. A method of handing bi-directional communication is discussed in US05506584 to Boles. The preferred vehicle to vehicle communication system using pseudonoise techniques is more thoroughly discussed below.
In embodiments of the invention described herein, vehicle to vehicle communication is used, among other purposes, to allow the fact that one vehicle knows its position more accurately than another to use communication to cause the other vehicle to also improve the accuracy with which it knows its position.
9. Infrastructure to Vehicle Communication
The RtZF system of this invention can also incorporate communication from a vehicle to the infrastructure for a variety of reasons including obtaining the latest map updates, weather conditions, road conditions, speed limits, sign contents, accidents ahead, congestion ahead, construction, general internet access and for many other reasons.
The DGPS correction information can be broadcast over the radio data system (RDS) via FM transmitters for land use. A company called Differential Correction, Inc. has come up with a technique to transmit this DGPS information on the RDS channel. This technique has been used in Europe since 1994 and, in particular, Sweden has launched a nationwide DPGS service via the RDS (see, Sjoberg, Lars, “A ‘1 Meter’ Satellite Based Navigation Solutions for the Mobile Environment That Already Are Available Throughout Europe”). This system has the potential of providing accuracies on the premium service of between about 1 and 2 meters. A 1 meter accuracy, coupled with the carrier phase system to be described below, provides an accuracy substantially better than about 1 meter as preferred in the Road to Zero Fatalities™ (RtZF™) system of this invention.
In addition to the FM RDS system, the following other systems can be used to broadcast DGPS correction data: cellular mobile phones, satellite mobile phones, satellite internet, WiFi, WiMAX, MCA (multi-channel access), wireless tele-terminals, DARCs/RBDS (radio data systems/radio broadcast data system), type FM sub-carrier, exclusive wireless, and pagers. In particular, DARC type is used for vehicle information and communication systems so that its hardware can be shared. Alternately, the cellular phone system, coupled with the Internet, could be used for transmitting corrections (see, Ito, Toru and Nishiguchi, Hiroshi entitled “Development of DGPS using FM Sub-Carrier For ITS”). Primarily, as discussed elsewhere, vehicle to vehicle communications can be used to transmit DGPS corrections from one vehicle to another whether the source is a central DGPS system or one based on PPS or other system.
One approach for the cellular system is to use the GSM mobile telephone system, which is the Europe-wide standard. This can be used for transmitting DGPS and possibly map update information (see, Hob, A., Ilg, J. and Hampel, A. entitled “Integration Potential Of Traffic Telematics).
In Choi, Jong and Kim, Hoi, “An Interim Report: Building A Wireless Internet-Based Traveler'"'"'s Information System As A Replacement Of Car Navigation Systems”, a system of showing congestion at intersections is broadcast to the vehicle through the Internet. The use of satellites is discussed as well as VCS system.
This is another example of the use of the Internet to provide highway users with up-to-date traffic congestion information. Nowhere in this example, however, is the Internet used to transmit map information. In fact, once there is an internet or equivalent connection to a vehicle then other information can be transmitted such as updated map information, weather and visibility, local conditions ahead, accident information, congestion information, DGPS corrections, etc. In fact, with a high bandwidth Internet connection, much of the computations, especially safety related computations, can best be done on the Internet where the system reliability would exceed that of a vehicle based system. The forecast that “the network is the computer” will begin to become reality. The crash of a safety related processor due to a software bug could not be tolerated in a safety related system and would be less likely to occur if the critical computations occur on the network. Furthermore, upgrades to vehicle based software also become feasible over such a high bandwidth connection.
A paper by Sheu, Dennis, Liaw, Jeff and Oshizawa, Al, entitled “A Communication System For In-Vehicle Navigation System” provides another description of the use of the Internet for real traffic information. However, the author (unnecessarily) complicates matters by using push technology which isn'"'"'t absolutely necessary and with the belief that the Internet connection to a particular vehicle to allow all vehicles to communicate, would have to be stopped which, of course, is not the case. For example, consider the @home network where everyone on the network is connected all the time.
A paper by Rick Schuman entitled “Progress Towards Implementing Interoperable DSRC Systems In North America” describes the standards for dedicated short-range communications (DSRC). DSRC could be used for inter-vehicle communications, however, its range according to the ITS proposal to the Federal Government would be limited to about 90 meters although there have been recent proposals to extend this to about 1000 meters. Also, there may be a problem with interference from toll collection systems, etc. According to this reference, however, “it is likely that any widespread deployment of intersection collision avoidance or automated highways would utilize DSRC”. Ultra wide band communication systems, on the other hand, are a viable alternative to DSRC as explained below. The DSRC physical layer uses microwaves in the 902 to 928 megahertz band. However, ITS America submitted a petition to the FCC seeking to use the 5.85 to 5.925 gigahertz band for DSRC applications.
A version of CDPD, which is a commercially available mobile, wireless data network operated in the packet-switching mode, extends Internet protocol capabilities to cellular channels. This is reported on in a paper entitled “Intelligent Transportation Systems (ITS) Opportunity”.
According to a paper by Kelly, Robert, Povich, Doublas and Poole, Katherine entitled “Petition of Intelligent Transportation Society of America for Amendment Of The Commission'"'"'s Rules to Add Intelligent Transportation Services (ITS) As A New Mobile Service With Co-Primary Status In The 5.850 to 5.925 GHz”, from 1989 to 1993 police received an annual average of over 6.25 million vehicle accident reports. During this same period, the total comprehensive cost to the nation of motor vehicle accidents exceeded the annual average of 400 billion dollars. In 1987 alone, Americans lost over 2 billion hours (approximately 22,800 years) sitting in traffic jams. Each driver in Washington D.C. wastes an average of 70 hours per year idling in traffic. From 1986 to 1996, car travel has increased almost 40% which amounts to about a 3.4% increase per year.
Further, from Kelly et al., the FCC has allocated in Docket 94-124, 46.7 to 46.9 GHz and 76 to 77 GHz bands for unlicensed vehicular collision avoidance radar. The petition for DSRC calls for a range of up to about 50 meters. This would not be sufficient for the RtZF™ system. For example, in the case of a car passing another car at 150 kilometers per hour. Fifty meters amounts to about one second, which would be insufficient time for the passing vehicle to complete the passing and return to the safe lane. Something more in the order of about 500 meters would be more appropriate. This, however, may interfere with other uses of DSRC such as automatic toll taking, etc., thus DSRC may not be the optimum communication system for communication between vehicles. DSRC is expected to operate at a data rate of approximately 600 kbps. DSRC is expected to use channels that are six megahertz wide. It might be possible to allocate one or more of the six megahertz channels to the RtZF™ system.
On DSRC Executive Roundtable—Meeting Summary, Appendix I—Proposed Changes to FCC Regulations covering the proposed changes to the FCC regulations, it is stated that “ . . . DSRCS systems utilize non-voice radio techniques to transfer data over short distances between roadside and mobile units, between mobile units and between portable and mobile units to perform operations related to the improvement of traffic flow, traffic safety and other intelligent transportation service applications.”, etc.
A state or the Federal Government may require in the future that all vehicles have passive transponders such as RFID tags. This could be part of the registration system for the vehicle and, in fact, could even be part of the license plate. This is somewhat discussed in a paper by Shladover, Steven entitled “Cooperative Advanced Vehicle Control and Safety Systems (AVCSS)”. AVCSS sensors will make it easy to detect the presence, location and identity of all other vehicles in their vicinity. Passive radio frequency transponders are discussed. The use of differential GPS with accuracies as good as about two (2) centimeters, coupled with an inertial guidance system, is discussed, as is the ability of vehicles to communicate their locations to other vehicles. It discusses the use of accurate maps, but not of lateral vehicle control using these maps. It is obvious from reading this paper that the author did not contemplate the safety system aspects of using accurate maps and accurate GPS. In fact, the author stresses the importance of cooperation between various government levels and agencies and the private sector in order to make AVCSS feasible. “Automotive suppliers cannot sell infrastructure-dependent systems to their customers until the very large majority of the infrastructure is suitable equipped.”
10. The RtZFm System—Intelligent Transportation Infrastructure Benefits
A paper entitled “Intelligent Transportation Infrastructure Benefits: Expected and Experienced”, 1996 US Department of Transportation, provides a summary of costs and benefits associated with very modest ITS implementations. Although a complete cost benefit analysis has not been conducted on the instant invention, it is evident from reading this paper that the benefits to cost ratio will be a very large number.
According to this paper, the congestion in the United States is increasing at about 9% per year. In 50 metropolitan areas, the cost in 1992 was estimated at 48 billion dollars and in Washington, D.C. it represented an annual cost of $822 per person, or $1,580 per registered vehicle. In 1993, there were 40,115 people killed and 3 million injured in traffic accidents. Sixty-one percent (61%) of all fatal accidents occurred in rural areas. This reference lists the 29 user services that make up the ITS program. It is interesting that the instant invention provides 24 of the 29 listed user services. A listing of the services and their proposed implementation with the RtZF™ system is:
In the tables below, L=Light Vehicle, H=Heavy Truck, T=Transit, S=Specialty Vehicle.
Gen. 0, Gen. I and Gen. II are the proposed phases of the RtZF system implementation
This service is available now with adaptive cruise control supplied by Autoliv, TRW and other companies.
A virtual rumble strip noise will be used to warn the driver.
This service is already implemented on GM'"'"'s OnStar system.
The scanning laser radar will identify both large and small objects.
The information for this service will be in the map database.
This is also already being done by various automobile manufacturers independently.
The vehicle and road properties must be known prior to the danger or else it is too late. In Phase One, the vehicle inertial properties will be determined by monitoring its response to known road inputs.
The system senses when driver goes off the road or commits other infractions and then tests driver response by turning on the hazard lights which the driver must turn off, for example.
Cars do not now have a general diagnostic system. One is discussed in US05809437.
Cargo information can be part of the vehicle ID message.
Automated transactions can be automatic with RtZF™ based on vehicle ID.
The Phase Zero recorder in the 1000 vehicles will record the following; (1) Time, place and velocity when infractions are sensed. (2) Weather, temperature, illumination etc. (3) Brake pressure, throttle, steering angle etc. (4) Occupant position. (5) In vehicle still pictures. (6) Number of satellites observed. (7) State of DGPS signals. (8) State of the system.
In Phase One, scanning laser radar, lenses & range gating will be used to cover all vehicle sides.
This service can be provided in Phase Zero. This will probably require the PPS system described herein.
RtZF™ can provide location information.
RtZF™ could provide accurate position information to support this service.
Historical road data and weather prediction plus roadway sensors and probes will provide this service in Phase One.
Automatic Cruise Control (ACC) is provided in Phase Zero. The rest are basic services to be provided in Phase One.
The above references, among other things, demonstrate that there are numerous methods and future enhancements planned that will provide centimeter level accuracy to an RtZF™ equipped vehicle. There are many alternative paths that can be taken but which ever one is chosen the result is clear that such accuracies are within the start of the art today.
In the particular area of speed control, US05530651 to Uemura, et al. describes a combination of an ultrasonic and laser radar optical detection system which has the ability to detect soiled lenses, rain, snow, etc. The vehicle control system then automatically limits the speed, for example, that the vehicle can travel in adverse weather conditions. The speed of the vehicle is also reduced when the visibility ahead is reduced due to a blind, curved corner. The permitted speed is thus controlled based on weather conditions and road geometry. There is no information in the vehicle system as to the legal speed limit as provided for in embodiments of the instant invention.
11. Limitations of the Prior Art
Previous inventions have attempted to solve the collision avoidance problem for each vehicle independently of the other vehicles on the roadway. Systems that predict vehicle trajectories generally fail because two vehicles can be on a collision course and within the last 0.1 second a slight change of direction avoids the collision. This is a common occurrence that depends on the actions of the individual drivers and no collision avoidance system now in existence is believed to be able to differentiate this case from an actual collision. In the present invention described below, every equipped vehicle will be confined to a corridor and to a position within that corridor where the corridor depends on sub-meter accurate digital maps. Only if that vehicle deviates from the corridor will an alarm sound or the vehicle control system take over control of the vehicle sufficiently to prevent the vehicle from leaving its corridor if an accident would result from the departure from that corridor.
Additionally, no prior art system is believed to have successfully used the GPS navigational system, or an augmented DGPS to locate a vehicle on a roadway with sufficient accuracy that that information can be used to prevent the equipped vehicle from leaving the roadway or striking another similarly equipped vehicle.
Prior art systems in addition to being poor at locating potential hazards on the roadway, have not been able to ascertain whether they are in fact on the roadway or off on the side, whether they are threatening vehicles, static signs, overpasses etc. In fact, no credible attempt to date has been made to identify or categorize objects which may impact the subject vehicle.
The RtZF™ system in accordance with this invention also contemplates a different kind of interrogating system. It is optionally based on scanning infrared laser radar, terahertz radar with or without range gating. This system, when used in conjunction with accurate maps, will permit a precise imaging of an object on the road in front of the vehicle, for example, permitting it to be identified (using neural networks) and its location, velocity and the probability of a collision to be determined.
In particular, the system of this invention is particularly effective in eliminating accidents at intersections caused by drivers running stop signs, red stoplights and turning into oncoming traffic. There are approximately one million such accidents and they are the largest killer in older drivers who frequently get confused at intersections.
12. Definitions
“Pattern recognition” as used herein will generally mean any system which processes a signal that is generated by an object (e.g., representative of a pattern of returned or received impulses, waves or other physical property specific to and/or characteristic of and/or representative of that object) or is modified by interacting with an object, in order to determine to which one of a set of classes that the object belongs. Such a system might determine only that the object is or is not a member of one specified class, or it might attempt to assign the object to one of a larger set of specified classes, or find that it is not a member of any of the classes in the set. The signals processed are generally a series of electrical signals coming from transducers that are sensitive to acoustic (ultrasonic) or electromagnetic radiation (e.g., visible light, infrared radiation, capacitance or electric and/or magnetic fields), although other sources of information are frequently included. Pattern recognition systems generally involve the creation of a set of rules that permit the pattern to be recognized. These rules can be created by fuzzy logic systems, statistical correlations, or through sensor fusion methodologies as well as by trained pattern recognition systems such as neural networks, combination neural networks, cellular neural networks or support vector machines.
“Neural network” as used herein, unless stated otherwise, will generally mean a single neural network, a combination neural network, a cellular neural network, a support vector machine or any combinations thereof. For the purposes herein, a “neural network” is defined to include all such learning systems including cellular neural networks, support vector machines and other kernel-based learning systems and methods, cellular automata and all other pattern recognition methods and systems that learn. A “combination neural network” as used herein will generally apply to any combination of two or more neural networks as most broadly defined that are either connected together or that analyze all or a portion of the input data.
A trainable or a trained pattern recognition system as used herein generally means a pattern recognition system that is taught to recognize various patterns constituted within the signals by subjecting the system to a variety of examples. The most successful such system is the neural network used either singly or as a combination of neural networks. Thus, to generate the pattern recognition algorithm, test data is first obtained which constitutes a plurality of sets of returned waves, or wave patterns, or other information radiated or obtained from an object (or from the space in which the object will be situated in the passenger compartment, i.e., the space above the seat) and an indication of the identify of that object. A number of different objects are tested to obtain the unique patterns from each object. As such, the algorithm is generated, and stored in a computer processor, and which can later be applied to provide the identity of an object based on the wave pattern being received during use by a receiver connected to the processor and other information. For the purposes here, the identity of an object sometimes applies to not only the object itself but also to its location and/or orientation and velocity in the vicinity of the vehicle. For example, a vehicle that is stopped but pointing at the side of the host vehicle is different from the same vehicle that is approaching at such a velocity as to impact the host vehicle. Not all pattern recognition systems are trained systems and not all trained systems are neural networks. Other pattern recognition systems are based on fuzzy logic, sensor fusion, Kalman filters, correlation as well as linear and non-linear regression. Still other pattern recognition systems are hybrids of more than one system such as neural-fuzzy systems.
The use of pattern recognition, or more particularly how it is used, is important to the instant invention. In the above-cited prior art, except in that assigned to the current assignee, pattern recognition which is based on training, as exemplified through the use of neural networks, is not mentioned for use in monitoring the interior passenger compartment or exterior environments of the vehicle in all of the aspects of the invention disclosed herein. Thus, the methods used to adapt such systems to a vehicle are also not mentioned.
A pattern recognition algorithm will thus generally mean an algorithm applying or obtained using any type of pattern recognition system, e.g., a neural network, sensor fusion, fuzzy logic, etc.
To “identify” as used herein will generally mean to determine that the object belongs to a particular set or class. The class may be one containing, for example, all motorcycles, one containing all trees, or all trees in the path of the host vehicle depending on the purpose of the system.
To “ascertain the identity of” as used herein with reference to an object will generally mean to determine the type or nature of the object (obtain information as to what the object is), i.e., that the object is an car, a car on a collision course with the host vehicle, a truck, a tree, a pedestrian, a deer etc.
A “rear seat” of a vehicle as used herein will generally mean any seat behind the front seat on which a driver sits. Thus, in minivans or other large vehicles where there are more than two rows of seats, each row of seats behind the driver is considered a rear seat and thus there may be more than one “rear seat” in such vehicles. The space behind the front seat includes any number of such rear seats as well as any trunk spaces or other rear areas such as are present in station wagons.
An “optical image” will generally mean any type of image obtained using electromagnetic radiation including visual, infrared, terahertz and radar radiation.
In the description herein on anticipatory sensing, the term “approaching” when used in connection with the mention of an object or vehicle approaching another will usually mean the relative motion of the object toward the vehicle having the anticipatory sensor system. Thus, in a side impact with a tree, the tree will be considered as approaching the side of the vehicle and impacting the vehicle. In other words, the coordinate system used in general will be a coordinate system residing in the target vehicle. The “target” vehicle is the vehicle that is being impacted. This convention permits a general description to cover all of the cases such as where (i) a moving vehicle impacts into the side of a stationary vehicle, (ii) where both vehicles are moving when they impact, or (iii) where a vehicle is moving sideways into a stationary vehicle, tree or wall.
“Vehicle” as used herein includes any container that is movable either under its own power or using power from another vehicle. It includes, but is not limited to, automobiles, trucks, railroad cars, ships, airplanes, trailers, shipping containers, barges, etc. The word “container” will frequently be used interchangeably with vehicle however a container will generally mean that part of a vehicle that separate from and in some cases may exist separately and away from the source of motive power. Thus a shipping container may exist in a shipping yard and a trailer may be parked in a parking lot without the tractor. The passenger compartment or a trunk of an automobile, on the other hand, are compartments of a container that generally only exists attaches to the vehicle chassis that also has an associated engine for moving the vehicle. Note a container can have one or a plurality of compartments.
“Out-of-position” as used for an occupant will generally mean that the occupant, either the driver or a passenger, is sufficiently close to an occupant protection apparatus (airbag) prior to deployment that he or she is likely to be more seriously injured by the deployment event itself than by the accident. It may also mean that the occupant is not positioned appropriately in order to attain the beneficial, restraining effects of the deployment of the airbag. As for the occupant being too close to the airbag, this typically occurs when the occupant'"'"'s head or chest is closer than some distance such as about 5 inches from the deployment door of the airbag module. The actual distance where airbag deployment should be suppressed depends on the design of the airbag module and is typically farther for the passenger airbag than for the driver airbag.
“Transducer” or “transceiver” as used herein will generally mean the combination of a transmitter and a receiver. In come cases, the same device will serve both as the transmitter and receiver while in others two separate devices adjacent to each other will be used. In some cases, a transmitter is not used and in such cases transducer will mean only a receiver. Transducers include, for example, capacitive, inductive, ultrasonic, electromagnetic (antenna, CCD, CMOS arrays, laser, radar transmitter, terahertz transmitter and receiver, focal plane array, pin or avalanche diode, etc.), electric field, weight measuring or sensing devices. In some cases, a transducer will be a single pixel either acting alone, in a linear or an array of some other appropriate shape. In some cases, a transducer may comprise two parts such as the plates of a capacitor or the antennas of an electric field sensor. Sometimes, one antenna or plate will communicate with several other antennas or plates and thus for the purposes herein, a transducer will be broadly defined to refer, in most cases, to any one of the plates of a capacitor or antennas of a field sensor and in some other cases a pair of such plates or antennas will comprise a transducer as determined by the context in which the term is used.
“Adaptation” as used here will generally represent the method by which a particular occupant or vehicle or other object sensing system is designed and arranged for a particular vehicle model. It includes such things as the process by which the number, kind and location of various transducers is determined. For pattern recognition systems, it includes the process by which the pattern recognition system is designed and then taught or made to recognize the desired patterns. In this connection, it will usually include (1) the method of training when training is used, (2) the makeup of the databases used, testing and validating the particular system, or, in the case of a neural network, the particular network architecture chosen, (3) the process by which environmental influences are incorporated into the system, and (4) any process for determining the pre-processing of the data or the post processing of the results of the pattern recognition system. The above list is illustrative and not exhaustive. Basically, adaptation includes all of the steps that are undertaken to adapt transducers and other sources of information to a particular vehicle to create the system that accurately identifies and/or determines the location of an occupant or other object in a vehicle or in the environment around the vehicle.
A “morphological characteristic” will generally mean any measurable property of a human such as height, weight, leg or arm length, head diameter, skin color or pattern, blood vessel pattern, voice pattern, finger prints, iris patterns, etc.
A “wave sensor” or “wave transducer” is generally any device which senses either ultrasonic or electromagnetic waves. An electromagnetic wave sensor, for example, includes devices that sense any portion of the electromagnetic spectrum from ultraviolet down to a few hertz. The most commonly used kinds of electromagnetic wave sensors include CCD and CMOS arrays for sensing visible and/or infrared waves, millimeter wave and microwave radar, and capacitive or electric and/or magnetic field monitoring sensors that rely on the dielectric constant of the object occupying a space but also rely on the time variation of the field, expressed by waves as defined below, to determine a change in state.
A “CCD” will be defined to include all devices, including CMOS arrays, APS arrays, QWIP arrays or equivalent, artificial retinas and particularly HDRC arrays, which are capable of converting light frequencies, including infrared, visible and ultraviolet, into electrical signals. The particular CCD array used for many of the applications disclosed herein is implemented on a single chip that is less than two centimeters on a side. Data from the CCD array is digitized and sent serially to an electronic circuit (at times designated 120 herein) containing a microprocessor for analysis of the digitized data. In order to minimize the amount of data that needs to be stored, initial processing of the image data takes place as it is being received from the CCD array, as discussed in more detail above. In some cases, some image processing can take place on the chip such as described in the Kage et al. artificial retina article referenced above.
The “windshield header” as used herein includes the space above the front windshield including the first few inches of the roof.
An “occupant protection apparatus” is any device, apparatus, system or component which is actuatable or deployable or includes a component which is actuatable or deployable for the purpose of attempting to reduce injury to the occupant in the event of a crash, rollover or other potential injurious event involving a vehicle
Inertial measurement unit (IMU), inertial navigation system (INS) and inertial reference unit (IRU) will in general be used be used interchangeably to mean a device having a plurality of accelerometers and a plurality of gyroscopes generally within the same package. Usually such a device will contain 3 accelerometers and 3 gyroscopes. In some cases a distinction will be made whereby the INS relates to an IMU or an IRU plus additional sensors and software such as a GPS, speedometer, odometer or other sensors plus optimizing software which may be based on a Kalman filter.
A precise positioning system or PPS is a system based on some information, usually of a physical nature, in the infrastructure that determines the precise location of a vehicle independently of a GPS based system or the IMU. Such a system is employed as a vehicle is traveling and passes a particular location. A PPS can make use of various technologies including radar, laser radar, terahertz radar, RFID tags located in the infrastructure, MIR transmitters and receivers. Such locations are identified on a map database resident within the vehicle. In one case, for example, the map database contains data from a terahertz radar continuous scan of the environment to the side of a vehicle from a device located on a vehicle and pointed 45 degrees up relative to the horizontal plane. The map database contains the exact location of the vehicle that corresponds to the scan. Another vehicle can then determine its location by comparing its scan data with that stored with the map database and when there is a match, the vehicle knows its location. Of course many other technologies can be used to accomplish a similar result.
It is an object of the invention to control a vehicle based on data from an inertial reference unit or IMU, as well as to perform other functions using the data from an inertial reference unit.
It is another object of the present invention to provide a new and improved method for communications involving a vehicle, including vehicle-to-vehicle communications and communications between a vehicle and a stationary object.
In order to achieve objects of the invention, a control system for controlling a vehicle or a component of a vehicle comprises an inertial reference unit including three accelerometers and three gyroscopes which provide data on vehicle motion and a processor coupled to the inertial reference unit and arranged to process the data on vehicle motion and control the vehicle or the component of the vehicle based thereon. Movement of the vehicle may be controlled using servo motors, such as a servo associated with the braking system, a servo associated with throttle and a servo associated with the steering system. A display to the driver can also be controlled by the processor to provide data on vehicle motion or data or information derived from the data on vehicle motion.
Optionally, a Kalman filter is coupled to the processor for optimizing the data on vehicle motion from the inertial reference unit with the addition of data from other sensor systems such as the GPS, DGPS, speedometer, odometer, precise position systems etc.
A navigation system may be coupled to the processor and arranged to provide information about a roadway on which the vehicle is traveling from a map database to the processor. The processor is then arranged to process the data on vehicle motion and the roadway information and control a warning system to provide a warning to the driver upon detection of a potential crash situation, such as the vehicle being about to run off a road, cross a center (frequently yellow) line and run a stop sign as potential crash situations. Additionally, a sensor for obtaining input on the color of an approaching stoplight is preferably provided in which case, the processor additionally considers the vehicle being about to run a red stoplight as a potential crash situation. The warning system may be an alarm, a light, a buzzer audible noise and/or a simulated rumble strip.
A GPS receiver may be arranged to receive positioning signals relating to the position of the vehicle. In this case, the processor is coupled to the GPS receiver and processes the data on vehicle motion and signals relating to the position of the vehicle and controls the vehicle or the component of the vehicle based thereon. A Kalman filter is optionally coupled to the processor for optimizing the data on vehicle motion from the inertial reference unit and the signals relating to the position of the vehicle from the GPS receiver.
When three accelerometers are present, one is arranged to sense vehicle acceleration in a latitude direction, a second is arranged to sense vehicle acceleration in a longitudinal direction and a third is arranged to sense vehicle acceleration in a vertical direction. When three gyroscopes are present, one is arranged to sense angular rate about the pitch axis, a second is arranged to sense angular rate about the yaw axis and a third is arranged to sense angular rate about the roll axis.
Another embodiment of a control system for controlling a vehicle or a component of a vehicle comprises an inertial reference, an IRU or IMU, unit including three accelerometers and three gyroscopes which provide data on vehicle motion, a GPS receiver arranged to receive positioning signals relating to the position of the vehicle, a processor coupled to the inertial reference unit and to the GPS receiver and arranged to process the data on vehicle motion and signals relating to the position of the vehicle and control the vehicle or the component of the vehicle based thereon, and a Kalman filter coupled to the processor for optimizing the data on vehicle motion from the inertial reference unit and the signals relating to the position of the vehicle from the GPS receiver. The same enhancements described above are possible for this embodiment as well.
In order to achieve objects of the invention, a communication arrangement for a vehicle in accordance with the invention comprises an inertial reference unit including a plurality of accelerometers and gyroscopes which provide data on vehicle motion, a processor coupled to the inertial reference unit and arranged to process the data on vehicle motion to derive information about the vehicle, and a communication system coupled to the processor for transmitting the information about the vehicle. Optionally, a Kalman filter is coupled to the processor for optimizing the data on vehicle motion from the inertial reference unit using other sensor information.
A navigation system may be coupled to the processor to provide information about a roadway on which the vehicle is traveling from a map database to the processor. In this case, the communication system transmits the information about the roadway, which may be useful for other vehicles, e.g., to avoid traffic, obstacles, slippery roads, etc.
A GPS receiver may be arranged on the vehicle to receive positioning signals relating to the position of the vehicle. In this case, the processor is coupled to the GPS receiver and processes the data on vehicle motion and signals relating to the position of the vehicle to derive the information about the vehicle.
A method for controlling a vehicle or a component of a vehicle in accordance with the invention comprises the steps of arranging an inertial reference unit including three accelerometers and three gyroscopes on the vehicle, obtaining data on vehicle motion from the inertial reference unit and controlling the vehicle or the component of the vehicle based on the data on vehicle motion obtained from the inertial reference unit. The enhancements described above are possible for this method as well, e.g., use of a Kalman filter to optimize the data on vehicle motion from the inertial reference unit.
A method for vehicular communications in accordance with the invention comprises the steps of arranging an inertial reference unit including a plurality of accelerometers and gyroscopes on the vehicle, obtaining data on vehicle motion from the accelerometers and gyroscopes, derive information about the vehicle from the data on vehicle motion, and transmitting the information about the vehicle via a communications system to a remote facility. A Kalman filter may be provided to optimize the data on vehicle motion from the inertial reference unit and other available sensors.
A navigation system may be arranged on the vehicle and include a map database. As such, information about a roadway on which the vehicle is traveling is obtained from the map database and the information about the roadway is transmitted, e.g., to alert other drivers about accidents, road conditions and the like. A GPS receiver can also be arranged on the vehicle to receive positioning signals relating to the position of the vehicle and information about the vehicle derived from the data on vehicle motion and signals relating to the position of the vehicle.
Other objects and advantages of disclosed inventions include:
- 1. To provide a system based partially on the global positioning system (GPS) or equivalent that permits an onboard electronic system to determine the position of a vehicle with an accuracy of 1 meter or less.
- 2. To provide a system which permits an onboard electronic system to determine the position of the edges and/or lane boundaries of a roadway with an accuracy of 1 meter or less in the vicinity of the vehicle.
- 3. To provide a system which permits an onboard vehicle electronic system to determine the position of the edges and/or lane boundaries of a roadway relative to the vehicle with an accuracy of less than about 10 centimeters, one sigma.
- 4. To provide a system that substantially reduces the incidence of single vehicle accidents caused by the vehicle inappropriately leaving the roadway at high speed.
- 5. To provide a system which does not require modification to a roadway which permits high speed controlled travel of vehicles on the roadway thereby increasing the vehicle flow rate on congested roads.
- 6. To provide a collision avoidance system comprising a sensing system responsive to the presence of at least one other vehicle in the vicinity of the equipped vehicle and means to determine the location of the other vehicle relative to the lane boundaries of the roadway and thereby determine if the other vehicle has strayed from its proper position on the highway thereby increasing the risk of a collision, and taking appropriate action to reduce that risk.
- 7. To provide a means whereby vehicles near each other can communicate their position and/or their velocity to each other and thereby reduce the risk of a collision.
- 8. To provide a means for accurate maps of a roadway to be transmitted to a vehicle on the roadway.
- 9. To provide a means for weather, road condition and/or similar information can be communicated to a vehicle traveling on a roadway plus means within the vehicle for using that information to reduce the risk of an accident.
- 10. To provide a means and apparatus for a vehicle to precisely know its location at certain positions on a road by passing through or over an infrastructure based local subsystem thereby permitting the vehicle electronic systems to self correct for the satellite errors making the vehicle for a brief time a DGPS station and facilitate carrier phase DGPS for increased location accuracy. Such a subsystem may be a PPS including one based on the signature of the environment.
- 11. To utilize government operated navigation aid systems such as the WAAS and LAAS as well as other available or to become available systems to achieve sub-meter vehicle location accuracies.
- 12. To utilize the OpenGIS™ map database structure so as to promote open systems for accurate maps for the RtZF™ system.
- 13. To eliminate intersection collisions caused by a driver running a red light or stop sign.
- 14. To eliminate intersection collisions caused by a driver executing a turn into oncoming traffic.
- 15. To provide a method of controlling the speed of a vehicle based on may information or information transmitted to the vehicle from the infrastructure. Such speed control may be based on information as to the normal legal speed limit or a variable peed limit set by weather or other conditions.
Other improvements will now be obvious to those skilled in the art. The above features are meant to be illustrative and not definitive.
The preferred embodiments of the inventions are shown in the drawings and described in the detailed description below. Unless specifically noted, it is applicants'"'"' intention that the words and phrases in the specification and claims be given the ordinary and accustomed meaning to those of ordinary skill in the applicable art(s). If applicants intend any other meaning, they will specifically state they are applying a special meaning to a word or phrase.
Likewise, applicants'"'"' use of the word “function” in the detailed description is not intended to indicate that they seek to invoke the special provisions of 35 U.S.C. Section 112, paragraph 6 to define their invention. To the contrary, if applicants wish to invoke the provision of 35 U.S.C. Section 112, paragraph 6, to define their invention, they will specifically set forth in the claims the phrases “means for” or “step for” and a function, without also reciting in that phrase any structure, material or act in support of the function. Moreover, even if applicants invoke the provisions of 35 U.S.C. Section 112, paragraph 6, to define their invention, it is applicants'"'"' intention that their inventions not be limited to the specific structure, material or acts that are described in their preferred embodiments. Rather, if applicants claim their invention by specifically invoking the provisions of 35 U.S.C. Section 112, paragraph 6, it is nonetheless their intention to cover and include any and all structures, materials or acts that perform the claimed function, along with any and all known or later developed equivalent structures, materials or acts for performing the claimed function.
For example, the present inventions make use of GPS satellite location technology, including the use of MIR or RFID triads or radar and reflectors, to derive kinematic vehicle location and motion trajectory parameters for use in a vehicle collision avoidance system and method. The inventions described herein are not to be limited to the specific GPS devices or PPS devices disclosed in the preferred embodiments, but rather, are intended to be used with any and all such applicable satellite and infrastructure location devices, systems and methods, as long as such devices, systems and methods generate input signals that can be analyzed by a computer to accurately quantify vehicle location and kinematic motion parameters in real time. Thus, the GPS and PPS devices and methods shown and referenced generally throughout this disclosure, unless specifically noted, are intended to represent any and all devices appropriate to determine such location and kinematic motion parameters.
Likewise, for example, the present inventions generate surveillance image information for analysis by scanning using any applicable image or video scanning system or method. The inventions described herein are not to be limited to the specific scanning or imaging devices or to a particular electromagnetic frequency or frequency range or part of the electromagnetic spectrum disclosed in the preferred embodiments, but rather, are intended to be used with any and all applicable electronic scanning devices, as long as the device can generate an output signal that can be analyzed by a computer to detect and categorize objects. Thus, the scanners or image acquisition devices are shown and referenced generally throughout this disclosure, and unless specifically noted, are intended to represent any and all devices appropriate to scan or image a given area. Accordingly, the words “scan” or “image” as used in this specification should be interpreted broadly and generically.
Further, there are disclosed several processors or controllers, that perform various control operations. The specific form of processor is not important to the invention. In its preferred form, applicants divide the computing and analysis operations into several cooperating computers or microprocessors. However, with appropriate programming well known to those of ordinary skill in the art, the inventions can be implemented using a single, high power computer. Thus, it is not applicants'"'"' intention to limit their invention to any particular form or location of processor or computer. For example, it is contemplated that in some cases the processor may reside on a network connected to the vehicle such as one connected to the Internet.
Further examples exist throughout the disclosure, and it is not applicants'"'"' intention to exclude from the scope of his invention the use of structures, materials, or acts that are not expressly identified in the specification, but nonetheless are capable of performing a claimed function.
The above and other objects are achieved in the present invention which provides motor vehicle collision avoidance, warning and control systems and methods using GPS satellite location systems augmented with Precise Positioning Systems to provide centimeter location accuracy, and to derive vehicle attitude and position coordinates and vehicle kinematic tracking information. GPS location and computing systems being integrated with vehicle video scanning, radar, laser radar, terahertz radar and onboard speedometer and/or accelerometers and gyroscopes to provide accurate vehicle location information together with information concerning hazards and/or objects that represent impending collision situations for each vehicle. Advanced image processing techniques are used to quantify video information signals and to derive vehicle warning and control signals based upon detected hazards.
Outputs from multiple sensors as described above are used in onboard vehicle neural network and neural-fuzzy system computing algorithms to derive optimum vehicle warning and control signals designed to avoid vehicle collisions with other vehicles or with other objects or hazards that may be present on given roadways. In a preferred embodiment, neural fuzzy control algorithms are used to develop coordinated braking, acceleration and steering control signals to control individual vehicles, or the individual wheels of such vehicles, in an optimal manner to avoid or minimize the effects of potential collisions. Video, radar, laser radar, terahertz radar and GPS position and trajectory information are made available to each individual vehicle describing the movement of that vehicle and other vehicles in the immediate vicinity of that vehicle.
In addition, hazards or other obstacles that may represent a potential danger to a given vehicle are also included in the neural fuzzy calculations. Objects, obstacles and/or other vehicles located anywhere to the front, rear or sides of a given vehicle are considered in the fuzzy logic control algorithms in the derivation of optimal control and warning signals.
The above and other objects and advantages of the present invention are achieved by the preferred embodiments that are summarized and described in detail below.
The various hardware and software elements used to carry out the invention described herein are illustrated in the form of system diagrams, block diagrams, flow charts, and depictions of neural network algorithms and structures. The preferred embodiment is illustrated in the following figures:
1. Vehicle Collision Warning and Control
According to US05506584 the stated goals of the US DOT IVHS system are:
improving the safety of surface transportation
increasing the capacity and operational efficiency of the surface transportation system
enhancing personal mobility and the convenience and comfort of the surface transportation system
reducing the environmental and energy impacts of the surface transportation system
The RtZF™ system in accordance with the present invention satisfies all of these goals at a small fraction of the cost of prior art systems. The safety benefits have been discussed above. The capacity increase is achieved by confining vehicles to corridors where they are then permitted to travel at higher speeds. This can be achieved immediately where carrier phase DGPS is available or with the implementation of the highway located precise location systems as shown in
For the Intelligent Highway System (ITS) application, some provision is required to prevent unequipped vehicles from entering the restricted lanes. In most cases, a barrier will be required since if an errant vehicle did enter the controlled lane, a serious accident could result. Vehicles would be checked while traveling down the road or at a tollbooth, or similar station, that the RtZF™ system was in operation without faults and with the latest updated map for the region. Only those vehicles with the RtZF™ system in good working order would be permitted to enter. The speed on the restricted lanes would be set according to the weather conditions and fed to the vehicle information system automatically, as discussed above. Automatic tolling based on the time of day or percentage of highway lane capacity in use can also be easily implemented.
For ITS use, there needs to be a provision whereby a driver can signal an emergency, for example, by putting on the hazard lights. This would permit the vehicle to leave the roadway and enter the shoulder when the vehicle velocity is below some level. Once the driver provides such a signal, the roadway information system, or the network of vehicle based control systems, would then reduce the speed of all vehicles in the vicinity until the emergency has passed. This roadway information system need not be actually associated with the particular roadway and also need not require any roadway infrastructure. It is a term used here to represent the collective system as operated by the network of nearby vehicles and the inter-vehicle communication system. Eventually, the occurrence of such emergency situations will be eliminated by vehicle based failure prediction systems such as described in US05809437.
Emergency situations will develop on intelligent highways. It is difficult to access the frequency or the results of such emergencies. The industry has learned from airbags that if a system is developed which saves many lives but causes a few deaths, the deaths will not be tolerated. The ITS system, therefore, must operate with a very high reliability, that is approaching zero fatalities. Since the brains of the system will reside in each vehicle, which is under the control of individual owners, there will be malfunctions and the system must be able to adapt without causing accidents. An alternative is for the brains to reside on the network providing that the network connection is reliable.
The spacing of the vehicles is the first line of defense. Secondly, each vehicle with a RtZF™ system has the ability to automatically communicate to all adjacent vehicles and thus immediately issue a warning when an emergency event is occurring. Finally, with the addition of a total vehicle diagnostic system, such as disclosed in US05809437 (Breed), “On Board Vehicle Diagnostic System”, potential emergencies can be anticipated and thus eliminated with high reliability.
Although the application for ITS envisions a special highway lane and high speed travel, the potential exists in the invention to provide a lower measure of automatic guidance where the operator can turn control of the vehicle over to the RtZF™ system for as long as the infrastructure is available. In this case, the vehicle would operate in normal lanes but would retain its position in the lane and avoid collisions until a decision requiring operator assistance is required. At that time, the operator would be notified and if he or she did not assume control of the vehicle, an orderly stopping of the vehicle on the side of the road would occur.
For all cases where vehicle steering control is assumed by the RtZF™ system, an algorithm for controlling the steering should be developed using neural networks or neural fuzzy systems. This is especially true for the emergency cases discussed herein where it is well known that operators frequently take the wrong actions and at the least they are slow to react. Algorithms developed by other non-pattern recognition techniques do not in general have the requisite generality or complexity and are also likely to make the wrong decisions (although the use of such systems is not precluded in the invention). When the throttle and breaking functions are also handled by the system, an algorithm based on neural networks or neural fuzzy systems is even more important.
For the ITS, the driver will enter his or her destination so that the vehicle knows ahead of time where to exit. Alternately, if the driver wishes to exit, he merely turns on his turn signal, which tells the system and other vehicles that he or she is about to exit the controlled lane
Neural networks have been mentioned above and since they can play an important role in various aspects of the invention, a brief discussion is now presented here.
In this embodiment, 141 data points are appropriately interconnected at 25 connecting points of layer 1, and each data point is mutually correlated through the neural network training and weight determination process. In some implementations, each of the connecting points of the layer 1 has an appropriate threshold value, and if the sum of measured data exceeds the threshold value, each of the connecting points will output a signal to the connecting points of layer 2. In other cases, an output value or signal will always be outputted to layer 2 without thresholding.
The connecting points of the layer 2 comprises 20 points, and the 25 connecting points of the layer 1 are appropriately interconnected as the connecting points of the layer 2. Similarly, each data value is mutually correlated through the training process and weight determination as described above and in the above referenced neural network texts. Each of the 20 connecting points of the layer 2 can also have an appropriate threshold value, if thresholding is used, and if the sum of measured data exceeds the threshold value, each of the connecting points will output a signal to the connecting points of layer 3.
The connecting points of the layer 3 comprises 3 points in this example, and the connecting points of the layer 2 are interconnected at the connecting points of the layer 3 so that each data is mutually correlated as described above.
The value of each connecting point is determined by multiplying weight coefficients and summing up the results in sequence, and the aforementioned training process is to determine a weight coefficient Wj so that the value (ai) is a previously determined output.
ai=ΣWj·Xj(j=1 to N)+W0
wherein Wj is the weight coefficient,
- Xj is the data
- N is the number of samples and
- W0 is bias weight associated with each node.
Based on this result of the training, the neural network circuit 63 generates the weights and the bias weights for the coefficients of the correlation function or the algorithm.
At the time the neural network circuit 63 has learned from a suitable number of patterns of the training data, the result of the training is tested by the test data. In the case where the rate of correct answers of the object identification unit based on this test data is unsatisfactory, the neural network circuit 63 is further trained and the test is repeated. Typically about 200,000 feature patterns are used to train the neural network 63 and determine all of the weights. A similar number is then used for the validation of the developed network. In this simple example chosen, only three outputs are illustrated. These can represent another vehicle, a truck and a pole or tree. This might be suitable for an early blind spot detector design. The number of outputs depends on the number of classes of objects that are desired. However, too many outputs can result in an overly complex neural network and then other techniques such as modular neural networks can be used to simplify the process. When a human looks at a tree, for example, he or she might think “what kind of tree is that?” but not “what kind of tiger is that”. The human mind operates with modular or combination neural networks where the object to be identified is first determined to belong to a general class and then to a subclass etc. Object recognition neural networks can frequently make use of this principle with a significant simplification resulting.
In the above example, the image was first subjected to a feature extraction process and the feature data was input to the neural network. In other cases, especially as processing power continues to advance, the entire image is input to the neural network for processing. This generally requires a larger neural network. Alternate approaches use data representing the difference between two frames and the input data to the neural network. This is especially useful when a moving object of interest is in an image containing stationary scenery that is of no interest. This technique can be used even when everything is moving by using the relative velocity as a filter to remove unwanted pixel data. Naturally, any variations are possible and will now be obvious to those skilled in the art. Alternately, this image can be filtered based on range, which will also significantly reduce the number of pixels to be analyzed.
In another implementation, the scenes are differenced based on illumination. If infrared illumination is used, for example, the illumination can be turned on and off and images taken and then differenced. If the illumination is known only to illuminate an object of interest then such an object can be extracted from the background by this technique. A particularly useful method is to turn the illumination on and off for alternate scan lines in the image. Adjacent scan lines can then be differenced and the resulting image sent to the neural network system for identification.
The neural network can be implemented as an algorithm on a general-purpose microprocessor or on a dedicated parallel processing DSP, neural network ASIC or other dedicated parallel or serial processor. The processing speed is generally considerably faster when parallel processors are used and this can also permit the input of the entire image for analysis rather than using feature data. Naturally, a combination of feature and pixel data can also be used.
Neural networks have certain known potential problem areas that various researchers have attempted to eliminate. For example, if data representing an object that is totally different from those objects present in the training data is input to the neural network, an unexpected result can occur which, in some cases, can cause a system failure. To solve this and other neural network problems, researchers have resorted to adding in some other computational intelligence principles such as fuzzy logic resulting in a neural-fuzzy system, for example. As the RtZF™ system evolves, such refinements will be implemented to improve the accuracy of the system. Thus, although pure neural networks are currently being applied to the problem, hybrid neural networks such as modular, combination, ensemble and fuzzy neural networks will undoubtedly evolve.
A typical neural network processing element known to those skilled in the art is shown in
Neural networks used in the accident avoidance system of this invention are trained to recognize roadway hazards including automobiles, trucks, animals and pedestrians. Training involves providing known inputs to the network resulting in desired output responses. The weights are automatically adjusted based on error signal measurements until the desired outputs are generated. Various learning algorithms may be applied with the back propagation algorithm with the Delta Bar rule as a particularly successful method.
2. Accurate Navigation
2.1 GPS
2.2 DGPS, WAAS, LAAS and Pseudolites
Additional details relating to
It is important to note that future GPS and Galileo satellite systems plan for the transmission of multiple frequencies for civilian use. Like a lens, the ionosphere diffracts different frequencies by different amounts and thus the time of arrival of a particular frequency will depend on the value of that frequency. This fact can be used to determine the amount that each frequency is diffracted and thus the delay or error introduced by the ionosphere. Thus with more than one frequency being emitted by a particular satellite, the equivalent of the DGPS corrections can be determined be each receiver and there in no longer a need for DGPS, WADGPS, WAAS, LAAS and similar systems.
The WAAS system is another example of WADGPS for use with airplanes. The U.S. Government estimates that the accuracy of the WAAS system is about 1 meter in three dimensions. Since the largest error is in the vertical direction, the horizontal error is much less.
2.3 Carrier Phase Measurements
If a receiver can receive signals by two paths from a satellite it can measure the phase difference between the two paths and, provided that there are not any extra cycles in one of the paths, the path difference can be determined to less than one centimeter. The fact that there may be an integer number of extra cycles in one path and not in the other is what is called the integer ambiguity problem and a great deal of attention has been paid in the literature to resolving this ambiguity. Using the Precise Positioning System (PPS) described in detail below where a vehicle becomes its own DGPS system, the carrier phase ambiguity problem also disappears since the number of additional cycles can be determined as the vehicle travels away from the PPS. In other words, there are no extra cycles when the vehicle is at the PPS and as it moves away it will still know the state of the cycles at the PPS and can then calculate the increase or decrease in the cycles at the host vehicle as it moves relatively away from or closer to the transmitting satellite. There is no ambiguity when the vehicle is at the PPS station and that is maintained as long as the lock on a satellite is not lost for more than a few minutes providing that there is an accurate clock within the vehicle.
There are other sources of information that can be added to increase the accuracy of position determination. The use of GPS with four satellites provides the three dimension location of the vehicle plus time. Of the dimensions, the vertical position is the least accurately known, yet, if the vehicle knows where it is on the roadway, the vertical dimension is not only the least important but it is also already accurately known from the roadmap information plus the inertial guidance system.
2.4 Inertial Navigation System
In the system of the inventions herein, the vehicle will generally have an inertial measurement unit, inertial reference unit or an inertial navigation system which for the purposes herein will be treated as identical. Such a device typically has three accelerometers and three gyroscopes that are held together in a single housing. Typically these 6 devices are MEMS devices and inherently are very inexpensive. Some companies then proceed to carefully test each component to determine the repeatable effects that various environmental factors and aging has on the performance of each device and then associates with each device a calibration or constitute equation that translates the readings of the device to actual values based on the environmental variable values and time. This process adds significantly to the cost and in fact may be the dominant cost. The problem is that age, for example, may affect a device differently based on how the aging takes place, at high or low temperatures, for example. Also shock or some other unexpected event can change the properties of a device. In the present invention, on the other hand, this complicate and expensive calibration process is not performed and thus a calibration equation is not frozen into the device. Since the IMU will be part of a vehicle system and that system will periodically, either from the GPS-DGPS type system or form the PPS, know its exact location that fact will be used to derive a calibration equation for each device and since other information such as temperature etc. will also be known that parameter can also be part of the equation. The equation can thus be a changing part of the system that automatically adjusts to actual experience of the vehicle in the field. Thus, not only is the IMU more accurate that the prior art but it is considerably less expensive. One method for handling this change and recalculation of the calibration equations would be to use an adaptive neural network that has a forgetting function. Properly designed this network can allow the calibration equations to adjust and slowly change over time always providing the most accurate values regardless of how the devices are changing in their sensitivity to temperature, for example.
The fact that the IMU resident devices are continuously calibrated using external measurements renders the IMU an extremely accurate device comparable with military grade IMUs costing thousands of dollars. The IMU is far more accurate, for example, than the crash sensor or chassis control accelerometers and gyroscopes that are currently being deployed on a vehicle. Thus, when mounting location considerations permit, the IMU can take over the functions currently performed by these other devices. This will not only increase the accuracy of these other functions but reduce the total cost by eliminating the need for redundant parts and permitting economies in the electronic circuits and processors to be realized. The airbag SDM can now be housed with the IMU, for example, and similarly for the chassis control electronics. If the IMU has the full complement of 3 gyros and 3 accelerometers then this additional information can be used to substantially improve the crash sensing algorithms or the chassis control algorithms. The sensing and predicting or a rollover event, for example, and the subsequent control of the throttle, brakes and steering systems as well as the timely deployment of the side and curtain airbags. Thus the use of the IMU for these functions, particularly for the rollover prediction, mitigation and restraint deployment functions, are a key teaching of this invention.
As discussed below, many sensors can be used to correct the errors in the IMU in addition to the GPS and PPS based systems. A gravity meter can determine the direction of down and can especially used when the vehicle is not moving. A magnetic flux gate compass and/or declinometer values can be included in the map database and compared by the host vehicle as it passes mapped areas. Doppler radar or other velocity measurements from the exterior vehicle monitoring system can give valuable velocity information. Vision systems can be used to correct for position if such data is stored on the map database. If for example a stored picture shown a signpost at a particular location that can be viewed by a resident vision system then this can also be useful information for correcting errors in the IMU.
In many cases, especially before the system implementation becomes