×

Contactless charging system for an artificial organ, a storage device and a feeding device for use with this system

  • US 8,000,800 B2
  • Filed: 05/22/2003
  • Issued: 08/16/2011
  • Est. Priority Date: 05/23/2002
  • Status: Expired due to Fees
First Claim
Patent Images

1. A contactless charging system for an artificial organ, comprising:

  • (A) a storage device adapted to be embedded as a whole in a body along with the artificial organ, and including a power receiving coil acting as a secondary side coil for transferring power, rectifying means for rectifying and outputting an alternating current received by the power receiving coil, storage means for storing output from the rectifying means as electric power for driving the artificial organ, charge status detecting means for detecting a charge status of the storage means, and charge status transmitting means for transmitting outside the body the charge status detected by the charge status detecting means; and

    (B) a feeding device provided separately from the storage device and disposed as a whole outside the body, and including a power transmitting coil acting as a primary side coil, AC output means for outputting the AC to the power transmitting coil, charge status receiving means for receiving the charge status transmitted outside the body from said charge status transmitting means, and charge status informing means for informing the charge status received by the charge status receiving means,wherein;

    each of the storage device and the feeding device includes amount of coil displacement detecting means for detecting an amount of coil displacement as an extent of a displacement occurring between the power receiving coil and the power transmitting coil, and the feeding device includes amount of coil displacement informing means for informing the amount of coil displacement detected by the amount of coil displacement detecting means;

    the amount of coil displacement detecting means of said storage device includes a smoothing circuit for smoothing a voltage at opposite ends of said power receiving coil, and a secondary side control circuit for determining the amount of coil displacement based on a smoothed voltage value;

    the amount of coil displacement detecting means of said feeding device includes a smoothing circuit for smoothing a voltage at opposite ends of said power transmitting coil, and a primary side control circuit for determining the amount of coil displacement based on a smoothed voltage value;

    the amount of coil displacement detecting means of said storage device is disposed in the storage device, a detection result communicating period is set after every fixed charging period of a plurality of fixed charging periods, and a circuit operation, in which a digital signal is transmitted from the secondary side control circuit to a digital variable resistor so that the digital variable resistor has a resistance to make a resonant condition by a resonance circuit a virtually absolutely non-resonant condition only for a predetermined short period of time, is repeated so that a number of divided pulses corresponding to a charge voltage and the digital signal may be transmitted outside the body by said charge status transmitting means after said every fixed charging execution period;

    display means adapted for displaying the amount of coil displacement divides and displays the amount of coil displacement transmitted outside the body by said charge status transmitting means based on an output voltage of the smoothing circuit provided with the primary side control circuit corresponding to an range of an output voltage of the smoothing circuit provided with the secondary side control circuit for every receiving signal of the amount of coil displacement; and

    the amount of coil displacement informing means informs said amount of coil displacement detected by the amount of coil displacement detecting means.

View all claims
  • 1 Assignment
Timeline View
Assignment View
    ×
    ×