×

Device and method for transmitting and providing the power of capacitive actuators

  • US 7,579,715 B2
  • Filed: 12/13/2003
  • Issued: 08/25/2009
  • Est. Priority Date: 01/20/2003
  • Status: Active Grant
First Claim
Patent Images

1. A device for contactless electrical power transmission in a rotary-wing aircraft system including a stationary portion of a rotor shaft bearing of a rotary-wing aircraft and a rotor shaft of the rotary-wing aircraft, power being transmitted between the stationary portion of the rotor shaft bearing of the rotary-wing aircraft and the rotor shaft of the rotary-wing aircraft, the device comprising:

  • an inductive transformer including a primary winding disposed on the stationary portion of the rotor shaft bearing of the rotary-wing aircraft and a secondary winding disposed on the rotor shaft of the rotary-wing aircraft, the inductive transformer bridging an isolating point between the stationary portion of the rotor shaft bearing of the rotary-wing aircraft and the rotor shaft of the rotary-wing aircraft;

    a frequency generator having a series-resonant circuit capacitor connected to the primary winding; and

    at least one capacitive actuator disposed in operative connection with at least one actuator control element,the at least one actuator control element being connected to the secondary winding and including a matrix arrangement of a plurality of switchable power semiconductors, wherein at least portions of the inductive transformer, frequency generator and at least one actuator control element are disposed in an area of the rotor shaft and a rotor head of the rotary-wing aircraft,the at least one actuator control element including a plurality of generating devices, a regulator, and a controller,the controller being configured to impress positive and negative half-waves or half-wave segments of a high-frequency alternating current into the actuator,the regulator being connected to the controller so as to form difference sized half-wave segments of a current using a magnitude signal as a function of a magnitude of a difference between a setpoint actuator voltage and an actual actuator voltage, and so as to control the power semiconductors using a polarity signal as a function of a polarity sign of the difference between the setpoint actuator voltage and the actual actuator voltage, in such a way that, when the polarity sign of the difference is negative, a successive charge or power is withdrawn from the actuator from one half-wave to the next and, when the polarity sign of the difference is positive, a successive charge or power is supplied to the actuator from one half-wave to a next half-wave,the controller being connected to the generating devices so as to generate switching grid signals of a switching grid synchronized with the alternating current, and the controller being connected to the regulator so as to supply the polarity signal so as to set a direction of the shift and a magnitude signal so as to set a magnitude of the shift, the controller including;

    a logic device configured to form switching signals of an initial position of pairs of the switchable semiconductors connected in series using the switching grid signals, anda shift advance device configured to advance switching of a switch pair by a shift relative to the initial position during a rectifier operation and the controller includes a shift lag device configured to subtract switching-of the switch pair by the shift relative to the initial position during an inverter operation.

View all claims
  • 2 Assignments
Timeline View
Assignment View
    ×
    ×