×

Pancreas regeneration treatment for diabetics using extracorporeal acoustic shock waves

  • US 7,988,648 B2
  • Filed: 02/20/2007
  • Issued: 08/02/2011
  • Est. Priority Date: 03/04/2005
  • Status: Active Grant
First Claim
Patent Images

1. The method of stimulating a tissue of a subsurface organ comprises the steps of:

  • treating the tissue of the subsurface organ;

    activating an acoustic shock wave generator or source to emit pressure pulses or acoustic shock waves directed toward the tissue of the subsurface organ to impinge the tissue of the subsurface organ with pressure pulses or shock waves having a low energy density in the range of 0.00001 mJ/mm2 to 1.0 mJ/mm2;

    the pressure pulse being an acoustic pulse which includes several cycles of positive and negative pressure, wherein the pressure pulse has an amplitude of the positive part of such a cycle should be above 0.1 MPa and the time duration of the pressure pulse is from below a microsecond to about a second, rise times of the positive part of the first pressure cycle in the range of nano-seconds (ns) up to some milli-seconds (ms), the acoustic shock waves being very fast pressure pulses having amplitudes above 0.1 MPa and rise times of the amplitude being below 100'"'"'s of ns, the duration of the shock wave is typically below 1-3 micro-seconds (μ

    s) for the positive part of a cycle and typically above some micro-seconds for the negative part of a cycle;

    subjecting the tissue of the subsurface organ to convergent, divergent, planar or near planar acoustic shock waves or pressure pulses in the absence of a focal point impinging the substance stimulating a cellular response in the absence of creating cavitation bubbles evidenced by not experiencing the sensation of cellular hemorrhaging caused by the emitted waves or pulses in the tissue of the subsurface organ wherein the tissue of the subsurface organ is positioned within a path of the emitted shock waves or pressure pulses and away from any localized geometric focal volume or point of the emitted shock waves wherein the emitted shock waves or pressure pulses either have no geometric focal volume or point or have a focal volume or point ahead of the tissue of the subsurface organ or beyond the tissue of the subsurface organ thereby passing the emitted waves through the tissue of the subsurface organ while avoiding having any localized focal point within the tissue of the subsurface organ wherein the emitted pressure pulses or shock waves are convergent, divergent, planar or near planar and the pressure pulse shock wave generator or source is based on electro-hydraulic, electromagnetic, piezoceramic or ballistic wave generation having an energy density value ranging as low as 0.00001 mJ/mm2 to a high end of below 1.0 mJ/mm2.

View all claims
  • 3 Assignments
Timeline View
Assignment View
    ×
    ×