×

Battery modules having interconnect members with vibration dampening portions

  • US 9,496,544 B2
  • Filed: 07/28/2011
  • Issued: 11/15/2016
  • Est. Priority Date: 07/28/2011
  • Status: Active Grant
First Claim
Patent Images

1. A battery module, comprising:

  • a first battery cell having at least a first terminal;

    a second battery cell having at least a second terminal;

    a third battery cell having at least a third terminal;

    an interconnect member having;

    a first electrically-conductive plate portion having a first thickness and being welded to the first terminal, the first electrically-conductive plate portion having first and second ends;

    a second electrically-conductive plate portion having a second thickness equal to the first thickness and being welded to the second terminal, the second electrically-conductive plate portion extending generally parallel to the first electrically-conductive plate portion, the second electrically-conductive plate portion having first and second ends, the first end of the second electrically-conductive plate portion being spaced apart from the first end of the first electrically-conductive plate portion a first distance, the second end of the second electrically-conductive plate portion being spaced apart from the second end of the first electrically-conductive plate portion a second distance such that the second end of the second electrically-conductive plate portion and the second end of the first electrically-conductive plate portion have a first gap therebetween that extends completely across the second distance, the second distance being substantially equal to the first distance;

    a third electrically-conductive plate portion having a third thickness equal to the first thickness and being welded to the third terminal, the third electrically-conductive plate portion extending generally parallel to the second electrically-conductive plate portion, the third electrically-conductive plate portion having first and second ends, the second end of the third electrically-conductive plate portion being spaced apart from the second end of the second electrically-conductive plate portion a third distance, the first end of the third electrically-conductive plate portion being spaced apart from the first end of the second electrically-conductive plate portion of a fourth distance such that the first end of the third electrically-conductive plate portion and the first end of the second electrically-conductive plate portion have a second gap therebetween that extends completely across the fourth distance, the third distance being substantially equal to the fourth distance;

    a first electrically-conductive vibration dampening portion directly coupled to and between the first end of the first electrically-conductive plate portion and the first end of the second electrically-conductive plate portion, the first electrically-conductive vibration dampening portion extending perpendicular to the first terminal of the first battery cell, the first electrically-conductive vibration dampening portion having a fourth thickness greater than the first thickness along an entire length of the first electrically-conductive vibration dampening portion, such that vibrations induced on the first electrically-conductive plate portion are attenuated when a portion of the vibrations induced in the first electrically-conductive plate portion pass through the first electrically-conductive vibration dampening portion to the second electrically-conductive plate portion; and

    a second electrically-conductive vibration dampening portion directly coupled to and between the second end of the second electrically-conductive plate portion and the second end of the third electrically-conductive plate portion, the second electrically-conductive vibration dampening portion extending perpendicular to the second terminal of the second battery cell, the second electrically-conductive vibration dampening portion having a fifth thickness greater than the second thickness along an entire length of the second electrically-conductive vibration dampening portion, such that vibrations induced on the second electrically-conductive plate portion are attenuated when a portion of the vibrations induced on the second electrically-conductive plate portion pass through the second electrically-conductive vibration dampening portion to the third electrically-conductive plate portion.

View all claims
  • 2 Assignments
Timeline View
Assignment View
    ×
    ×