Inductive power source and charging system
First Claim
1. A mobile device capable of inductive powering or charging by a universal base unit for charging of different mobile devices and/or batteries of different charging characteristics associated therewith, comprising:
- a battery, wherein one or both of a mobile device and the battery have particular charging characteristics associated therewith;
a receiver and receiver coil, for one of inductively powering the device or charging the battery in the mobile device, wherein the receiver is one of attached to or incorporated into the battery or the mobile device, and wherein the receiver coil has a generally planar shape so that a magnetic field received in a direction substantially perpendicular to the plane of the receiver coil is used to inductively generate a current in the receiver coil;
an identification component associated with the mobile device or battery, which is configured to provide wireless identification of the receiver to the universal base unit;
a means for avoiding overcharging one or both of the mobile device and battery inductively; and
a regulator, coupled to the output of the receiver or to the battery, that regulates an output voltage or output current provided by the receiver, to the mobile device or battery, to be within a range of parameters for the mobile device or the battery;
wherein different mobile devices and batteries can have different charging characteristics associated therewith; and
wherein the receiver communicates with the base unit todetect, identify and authenticate the receiver with the base unit, as provided by the identification component,determine and then activate one or more primary coils of the base unit which are aligned with the receiver coil,verify the continued presence of the receiver near the base unit, andcommunicate information describing the characteristics of the mobile device or the battery, for use by the base unit to provide power transfer to the receiver and to the mobile device and the battery according to their particular charging characteristics.
0 Assignments
0 Petitions

Accused Products

Abstract
A portable inductive power source, power device, or unit, for use in powering or charging electrical, electronic, battery-operated, mobile, and other devices is disclosed herein. In accordance with an embodiment the system comprises a pad or similar base unit that contains a primary, which creates an alternating magnetic field by means of applying an alternating current to a winding, coil, or any type of current carrying wire. A receiver comprises a means for receiving the energy from the alternating magnetic field from the pad and transferring it to a mobile or other device. In some embodiments the receiver can also comprise electronic components or logic to set the voltage and current to the appropriate levels required by the mobile device, or to communicate information or data to and from the pad. Embodiments may also incorporate efficiency measures that improve the efficiency of power transfer between the charger and receiver.
334 Citations
WIRELESS CHARGER AND MULTI-TERMINAL WIRELESS CHARGING METHOD | ||
Patent #
US 20150244199A1
Filed 09/11/2012
|
Current Assignee
Dongguan Yulong Telecommunication Tech Co. Ltd., Yulong Computer Telecommunication Technologies Shenzhen Co. Ltd
|
Original Assignee
Dongguan Yulong Telecommunication Tech Co. Ltd., Yulong Computer Telecommunication Technologies Shenzhen Co. Ltd
|
Detection of coil coupling in an inductive charging system | ||
Patent #
US 10,110,051 B2
Filed 06/19/2017
|
Current Assignee
Apple Inc.
|
Original Assignee
Apple Inc.
|
Energy transfer with vehicles | ||
Patent #
US 10,124,691 B1
Filed 09/23/2014
|
Current Assignee
Bryan Marc Failing
|
Original Assignee
Bryan Marc Failing
|
Electronic device wireless charging system | ||
Patent #
US 10,170,918 B2
Filed 12/04/2017
|
Current Assignee
Apple Inc.
|
Original Assignee
Apple Inc.
|
SYSTEM AND METHOD FOR CHARGING OR POWERING DEVICES, SUCH AS MOBILE DEVICES, MACHINES OR EQUIPMENT | ||
Patent #
US 20190020210A1
Filed 07/16/2017
|
Current Assignee
Mojo Mobility Inc.
|
Original Assignee
Mojo Mobility Inc.
|
System and method for charging or powering devices, including mobile devices, machines or equipment | ||
Patent #
US 10,367,369 B2
Filed 07/16/2017
|
Current Assignee
Mojo Mobility Inc.
|
Original Assignee
Mojo Mobility Inc.
|
Boosted output inverter for electronic devices | ||
Patent #
US 10,389,274 B2
Filed 12/01/2017
|
Current Assignee
Apple Inc.
|
Original Assignee
Apple Inc.
|
Common mode noise compensation in wireless power systems | ||
Patent #
US 10,523,063 B2
Filed 12/01/2017
|
Current Assignee
Apple Inc.
|
Original Assignee
Apple Inc.
|
Wireless charging control based on electronic device events | ||
Patent #
US 10,523,021 B2
Filed 12/12/2018
|
Current Assignee
Apple Inc.
|
Original Assignee
Apple Inc.
|
Asymmetric duty control of a half bridge power converter | ||
Patent #
US 10,601,250 B1
Filed 03/31/2017
|
Current Assignee
Apple Inc.
|
Original Assignee
Apple Inc.
|
Adaptable power rectifier for wireless charger system | ||
Patent #
US 10,644,531 B1
Filed 03/23/2017
|
Current Assignee
Apple Inc.
|
Original Assignee
Apple Inc.
|
Multi-coil charging system for distributed in-wheel motors | ||
Patent #
US 10,668,828 B2
Filed 09/13/2017
|
Current Assignee
Ibaraki Toyota Jidosha Kabushiki Kaisha
|
Original Assignee
Toyota Motor Engineering Manufacturing North America Incorporated
|
Configurable wireless transmitter device | ||
Patent #
US 10,790,699 B2
Filed 01/25/2019
|
Current Assignee
Apple Inc.
|
Original Assignee
Apple Inc.
|
Wireless charger for mobile terminal in vehicle, and vehicle | ||
Patent #
US 10,814,807 B2
Filed 01/03/2018
|
Current Assignee
LG Electronics Inc.
|
Original Assignee
LG Electronics Inc.
|
Wireless charging control based on electronic device events | ||
Patent #
US 10,840,715 B2
Filed 12/27/2019
|
Current Assignee
Apple Inc.
|
Original Assignee
Apple Inc.
|
Methods for determining and controlling battery expansion | ||
Patent #
US 10,847,846 B2
Filed 01/25/2018
|
Current Assignee
Apple Inc.
|
Original Assignee
Apple Inc.
|
Multi-turn configurable grid charging coil | ||
Patent #
US 10,850,634 B2
Filed 10/20/2017
|
Current Assignee
Ibaraki Toyota Jidosha Kabushiki Kaisha
|
Original Assignee
Toyota Motor Engineering Manufacturing North America Incorporated
|
System and method for charging or powering devices, including mobile devices, machines or equipment | ||
Patent #
US 10,875,414 B2
Filed 07/29/2019
|
Current Assignee
Mojo Mobility Inc.
|
Original Assignee
Mojo Mobility Inc.
|
Temperature management in a wireless energy transfer system | ||
Patent #
US 10,879,745 B2
Filed 07/02/2018
|
Current Assignee
Apple Inc.
|
Original Assignee
Apple Inc.
|
Detection of coil coupling in an inductive charging system | ||
Patent #
US 10,879,721 B2
Filed 09/17/2018
|
Current Assignee
Apple Inc.
|
Original Assignee
Apple Inc.
|
Rechargeable battery powered portable electronic device | ||
Patent #
US 7,872,445 B2
Filed 06/17/2009
|
Current Assignee
City University of Hong Kong
|
Original Assignee
City University of Hong Kong
|
SYSTEM AND METHODS FOR INDUCTIVE CHARGING, AND IMPROVEMENTS AND USES THEREOF | ||
Patent #
US 20110050164A1
Filed 04/28/2010
|
Current Assignee
Mojo Mobility Inc.
|
Original Assignee
Mojo Mobility Inc.
|
SAFETY FEATURE FOR WIRELESS CHARGER | ||
Patent #
US 20110057606A1
Filed 09/04/2009
|
Current Assignee
Nokia Corporation
|
Original Assignee
Nokia Corporation
|
Wireless Chargeable Game Device | ||
Patent #
US 20110012556A1
Filed 09/24/2009
|
Current Assignee
Shen Zhen Wonderwin Technology Company Limited
|
Original Assignee
Shen Zhen Wonderwin Technology Company Limited
|
Rechargeable inductive charger | ||
Patent #
US 7,906,936 B2
Filed 04/09/2010
|
Current Assignee
Powermat Technologies Ltd.
|
Original Assignee
Powermat Ltd.
|
Localized charging, load identification and bi-directional communication methods for a planar inductive battery charging system | ||
Patent #
US 7,915,858 B2
Filed 10/30/2007
|
Current Assignee
City University of Hong Kong
|
Original Assignee
City University of Hong Kong
|
TRANSMISSION-GUARD SYSTEM AND METHOD FOR AN INDUCTIVE POWER SUPPLY | ||
Patent #
US 20110062793A1
Filed 09/16/2010
|
Current Assignee
Powermat Technologies Ltd.
|
Original Assignee
Powermat Ltd.
|
APPLIANCE MOUNTED POWER OUTLETS | ||
Patent #
US 20110121660A1
Filed 12/01/2010
|
Current Assignee
Powermat Technologies Ltd.
|
Original Assignee
Powermat Ltd.
|
WIRELESS ENERGY REPEATER | ||
Patent #
US 20110115430A1
Filed 11/18/2009
|
Current Assignee
Nokia Technologies Oy
|
Original Assignee
Nokia Corporation
|
CONTACTLESS POWER RECEIVER AND METHOD OF OPERATION | ||
Patent #
US 20110090723A1
Filed 07/07/2009
|
Current Assignee
Apple Inc.
|
Original Assignee
PowerbyProxi Limited
|
Wireless power source | ||
Patent #
US D636,333 S1
Filed 09/23/2010
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
FERRITE ANTENNAS FOR WIRELESS POWER TRANSFER | ||
Patent #
US 20110095617A1
Filed 06/05/2009
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
ENCAPSULATED PIXELS FOR DISPLAY DEVICE | ||
Patent #
US 20110157137A1
Filed 01/05/2011
|
Current Assignee
Powermat Technologies Ltd.
|
Original Assignee
Powermat Ltd.
|
Mat system for charging an electronic device | ||
Patent #
US D639,734 S1
Filed 01/06/2009
|
Current Assignee
HPNA LLC
|
Original Assignee
Powermat USA LLC
|
Power source, charging system, and inductive receiver for mobile devices | ||
Patent #
US 7,948,208 B2
Filed 06/01/2007
|
Current Assignee
Mojo Mobility Inc.
|
Original Assignee
Mojo Mobility Inc.
|
Inductive power source and charging system | ||
Patent #
US 7,952,322 B2
Filed 01/30/2007
|
Current Assignee
Mojo Mobility Inc.
|
Original Assignee
Mojo Mobility Inc.
|
LOCATION-BASED DOCK FOR A COMPUTING DEVICE | ||
Patent #
US 20110162035A1
Filed 12/31/2009
|
Current Assignee
Apple Inc.
|
Original Assignee
Apple Inc.
|
Cellular Wireless LAN with Frequency Division Multiplex in TV White Space | ||
Patent #
US 20110222493A1
Filed 03/10/2011
|
Current Assignee
Walt Disney Studios GmbH
|
Original Assignee
Disney Enterprises Incorporated
|
POWER TRANSFER DEVICE AND METHOD | ||
Patent #
US 20110187318A1
Filed 02/03/2010
|
Current Assignee
ConvenientPower HK Limited
|
Original Assignee
ConvenientPower HK Limited
|
METHOD FOR WIRELESS CHARGING USING COMMUNICATION NETWORK | ||
Patent #
US 20110221391A1
Filed 03/14/2011
|
Current Assignee
Samsung Electronics Co. Ltd.
|
Original Assignee
Samsung Electronics Co. Ltd.
|
SYSTEM AND METHOD FOR CHARGING AN ENERGY STORAGE SYSTEM FOR AN ELECTRIC OR HYBRID-ELECTRIC VEHICLE | ||
Patent #
US 20110221387A1
Filed 03/09/2010
|
Current Assignee
General Electric Company
|
Original Assignee
General Electric Company
|
Moving Object, Wireless Power Feeding System, and Wireless Power Feeding Method | ||
Patent #
US 20110193520A1
Filed 02/01/2011
|
Current Assignee
Semiconductor Energy Laboratory Co. Ltd.
|
Original Assignee
Semiconductor Energy Laboratory Co. Ltd.
|
COMBINED ANTENNA AND INDUCTIVE POWER RECEIVER | ||
Patent #
US 20110217927A1
Filed 03/22/2011
|
Current Assignee
Powermat Technologies Ltd.
|
Original Assignee
Powermat Ltd.
|
Transmitters and receivers for wireless energy transfer | ||
Patent #
US 20110266878A9
Filed 09/16/2008
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Nigel Power LLC
|
Centrally controlled inductive power transmission platform | ||
Patent #
US 8,049,370 B2
Filed 03/25/2010
|
Current Assignee
Powermat Technologies Ltd.
|
Original Assignee
Powermat Ltd.
|
Metered delivery of wireless power | ||
Patent #
US 8,069,100 B2
Filed 01/06/2009
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Wireless energy transfer using planar capacitively loaded conducting loop resonators | ||
Patent #
US 8,035,255 B2
Filed 11/06/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Variable reactive element in a resonant converter circuit | ||
Patent #
US 8,050,068 B2
Filed 05/21/2004
|
Current Assignee
Auckland UniServices Limited
|
Original Assignee
Auckland UniServices Limited
|
Battery charging apparatus with planar inductive charging platform | ||
Patent #
US 8,040,103 B2
Filed 08/18/2006
|
Current Assignee
City University of Hong Kong
|
Original Assignee
City University of Hong Kong
|
INDUCTIVE RECEIVERS FOR ELECTRICAL DEVICES | ||
Patent #
US 20100257382A1
Filed 04/09/2010
|
Current Assignee
Powermat Technologies Ltd.
|
Original Assignee
Powermat Ltd.
|
WIRELESS ENERGY TRANSFER USING VARIABLE SIZE RESONATORS AND SYSTEM MONITORING | ||
Patent #
US 20100164296A1
Filed 12/28/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER FOR REFRIGERATOR APPLICATION | ||
Patent #
US 20100181843A1
Filed 03/11/2010
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS HIGH POWER TRANSFER UNDER REGULATORY CONSTRAINTS | ||
Patent #
US 20100117596A1
Filed 07/06/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Qualcomm Inc.
|
INDUCTIVELY CHARGEABLE AUDIO DEVICES | ||
Patent #
US 20100194336A1
Filed 01/25/2010
|
Current Assignee
Powermat Technologies Ltd.
|
Original Assignee
Powermat Ltd.
|
Dongle | ||
Patent #
US D625,721 S1
Filed 06/12/2009
|
Current Assignee
Powermat USA LLC
|
Original Assignee
Powermat USA LLC
|
Wireless system and method for displaying the path traveled by a marker | ||
Patent #
US 7,804,054 B2
Filed 05/02/2008
|
Current Assignee
Bloomfield Science Museum Jerusalem
|
Original Assignee
Powermat Ltd.
|
APPLICATIONS OF WIRELESS ENERGY TRANSFER USING COUPLED ANTENNAS | ||
Patent #
US 20100117456A1
Filed 01/15/2010
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
EFFICIENT NEAR-FIELD WIRELESS ENERGY TRANSFER USING ADIABATIC SYSTEM VARIATIONS | ||
Patent #
US 20100148589A1
Filed 10/01/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
INCREASING EFFICIENCY OF WIRELESS POWER TRANSFER | ||
Patent #
US 20100201313A1
Filed 10/16/2009
|
Current Assignee
Avago Technologies International Sales Pte Limited
|
Original Assignee
Broadcom Corporation
|
PINLESS POWER COUPLING | ||
Patent #
US 20100181841A1
Filed 01/28/2008
|
Current Assignee
Powermat Technologies Ltd.
|
Original Assignee
Powermat Ltd.
|
WIRELESS ENERGY TRANSFER USING COUPLED RESONATORS | ||
Patent #
US 20100117455A1
Filed 01/15/2010
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
WIRELESS ENERGY TRANSFER SYSTEMS | ||
Patent #
US 20100141042A1
Filed 09/25/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER OVER DISTANCES TO A MOVING DEVICE | ||
Patent #
US 20100187911A1
Filed 12/30/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
SYSTEM AND METHOD FOR CONTROLLING POWER TRANSFER ACROSS AN INDUCTIVE POWER COUPLING | ||
Patent #
US 20100072825A1
Filed 09/21/2009
|
Current Assignee
Powermat Technologies Ltd.
|
Original Assignee
Powermat Ltd.
|
ADAPTIVE MATCHING AND TUNING OF HF WIRELESS POWER TRANSMIT ANTENNA | ||
Patent #
US 20100117454A1
Filed 07/17/2009
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
Parallel-tuned pick-up system with multiple voltage outputs | ||
Patent #
US 7,781,916 B2
Filed 05/26/2004
|
Current Assignee
Auckland UniServices Limited
|
Original Assignee
Auckland UniServices Limited
|
COMMUNICATION ACROSS AN INDUCTIVE LINK WITH A DYNAMIC LOAD | ||
Patent #
US 20100171369A1
Filed 01/05/2010
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
CENTRALLY CONTROLLED INDUCTIVE POWER TRANSMISSION PLATFORM | ||
Patent #
US 20100219698A1
Filed 03/25/2010
|
Current Assignee
Powermat Technologies Ltd.
|
Original Assignee
Powermat Ltd.
|
CHARGEABLE ELECTRIC DEVICE | ||
Patent #
US 20100327804A1
Filed 06/21/2010
|
Current Assignee
Panasonic Corporation
|
Original Assignee
Panasonic Electric Works Company Limited
|
Case for electronic accessories | ||
Patent #
US D624,316 S1
Filed 06/12/2009
|
Current Assignee
Powermat USA LLC
|
Original Assignee
Powermat USA LLC
|
SYSTEM AND METHOD FOR INDUCTIVE POWER PROVISION OVER AN EXTENDED SURFACE | ||
Patent #
US 20100259401A1
Filed 04/09/2010
|
Current Assignee
Powermat Ltd.
|
Original Assignee
Powermat Ltd.
|
Inductively coupled power transfer assembly | ||
Patent #
US 20100207771A1
Filed 02/17/2010
|
Current Assignee
Antonio Trigiani
|
Original Assignee
Diversified Power International LLC
|
INDUCTIVE POWER PROVIDING SYSTEM HAVING MOVING OUTLETS | ||
Patent #
US 20100244584A1
Filed 04/09/2010
|
Current Assignee
Powermat Ltd.
|
Original Assignee
Powermat Ltd.
|
CONCURRENT WIRELESS POWER TRANSMISSION AND NEAR-FIELD COMMUNICATION | ||
Patent #
US 20100190436A1
Filed 08/25/2009
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
WIRELESS ENERGY TRANSFER SYSTEMS | ||
Patent #
US 20100109445A1
Filed 11/06/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Short Range Efficient Wireless Power Transfer | ||
Patent #
US 20100038970A1
Filed 04/21/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Nigel Power LLC
|
Wireless energy transfer | ||
Patent #
US 7,825,543 B2
Filed 03/26/2008
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
WIRELESS POWER FROM RENEWABLE ENERGY | ||
Patent #
US 20100207572A1
Filed 10/02/2009
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
WIRELESS ENERGY TRANSFER WITH FREQUENCY HOPPING | ||
Patent #
US 20100171368A1
Filed 12/31/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
ADJUSTABLE INDUCTIVE POWER TRANSMISSION PLATFORM | ||
Patent #
US 20100219697A1
Filed 03/25/2010
|
Current Assignee
Powermat Technologies Ltd.
|
Original Assignee
Powermat Ltd.
|
WIRELESS ENERGY TRANSFER BETWEEN A SOURCE AND A VEHICLE | ||
Patent #
US 20100277121A1
Filed 04/29/2010
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER WITH HIGH-Q TO MORE THAN ONE DEVICE | ||
Patent #
US 20100127575A1
Filed 12/16/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
CHARGEABLE INDUCTIVE POWER OUTLET | ||
Patent #
US 20100253282A1
Filed 04/09/2010
|
Current Assignee
Powermat Technologies Ltd.
|
Original Assignee
Powermat Ltd.
|
PASSIVE RECEIVERS FOR WIRELESS POWER TRANSMISSION | ||
Patent #
US 20100190435A1
Filed 08/24/2009
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
NON RESONANT INDUCTIVE POWER TRANSMISSION SYSTEM AND METHOD | ||
Patent #
US 20100066176A1
Filed 07/02/2009
|
Current Assignee
Powermat Technologies Ltd.
|
Original Assignee
Powermat Ltd.
|
PARASITIC DEVICES FOR WIRELESS POWER TRANSFER | ||
Patent #
US 20100277120A1
Filed 04/08/2010
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
WIRELESS ENERGY TRANSFER WITH HIGH-Q SUB-WAVELENGTH RESONATORS | ||
Patent #
US 20100123355A1
Filed 12/16/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
WIRELESS ENERGY TRANSFER WITH HIGH-Q AT HIGH EFFICIENCY | ||
Patent #
US 20100127574A1
Filed 12/16/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
WIRELESS POWER TRANSMISSION SCHEDULING | ||
Patent #
US 20100253281A1
Filed 03/02/2010
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
TRANSMITTERS FOR WIRELESS POWER TRANSMISSION | ||
Patent #
US 20100184371A1
Filed 09/16/2009
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
WIRELESS ENERGY TRANSFER WITH HIGH-Q DEVICES AT VARIABLE DISTANCES | ||
Patent #
US 20100123354A1
Filed 12/16/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
Magnetic connector for electronic device | ||
Patent #
US 7,645,143 B2
Filed 03/24/2009
|
Current Assignee
Apple Inc.
|
Original Assignee
Apple Inc.
|
WIRELESS CHARGING SYSTEM | ||
Patent #
US 20100007307A1
Filed 07/09/2009
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Docking station | ||
Patent #
US D607,879 S1
Filed 01/06/2009
|
Current Assignee
HPNA LLC
|
Original Assignee
Powermat USA LLC
|
Mat for charging an electronic device | ||
Patent #
US D611,408 S1
Filed 01/06/2009
|
Current Assignee
HPNA LLC
|
Original Assignee
Powermat USA LLC
|
Mat for charging an electronic device | ||
Patent #
US D611,407 S1
Filed 01/06/2009
|
Current Assignee
Powermat USA LLC
|
Original Assignee
Powermat USA LLC
|
EFFICIENCY MONITOR FOR INDUCTIVE POWER TRANSMISSION | ||
Patent #
US 20100070219A1
Filed 09/21/2009
|
Current Assignee
Powermat Technologies Ltd.
|
Original Assignee
Powermat Ltd.
|
INDUCTIVE POWER OUTLET LOCATOR | ||
Patent #
US 20100073177A1
Filed 09/21/2009
|
Current Assignee
Samsung Electronics Co. Ltd.
|
Original Assignee
Powermat Ltd.
|
ORIENTATION AND PRESENCE DETECTION FOR USE IN CONFIGURING OPERATIONS OF COMPUTING DEVICES IN DOCKED ENVIRONMENTS | ||
Patent #
US 20100081473A1
Filed 09/26/2008
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Palm Inc.
|
WIRELESS NON-RADIATIVE ENERGY TRANSFER | ||
Patent #
US 20100102639A1
Filed 09/03/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
WIRELESS ENERGY TRANSFER ACROSS VARIABLE DISTANCES | ||
Patent #
US 20100102641A1
Filed 12/30/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
WIRELESS ENERGY TRANSFER WITH HIGH-Q SIMILAR RESONANT FREQUENCY RESONATORS | ||
Patent #
US 20100096934A1
Filed 12/23/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
WIRELESS ENERGY TRANSFER TO A MOVING DEVICE BETWEEN HIGH-Q RESONATORS | ||
Patent #
US 20100102640A1
Filed 12/30/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
WIRELESS POWER TRANSMISSION FOR ELECTRONIC DEVICES | ||
Patent #
US 20100109443A1
Filed 07/27/2009
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
WIRELESS ENERGY TRANSFER OVER A DISTANCE AT HIGH EFFICIENCY | ||
Patent #
US 20100127573A1
Filed 12/16/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
WIRELESS POWER TRANSMISSION FOR PORTABLE WIRELESS POWER CHARGING | ||
Patent #
US 20100127660A1
Filed 08/18/2009
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
WIRELESS ENERGY TRANSFER WITH HIGH-Q FROM MORE THAN ONE SOURCE | ||
Patent #
US 20100123353A1
Filed 12/16/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
WIRELESS ENERGY TRANSFER ACROSS VARIABLE DISTANCES WITH HIGH-Q CAPACITIVELY-LOADED CONDUCTING-WIRE LOOPS | ||
Patent #
US 20100133919A1
Filed 12/30/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
Wireless non-radiative energy transfer | ||
Patent #
US 7,741,734 B2
Filed 07/05/2006
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
WIRELESS ENERGY TRANSFER OVER VARIABLE DISTANCES BETWEEN RESONATORS OF SUBSTANTIALLY SIMILAR RESONANT FREQUENCIES | ||
Patent #
US 20100133918A1
Filed 12/30/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
WIRELESS ENERGY TRANSFER ACROSS A DISTANCE TO A MOVING DEVICE | ||
Patent #
US 20100133920A1
Filed 12/30/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
System, apparatus and method for supplying electric power, apparatus and method for receiving electric power, storage medium and program | ||
Patent #
US 7,733,215 B2
Filed 11/06/2006
|
Current Assignee
Sony Corporation
|
Original Assignee
Sony Corporation
|
WIRELESS ENERGY TRANSFER USING MAGNETIC MATERIALS TO SHAPE FIELD AND REDUCE LOSS | ||
Patent #
US 20100164298A1
Filed 12/28/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
TEMPERATURE COMPENSATION IN A WIRELESS TRANSFER SYSTEM | ||
Patent #
US 20100181845A1
Filed 03/30/2010
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER USING CONDUCTING SURFACES TO SHAPE FIELDS AND REDUCE LOSS | ||
Patent #
US 20100164297A1
Filed 12/28/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS POWER CHARGING TIMING AND CHARGING CONTROL | ||
Patent #
US 20100213895A1
Filed 10/30/2009
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
SYSTEM FOR INDUCTIVE POWER PROVISION IN WET ENVIRONMENTS | ||
Patent #
US 20100219693A1
Filed 12/01/2009
|
Current Assignee
Powermat Technologies Ltd.
|
Original Assignee
Powermat Ltd.
|
Method and Apparatus for Automatic Charging of an Electrically Powered Vehicle | ||
Patent #
US 20100235006A1
Filed 04/22/2009
|
Current Assignee
Wendell Brown
|
Original Assignee
Wendell Brown
|
SYSTEM FOR INDUCTIVE POWER PROVISION WITHIN A BOUNDING SURFACE | ||
Patent #
US 20100219183A1
Filed 04/09/2010
|
Current Assignee
Powermat Ltd.
|
Original Assignee
Powermat Ltd.
|
FLOOR COVERING AND INDUCTIVE POWER SYSTEM | ||
Patent #
US 20100314946A1
Filed 10/23/2007
|
Current Assignee
Koninklijke Philips N.V.
|
Original Assignee
Koninklijke Philips N.V.
|
Inductively powered sleeve for mobile electronic device | ||
Patent #
US 7,855,529 B2
Filed 07/16/2008
|
Current Assignee
ConvenientPower HK Limited
|
Original Assignee
ConvenientPower HK Limited
|
Multi-frequency band antenna device for radio communication terminal | ||
Patent #
US 7,477,195 B2
Filed 08/03/2006
|
Current Assignee
Sony Corporation
|
Original Assignee
Sony Ericsson Mobile Communications USA Incorporated
|
Wireless Energy Transfer Using Coupled Antennas | ||
Patent #
US 20090015075A1
Filed 07/09/2007
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Nigel Power LLC
|
Reader/writer and communication method thereof | ||
Patent #
US 7,487,921 B2
Filed 08/28/2006
|
Current Assignee
Sony Corporation
|
Original Assignee
Sony Ericsson Mobile Communications Japan Incorporated
|
SYSTEM AND METHOD FOR MANAGING DOCKING APPLICATIONS FOR A PORTABLE ELECTRONIC DEVICE | ||
Patent #
US 20090049554A1
Filed 08/16/2007
|
Current Assignee
Blackberry Limited
|
Original Assignee
Blackberry Limited
|
Rechargeable battery circuit and structure for compatibility with a planar inductive charging platform | ||
Patent #
US 7,495,414 B2
Filed 09/23/2005
|
Current Assignee
City University of Hong Kong
|
Original Assignee
CONVENIENT POWER LIMITED
|
System and Method for Stepped Loading of Web Page Content | ||
Patent #
US 20090043727A1
Filed 10/13/2008
|
Current Assignee
Liberty Peak Ventures LLC
|
Original Assignee
American Express Travel Related Services Company Inc.
|
Deployable Antennas for Wireless Power | ||
Patent #
US 20090033564A1
Filed 08/02/2007
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Nigel Power LLC
|
Spectrum spreaders including tunable filters and related devices and methods | ||
Patent #
US 7,498,871 B2
Filed 10/06/2006
|
Current Assignee
Sony Corporation
|
Original Assignee
Sony Ericsson Mobile Communications USA Incorporated
|
LONG RANGE LOW FREQUENCY RESONATOR AND MATERIALS | ||
Patent #
US 20090058189A1
Filed 08/11/2008
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Nigel Power LLC
|
Inductive charger battery replacement system, device & method | ||
Patent #
US 20090072784A1
Filed 04/16/2008
|
Current Assignee
TEKNOCREATIONS INC.
|
Original Assignee
TEKNOCREATIONS INC.
|
High Efficiency and Power Transfer in Wireless Power Magnetic Resonators | ||
Patent #
US 20090072629A1
Filed 09/16/2008
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Nigel Power LLC
|
Antennas for Wireless Power applications | ||
Patent #
US 20090072628A1
Filed 09/14/2008
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Nigel Power LLC
|
Maximizing Power Yield from Wireless Power Magnetic Resonators | ||
Patent #
US 20090072627A1
Filed 09/14/2008
|
Current Assignee
Nigel Power LLC
|
Original Assignee
Nigel Power LLC
|
Transmitters and receivers for wireless energy transfer | ||
Patent #
US 20090079268A1
Filed 09/16/2008
|
Current Assignee
Nigel Power LLC
|
Original Assignee
Nigel Power LLC
|
SYSTEM AND METHOD FOR INDUCTIVE CHARGING OF PORTABLE DEVICES | ||
Patent #
US 20090096413A1
Filed 05/07/2008
|
Current Assignee
Mojo Mobility Inc.
|
Original Assignee
Mojo Mobility Inc.
|
Biological Effects of Magnetic Power Transfer | ||
Patent #
US 20090102292A1
Filed 09/18/2008
|
Current Assignee
Witricity Corporation
|
Original Assignee
Nigel Power LLC
|
Contact-less power transfer | ||
Patent #
US 7,525,283 B2
Filed 02/28/2005
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Wireless Power Range Increase Using Parasitic Antennas | ||
Patent #
US 20090134712A1
Filed 11/26/2008
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Nigel Power LLC
|
Wireless Power Bridge | ||
Patent #
US 20090127937A1
Filed 02/29/2008
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Nigel Power LLC
|
Controlling inductive power transfer systems | ||
Patent #
US 7,554,316 B2
Filed 05/11/2005
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Wireless Power Transfer using Magneto Mechanical Systems | ||
Patent #
US 20090167449A1
Filed 10/13/2008
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Nigel Power LLC
|
INDUCTIVE POWER SUPPLY WITH DUTY CYCLE CONTROL | ||
Patent #
US 20090174263A1
Filed 01/07/2009
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Planar inductive battery charging system | ||
Patent #
US 7,576,514 B2
Filed 12/14/2006
|
Current Assignee
City University of Hong Kong
|
Original Assignee
CityU Research Limited
|
WIRELESS NON-RADIATIVE ENERGY TRANSFER | ||
Patent #
US 20090195333A1
Filed 03/31/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
WIRELESS NON-RADIATIVE ENERGY TRANSFER | ||
Patent #
US 20090195332A1
Filed 03/31/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
INDUCTIVELY COUPLED CONSOLES | ||
Patent #
US 20090212639A1
Filed 02/24/2009
|
Current Assignee
LP Property Management Company
|
Original Assignee
LP Property Management Company
|
MAGNETIC POSITIONING FOR INDUCTIVE COUPLING | ||
Patent #
US 20090212637A1
Filed 02/20/2009
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Wireless desktop IT environment | ||
Patent #
US 20090212636A1
Filed 01/11/2009
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Nigel Power LLC
|
Antennas and Their Coupling Characteristics for Wireless Power Transfer via Magnetic Coupling | ||
Patent #
US 20090213028A1
Filed 02/26/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Nigel Power LLC
|
WIRELESS ENERGY TRANSFER | ||
Patent #
US 20090224856A1
Filed 05/08/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
Packaging and Details of a Wireless Power device | ||
Patent #
US 20090224609A1
Filed 03/09/2009
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Nigel Power LLC
|
Ferrite Antennas for Wireless Power Transfer | ||
Patent #
US 20090224608A1
Filed 02/23/2009
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Nigel Power LLC
|
Controlling inductive power transfer systems | ||
Patent #
US 7,605,496 B2
Filed 05/11/2005
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
BRIDGE SYNCHRONOUS RECTIFIER | ||
Patent #
US 20090257259A1
Filed 04/14/2009
|
Current Assignee
Powermat Technologies Ltd.
|
Original Assignee
Powermat Ltd.
|
WIRELESS NON-RADIATIVE ENERGY TRANSFER | ||
Patent #
US 20090267709A1
Filed 03/31/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
WIRELESS NON-RADIATIVE ENERGY TRANSFER | ||
Patent #
US 20090267710A1
Filed 03/31/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
Packaging and Details of a Wireless Power device | ||
Patent #
US 20090243397A1
Filed 03/04/2009
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Nigel Power LLC
|
Case for an electronic device | ||
Patent #
US D603,603 S1
Filed 01/06/2009
|
Current Assignee
HPNA LLC
|
Original Assignee
Powermat USA LLC
|
WIRELESS ENERGY TRANSFER, INCLUDING INTERFERENCE ENHANCEMENT | ||
Patent #
US 20090284083A1
Filed 05/14/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
RECEIVE ANTENNA FOR WIRELESS POWER TRANSFER | ||
Patent #
US 20090284227A1
Filed 10/10/2008
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
Method and apparatus for delivering energy to an electrical or electronic device via a wireless link | ||
Patent #
US 20080014897A1
Filed 01/17/2007
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
Supplemental parasitic antenna apparatus | ||
Patent #
US 7,324,051 B2
Filed 10/12/2004
|
Current Assignee
Sony Ericsson Mobile Communications USA Incorporated
|
Original Assignee
Sony Ericsson Mobile Communications USA Incorporated
|
Wideband loop antenna | ||
Patent #
US 7,342,539 B2
Filed 10/17/2003
|
Current Assignee
Sony Corporation
|
Original Assignee
Sony Ericsson Mobile Communications USA Incorporated
|
Method and apparatus for wireless power transmission | ||
Patent #
US 20080067874A1
Filed 09/14/2007
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
Methods and apparatuses for docking a portable electronic device that has a planar like configuration and that operates in multiple orientations | ||
Patent #
US 7,352,567 B2
Filed 08/09/2005
|
Current Assignee
Apple Inc.
|
Original Assignee
Apple Inc.
|
Food preparation system with inductive power | ||
Patent #
US 7,355,150 B2
Filed 03/23/2006
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Inductive power adapter | ||
Patent #
US 7,378,817 B2
Filed 12/12/2003
|
Current Assignee
Microsoft Technology Licensing LLC
|
Original Assignee
Microsoft Corporation
|
Reduction of near field electro-magnetic scattering using high impedance metallization terminations | ||
Patent #
US 7,376,408 B2
Filed 08/10/2004
|
Current Assignee
Snaptrack Incorporated
|
Original Assignee
Sony Ericsson Mobile Communications USA Incorporated
|
Multi-frequency band antenna device for radio communication terminal having wide high-band bandwidth | ||
Patent #
US 7,388,543 B2
Filed 11/15/2005
|
Current Assignee
Snaptrack Incorporated
|
Original Assignee
Sony Ericsson Mobile Communications USA Incorporated
|
Inductively coupled ballast circuit | ||
Patent #
US 7,385,357 B2
Filed 11/28/2006
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
System and method for powering a load | ||
Patent #
US 7,382,636 B2
Filed 10/14/2005
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Noncontact charging device | ||
Patent #
US 20080164839A1
Filed 01/07/2008
|
Current Assignee
Sony Ericsson Mobile Communications Japan Incorporated, Seiko Epson Corporation
|
Original Assignee
Sony Ericsson Mobile Communications Japan Incorporated, Seiko Epson Corporation
|
Wirefree mobile device power supply method & system with free positioning | ||
Patent #
US 7,399,202 B2
Filed 05/31/2005
|
Current Assignee
Power Science Inc.
|
Original Assignee
Power Science Inc.
|
Multiband radio antenna with a flat parasitic element | ||
Patent #
US 7,415,248 B2
Filed 10/20/2003
|
Current Assignee
Sony Ericsson Mobile Communications USA Incorporated
|
Original Assignee
Sony Ericsson Mobile Communications USA Incorporated
|
Resonant Inverter | ||
Patent #
US 20080247210A1
Filed 08/03/2006
|
Current Assignee
Auckland UniServices Limited
|
Original Assignee
Auckland UniServices Limited
|
CHARGING DISPLAY SYSTEM | ||
Patent #
US 20080258679A1
Filed 04/23/2007
|
Current Assignee
Apple Inc.
|
Original Assignee
Eastman Kodak Company
|
No point of contact charging system | ||
Patent #
US 7,443,135 B2
Filed 04/11/2005
|
Current Assignee
GE Hybrid Technologies LLC
|
Original Assignee
Hanrim Postech Co. Ltd.
|
Nfc Communicators and Nfc Communications Enabled Devices | ||
Patent #
US 20080272889A1
Filed 01/19/2006
|
Current Assignee
NXP Semiconductors GPS USA Inc.
|
Original Assignee
Innovision Research Technology PLC
|
WIRELESS ENERGY TRANSFER | ||
Patent #
US 20080278264A1
Filed 03/26/2008
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
Portable inductive power station | ||
Patent #
US 7,462,951 B1
Filed 08/11/2004
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Inductive battery charger system with primary transformer windings formed in a multi-layer structure | ||
Patent #
US 7,164,255 B2
Filed 12/10/2004
|
Current Assignee
City University of Hong Kong
|
Original Assignee
City University of Hong Kong
|
Tunable parasitic resonators | ||
Patent #
US 7,162,264 B2
Filed 10/14/2003
|
Current Assignee
Sony Ericsson Mobile Communications USA Incorporated
|
Original Assignee
Sony Ericsson Mobile Communications USA Incorporated
|
Brushless motor drive device | ||
Patent #
US 7,164,245 B1
Filed 01/24/2006
|
Current Assignee
Global Mixed-Mode Technology Inc.
|
Original Assignee
Aimtron Technology Corp.
|
Rechargeable battery circuit and structure for compatibility with a planar inductive charging platform | ||
Patent #
US 20070029965A1
Filed 09/23/2005
|
Current Assignee
City University of Hong Kong
|
Original Assignee
City University of Hong Kong
|
Mobile terminal apparatus using a communication protocol capable of flexible communication between non-contact communication means and internal control means | ||
Patent #
US 7,184,706 B2
Filed 09/24/2004
|
Current Assignee
Sony Corporation
|
Original Assignee
Sony Ericsson Mobile Communications Japan Incorporated, Sony Corporation
|
Resonant circuit and a voltage-controlled oscillator | ||
Patent #
US 7,183,870 B2
Filed 07/20/2004
|
Current Assignee
Sony Ericsson Mobile Communications Japan Incorporated
|
Original Assignee
Sony Ericsson Mobile Communications Japan Incorporated
|
CHARGING APPARATUS AND CHARGING SYSTEM | ||
Patent #
US 20070069687A1
Filed 08/09/2006
|
Current Assignee
Sony Corporation
|
Original Assignee
Sony Ericsson Mobile Communications Japan Incorporated
|
Antenna for portable communication device equipped with a hinge | ||
Patent #
US 7,209,084 B2
Filed 11/20/2003
|
Current Assignee
Sony Ericsson Mobile Communications
|
Original Assignee
Sony Ericsson Mobile Communications USA Incorporated
|
Methods and apparatus for control of inductively coupled power transfer systems | ||
Patent #
US 20070109708A1
Filed 05/21/2004
|
Current Assignee
Auckland UniServices Limited
|
Original Assignee
Auckland UniServices Limited
|
Inductive charging system | ||
Patent #
US 7,211,986 B1
Filed 07/01/2004
|
Current Assignee
Plantronics Inc.
|
Original Assignee
Plantronics Inc.
|
Receiver circuit and radio communication terminal apparatus | ||
Patent #
US 7,221,919 B2
Filed 02/12/2004
|
Current Assignee
Snaptrack Incorporated
|
Original Assignee
Sony Ericsson Mobile Communications Japan Incorporated
|
System, apparatus and method for supplying electric power, apparatus and method for receiving electric power, storage medium and program | ||
Patent #
US 20070139000A1
Filed 11/06/2006
|
Current Assignee
Sony Corporation
|
Original Assignee
Sony Corporation
|
Primary units, methods and systems for contact-less power transfer | ||
Patent #
US 7,239,110 B2
Filed 12/01/2004
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Splashpower Limited
|
Portable contact-less power transfer devices and rechargeable batteries | ||
Patent #
US 7,248,017 B2
Filed 11/22/2005
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
SPASHPOWER LIMITED
|
INDUCTIVE POWER SOURCE AND CHARGING SYSTEM | ||
Patent #
US 20070182367A1
Filed 01/30/2007
|
Current Assignee
Mojo Mobility Inc.
|
Original Assignee
Mojo Mobility Inc.
|
Method and system for powering an electronic device via a wireless link | ||
Patent #
US 20070178945A1
Filed 04/21/2006
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
Point-Of-Sale Non-Contact Charging | ||
Patent #
US 20070236174A1
Filed 04/09/2007
|
Current Assignee
Evan John Kaye
|
Original Assignee
Evan John Kaye
|
Split battery supply | ||
Patent #
US 7,305,258 B2
Filed 10/30/2003
|
Current Assignee
Sony Ericsson Mobile Communications
|
Original Assignee
Sony Ericsson Mobile Communications USA Incorporated
|
POWER SOURCE, CHARGING SYSTEM, AND INDUCTIVE RECEIVER FOR MOBILE DEVICES | ||
Patent #
US 20070279002A1
Filed 06/01/2007
|
Current Assignee
Mojo Mobility Inc.
|
Original Assignee
Mojo Mobility Inc.
|
Contactless electrical energy transmission system | ||
Patent #
US 6,301,128 B1
Filed 02/09/2000
|
Current Assignee
Delta Electronics Incorporated
|
Original Assignee
Delta Electronics Incorporated
|
Battery identification apparatus and associated method | ||
Patent #
US 5,656,917 A
Filed 12/14/1995
|
Current Assignee
Amperex Technology Limited
|
Original Assignee
Motorola Inc.
|
Wireless battery charging system having adaptive parameter sensing | ||
Patent #
US 5,963,012 A
Filed 07/13/1998
|
Current Assignee
Google Technology Holdings LLC
|
Original Assignee
Motorola Inc.
|
Telescreen operating method | ||
Patent #
US 20060038794A1
Filed 07/19/2005
|
Current Assignee
Jonathan Shneidman
|
Original Assignee
Jonathan Shneidman
|
Point-of-use water treatment system | ||
Patent #
US 20060021926A1
Filed 08/09/2005
|
Current Assignee
BUSINES GROUP INTERNATIONAL LLC, Amway Corporation, Alticor Incorporated
|
Original Assignee
BUSINES GROUP INTERNATIONAL LLC, Amway Corporation, Alticor Incorporated
|
Charging system for electronic devices | ||
Patent #
US 7,026,789 B2
Filed 12/23/2003
|
Current Assignee
Google Technology Holdings LLC
|
Original Assignee
Motorola Inc.
|
Wireless communication circuit, wireless communication terminal and method, recording medium, and program | ||
Patent #
US 7,031,662 B2
Filed 10/02/2003
|
Current Assignee
Sony Corporation
|
Original Assignee
Sony Ericsson Mobile Communications Japan Incorporated, Sony Corporation
|
Charging apparatus for charging a wireless operating element of a medical device | ||
Patent #
US 20060108977A1
Filed 11/21/2005
|
Current Assignee
Siemens AG
|
Original Assignee
Siemens AG
|
Contact-less power transfer | ||
Patent #
US 7,042,196 B2
Filed 12/01/2004
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Splashpower Limited
|
Method and apparatus for detecting and selectively utilizing peripheral devices | ||
Patent #
US 20060105718A1
Filed 06/13/2005
|
Current Assignee
Interdigital Technology Corporation
|
Original Assignee
Interdigital Technology Corporation
|
Portable Computing Device-Integrated Appliance | ||
Patent #
US 20060106965A1
Filed 12/19/2005
|
Current Assignee
Microsoft Technology Licensing LLC
|
Original Assignee
Microsoft Corporation
|
Heating system and heater | ||
Patent #
US 20060132045A1
Filed 12/17/2004
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Philips IP Ventures B.V.
|
Light emitting device for gloves | ||
Patent #
US 20060146517A1
Filed 09/07/2005
|
Current Assignee
DNPKOREA CO. LTD.
|
Original Assignee
DNPKOREA CO. LTD.
|
Adapting portable electrical devices to receive power wirelessly | ||
Patent #
US 20060205381A1
Filed 12/16/2003
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Inductive powering surface for powering portable devices | ||
Patent #
US 20060202665A1
Filed 05/13/2005
|
Current Assignee
Microsoft Technology Licensing LLC
|
Original Assignee
Microsoft Corporation
|
Inductively powered apparatus | ||
Patent #
US 7,126,450 B2
Filed 02/04/2003
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Inductive coil assembly | ||
Patent #
US 7,116,200 B2
Filed 04/27/2005
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Inductively powered apparatus | ||
Patent #
US 7,118,240 B2
Filed 01/14/2005
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Inductive coil assembly | ||
Patent #
US 20060238930A1
Filed 06/21/2006
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Terry L. Lautzenheiser, David W. Baarman
|
Inductive coil assembly | ||
Patent #
US 7,132,918 B2
Filed 10/20/2003
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Pulse frequency modulation for induction charge device | ||
Patent #
US 7,151,357 B2
Filed 07/30/2004
|
Current Assignee
KYE Systems Corporation
|
Original Assignee
KYE Systems Corporation
|
Wireless battery charging system and method | ||
Patent #
US 20060284593A1
Filed 05/12/2006
|
Current Assignee
Delphi Technologies Inc.
|
Original Assignee
Delphi Technologies Inc.
|
System, method and apparatus for contact-less battery charging with dynamic control | ||
Patent #
US 6,844,702 B2
Filed 05/16/2002
|
Current Assignee
Koninklijke Philips N.V.
|
Original Assignee
Koninklijke Philips N.V.
|
Method and system for providing induction charging having improved efficiency | ||
Patent #
US 20050017677A1
Filed 07/24/2003
|
Current Assignee
Google Technology Holdings LLC
|
Original Assignee
Motorola Inc.
|
Vehicle interface | ||
Patent #
US 20050007067A1
Filed 06/18/2004
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
System and apparatus for charging an electronic device using solar energy | ||
Patent #
US 6,870,089 B1
Filed 11/12/2002
|
Current Assignee
Randolph Dean Gray
|
Original Assignee
Randolph Dean Gray
|
Inductive data and power link suitable for integration | ||
Patent #
US 20050063488A1
Filed 09/22/2003
|
Current Assignee
LunaNeuro LLC
|
Original Assignee
Philip Richard Troyk, Glenn Anthony Demichele
|
Inductively rechargeable external energy source, charger, system and method for a transcutaneous inductive charger for an implantable medical device | ||
Patent #
US 20050075696A1
Filed 04/30/2004
|
Current Assignee
Medtronic Incorporated
|
Original Assignee
Medtronic Incorporated
|
Inductively coupled ballast circuit | ||
Patent #
US 20050093475A1
Filed 10/22/2004
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Planar printed circuit-board transformers with effective electromagnetic interference (EMI) shielding | ||
Patent #
US 6,888,438 B2
Filed 10/28/2002
|
Current Assignee
City University of Hong Kong
|
Original Assignee
City University of Hong Kong
|
Method of manufacturing a lamp assembly | ||
Patent #
US 20050116650A1
Filed 10/29/2004
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Inductive power adapter | ||
Patent #
US 20050127869A1
Filed 12/12/2003
|
Current Assignee
Microsoft Technology Licensing LLC
|
Original Assignee
Microsoft Corporation
|
Contact-less power transfer | ||
Patent #
US 20050140482A1
Filed 12/01/2004
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Lily Ka-Lai Cheng, James Westwood Hay, Pilgrim Giles William Beart
|
Inductively charged battery pack | ||
Patent #
US 20050127867A1
Filed 12/12/2003
|
Current Assignee
Microsoft Technology Licensing LLC
|
Original Assignee
Microsoft Corporation
|
Contact-less power transfer | ||
Patent #
US 20050116683A1
Filed 05/13/2003
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Splashpower Limited
|
Contact-less power transfer | ||
Patent #
US 6,906,495 B2
Filed 12/20/2002
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Splashpower Limited
|
Inductively powered apparatus | ||
Patent #
US 20050127849A1
Filed 01/14/2005
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Christopher Houghton, Stephen J. Mcphilliamy, David W. Baarman
|
Inductively powered apparatus | ||
Patent #
US 20050122059A1
Filed 01/14/2005
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Christopher Houghton, Stephen J. Mcphilliamy, David W. Baarman
|
Inductively powered apparatus | ||
Patent #
US 20050122058A1
Filed 01/14/2005
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Christopher Houghton, Stephen J. Mcphilliamy, David W. Baarman
|
Inductively powered apparatus | ||
Patent #
US 20050127850A1
Filed 01/14/2005
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Christopher Houghton, Stephen J. Mcphilliamy, David W. Baarman
|
Contact-less power transfer | ||
Patent #
US 20050135122A1
Filed 12/01/2004
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Lily Ka-Lai Cheng, James Westwood Hay, Pilgrim Giles William Beart
|
Inductively powered lamp assembly | ||
Patent #
US 6,917,163 B2
Filed 02/18/2004
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Wirefree mobile device power supply method & system with free positioning | ||
Patent #
US 6,913,477 B2
Filed 08/01/2002
|
Current Assignee
Power Science Inc.
|
Original Assignee
MOBILEWISE INC.
|
Method and system for providing induction charging having improved efficiency | ||
Patent #
US 6,917,182 B2
Filed 07/24/2003
|
Current Assignee
Google Technology Holdings LLC
|
Original Assignee
Motorola Inc.
|
Integrated induction battery charge apparatus | ||
Patent #
US 20050162125A1
Filed 01/23/2004
|
Current Assignee
Inventec Corporation
|
Original Assignee
Inventec Corporation
|
Multi-band planar inverted-F antennas including floating parasitic elements and wireless terminals incorporating the same | ||
Patent #
US 6,943,733 B2
Filed 10/31/2003
|
Current Assignee
Sony Ericsson Mobile Communications USA Incorporated
|
Original Assignee
Sony Ericsson Mobile Communications AB
|
Planar inductive battery charger | ||
Patent #
US 20050189910A1
Filed 12/10/2004
|
Current Assignee
City University of Hong Kong
|
Original Assignee
City University of Hong Kong
|
Inductive coil assembly | ||
Patent #
US 6,975,198 B2
Filed 04/27/2005
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Series resonant inductive charging circuit | ||
Patent #
US 6,972,543 B1
Filed 08/21/2003
|
Current Assignee
Stryker Corporation
|
Original Assignee
Stryker Corporation
|
Radio frequency identification system for a fluid treatment system | ||
Patent #
US 6,673,250 B2
Filed 06/18/2002
|
Current Assignee
Access Business Group International LLC
|
Original Assignee
Access Business Group International LLC
|
Contactless power transmitting system and contactless charging system | ||
Patent #
US 6,697,272 B2
Filed 03/06/2002
|
Current Assignee
Sony Corporation
|
Original Assignee
Sony Corporation
|
Power charging system and related apparatus | ||
Patent #
US 6,741,064 B2
Filed 07/07/2002
|
Current Assignee
Transpacific Plasma LLC
|
Original Assignee
Primax Electronics Limited
|
Inductively powered lamp assembly | ||
Patent #
US 6,731,071 B2
Filed 04/26/2002
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
System and method for charging users to recharge power supplies in portable devices | ||
Patent #
US 6,756,765 B2
Filed 10/08/2002
|
Current Assignee
Koninklijke Philips N.V.
|
Original Assignee
Koninklijke Philips N.V.
|
Electrical device, such as a battery charger | ||
Patent #
US 20040113589A1
Filed 08/11/2003
|
Current Assignee
Milwaukee Electric Tool Corporation
|
Original Assignee
Milwaukee Electric Tool Corporation
|
Adaptive inductive power supply with communication | ||
Patent #
US 20040130915A1
Filed 10/20/2003
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Charging device | ||
Patent #
US 20040145343A1
Filed 10/27/2003
|
Current Assignee
Nokia Corporation
|
Original Assignee
Nokia Corporation
|
Adaptive inductive power supply | ||
Patent #
US 20040130916A1
Filed 10/20/2003
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Adaptive charger system and method | ||
Patent #
US 20040145342A1
Filed 01/28/2003
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Hewlett-Packard Development Company L.P.
|
Adapter | ||
Patent #
US 20040150934A1
Filed 10/20/2003
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
System and method for wireless electrical power transmission | ||
Patent #
US 6,798,716 B1
Filed 06/19/2003
|
Current Assignee
BC SYSTEMS INC.
|
Original Assignee
BC SYSTEMS INC.
|
MEMS varactor for measuring RF power | ||
Patent #
US 6,803,774 B2
Filed 09/23/2002
|
Current Assignee
Avago Technologies Wireless IP Singapore Pte Limited
|
Original Assignee
Agilent Technologies Incorporated
|
Starter assembly for a gas discharge lamp | ||
Patent #
US 6,806,649 B2
Filed 02/18/2003
|
Current Assignee
Access Business Group International LLC
|
Original Assignee
Access Business Group International LLC
|
Alignment independent and self aligning inductive power transfer system | ||
Patent #
US 6,803,744 B1
Filed 10/31/2000
|
Current Assignee
Anthony Sabo
|
Original Assignee
Anthony Sabo
|
Inductively powered lamp assembly | ||
Patent #
US 6,812,645 B2
Filed 06/05/2003
|
Current Assignee
Access Business Group International LLC
|
Original Assignee
Access Business Group International LLC
|
Starter assembly for a gas discharge lamp | ||
Patent #
US 20040222751A1
Filed 05/20/2004
|
Current Assignee
Access Business Group International LLC
|
Original Assignee
Scott A. Mollema, Roy W. Kuennen, David W. Baarman
|
Inductive coil assembly | ||
Patent #
US 20040232845A1
Filed 10/20/2003
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Inductively coupled ballast circuit | ||
Patent #
US 6,825,620 B2
Filed 09/18/2002
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Method of manufacturing a lamp assembly | ||
Patent #
US 6,831,417 B2
Filed 06/05/2003
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Modular solar battery charger | ||
Patent #
US 20030094921A1
Filed 11/16/2001
|
Current Assignee
ICP GLOBAL TECHNOLOGIES INC.
|
Original Assignee
ICP GLOBAL TECHNOLOGIES INC.
|
Inductive power source for peripheral devices | ||
Patent #
US 20030103039A1
Filed 12/04/2001
|
Current Assignee
Intel Corporation
|
Original Assignee
Intel Corporation
|
Variable-strength multipole beamline magnet | ||
Patent #
US 6,573,817 B2
Filed 03/30/2001
|
Current Assignee
STI OPTRONICS INC. A WASHINGTON CORPORATION
|
Original Assignee
STI OPTRONICS INC.
|
Parallel battery charging device | ||
Patent #
US 6,586,909 B1
Filed 12/21/2001
|
Current Assignee
Ron Trepka
|
Original Assignee
Ron Trepka
|
Apparatus and method for identifying and charging batteries of different types | ||
Patent #
US 6,625,477 B1
Filed 06/12/1996
|
Current Assignee
Telefonaktiebolaget LM Ericsson
|
Original Assignee
Telefonaktiebolaget LM Ericsson
|
Wireless battery charging system for existing hearing aids using a dynamic battery and a charging processor unit | ||
Patent #
US 6,636,017 B2
Filed 09/27/2002
|
Current Assignee
Sivantos Gmbh
|
Original Assignee
Gary Skuro
|
Apparatus and system for charging a portable electronic device | ||
Patent #
US 6,650,088 B1
Filed 04/23/2002
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Palm Inc.
|
Inductively powered apparatus | ||
Patent #
US 20030214255A1
Filed 02/04/2003
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Contact-less power transfer | ||
Patent #
US 20030210106A1
Filed 12/20/2002
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
SPLASHPOWER LIMITED A COMPANY INCORPORATED IN THE UK
|
Device enclosures and devices with integrated battery | ||
Patent #
US 20020004167A1
Filed 03/23/2001
|
Current Assignee
Cymbet Corporation
|
Original Assignee
INTEGRATED POWER SOLUTIONS INC.
|
Inductance element and preparation method thereof | ||
Patent #
US 20020067238A1
Filed 01/25/2002
|
Current Assignee
Industrial Technology Research Institute
|
Original Assignee
Tsung-Fu Leu
|
Methods and devices for charging batteries | ||
Patent #
US 20020093309A1
Filed 07/16/2001
|
Current Assignee
James Calvin Peele
|
Original Assignee
James Calvin Peele
|
Contactless battery charger | ||
Patent #
US 20020089305A1
Filed 01/04/2002
|
Current Assignee
Samsung Electronics Co. Ltd.
|
Original Assignee
Samsung Electronics Co. Ltd.
|
Water treatment system with an inductively coupled ballast | ||
Patent #
US 6,436,299 B1
Filed 06/12/2000
|
Current Assignee
Access Business Group International LLC
|
Original Assignee
Amway Corporation
|
Non-contact charger | ||
Patent #
US 6,462,509 B1
Filed 12/26/2001
|
Current Assignee
Murata Manufacturing Co Limited
|
Original Assignee
Toko KK
|
Contactless power supply | ||
Patent #
US 6,489,745 B1
Filed 09/13/2001
|
Current Assignee
The Boeing Co.
|
Original Assignee
The Boeing Co.
|
Planar printed-circuit-board transformers with effective electromagnetic interference (EMI) shielding | ||
Patent #
US 6,501,364 B1
Filed 06/15/2001
|
Current Assignee
City University of Hong Kong
|
Original Assignee
City University of Hong Kong
|
Wireless battery charging system for existing hearing aids using a dynamic battery and a charging processor unit | ||
Patent #
US 6,498,455 B2
Filed 02/22/2002
|
Current Assignee
Sivantos Gmbh
|
Original Assignee
Gary Skuro
|
Contactless battery charger with wireless control link | ||
Patent #
US 6,184,651 B1
Filed 03/20/2000
|
Current Assignee
Google Technology Holdings LLC
|
Original Assignee
Motorola Inc.
|
Wearable docking-holster system, with energy management, to support portable electronic devices | ||
Patent #
US 6,184,654 B1
Filed 07/28/1998
|
Current Assignee
DOUBLE-TIME BATTERY CORPORATION
|
Original Assignee
DOUBLE-TIME BATTERY CORPORATION
|
Battery substitute pack | ||
Patent #
US 6,208,115 B1
Filed 12/16/1999
|
Current Assignee
Hanger Solutions LLC
|
Original Assignee
Yehuda Binder
|
Battery charging device | ||
Patent #
US 6,310,465 B2
Filed 11/30/2000
|
Current Assignee
Kabushiki Kaisha Toyoda Jidoshokki Seisakusho
|
Original Assignee
Kabushiki Kaisha Toyoda Jidoshokki Seisakusho
|
Contactless energy transfer apparatus | ||
Patent #
US 6,331,744 B1
Filed 04/11/2000
|
Current Assignee
Light Sciences Oncology Inc.
|
Original Assignee
Light Sciences Corporation
|
Battery pack | ||
Patent #
US 6,016,046 A
Filed 07/17/1998
|
Current Assignee
Sanyo Electric Company Limited
|
Original Assignee
Sanyo Electric Company Limited
|
Rechargeable battery pack and charging stand for charging the rechargeable battery pack by electromagnetic induction | ||
Patent #
US 6,040,680 A
Filed 07/20/1998
|
Current Assignee
Sanyo Electric Company Limited
|
Original Assignee
Sanyo Electric Company Limited
|
Permanent magnet apparatus for magnetizing multipole magnets | ||
Patent #
US 6,094,119 A
Filed 12/15/1998
|
Current Assignee
Eastman Kodak Company
|
Original Assignee
Eastman Kodak Company
|
Power transfer and voltage level conversion for a battery-powered electronic device | ||
Patent #
US 5,889,384 A
Filed 02/20/1997
|
Current Assignee
Telefonaktiebolaget LM Ericsson
|
Original Assignee
Telefonaktiebolaget LM Ericsson
|
Electrolytic exhaust sensor with diffusion layer inhibiting formation of a liquid phase | ||
Patent #
US 5,925,814 A
Filed 02/06/1998
|
Current Assignee
NGK Spark PLUG Company Limited
|
Original Assignee
NGK Spark PLUG Company Limited
|
Universal inductive battery charger system | ||
Patent #
US 5,959,433 A
Filed 08/22/1997
|
Current Assignee
Laird Technologies Incorporated
|
Original Assignee
Centurion Industries Incorporated
|
Induction charging apparatus and an electronic device | ||
Patent #
US 5,952,814 A
Filed 11/14/1997
|
Current Assignee
US Philips Corporation
|
Original Assignee
US Philips Corporation
|
Self-cooling transcutaneous energy transfer system for battery powered implantable device | ||
Patent #
US 5,991,665 A
Filed 09/18/1997
|
Current Assignee
Intermedics Incorporated
|
Original Assignee
Sulzer Intermedics Inc.
|
Equipment and method for transmitting electric power | ||
Patent #
US 5,991,170 A
Filed 10/01/1998
|
Current Assignee
Sony Corporation
|
Original Assignee
Sony Corporation
|
Non-contact battery charging equipment using a soft magnetic plate | ||
Patent #
US 6,008,622 A
Filed 09/28/1998
|
Current Assignee
NEC Energy Devices Ltd.
|
Original Assignee
NEC MOLI ENERGY CORP.
|
Battery pack and charging system for a portable electronic device | ||
Patent #
US 5,734,254 A
Filed 12/06/1996
|
Current Assignee
Hewlett-Packard Development Company L.P.
|
Original Assignee
HP Inc.
|
Vending machine for charging a secondary battery of a mobile phone | ||
Patent #
US 5,744,933 A
Filed 11/13/1996
|
Current Assignee
KN TECHNOS CO. LTD.
|
Original Assignee
KN TECHNOS CO. LTD.
|
Noncontacting charging device | ||
Patent #
US 5,600,225 A
Filed 06/20/1995
|
Current Assignee
NEC Corporation
|
Original Assignee
NEC Corporation
|
Generating highly uniform electromagnetic field characteristics | ||
Patent #
US 5,642,087 A
Filed 10/25/1994
|
Current Assignee
Sandia Corporation
|
Original Assignee
Sandia Corporation
|
Method and apparatus for expanded battery recognition in a battery charging system | ||
Patent #
US 5,696,433 A
Filed 03/07/1997
|
Current Assignee
Motorola Inc.
|
Original Assignee
Motorola Inc.
|
Induction charging apparatus | ||
Patent #
US 5,550,452 A
Filed 07/22/1994
|
Current Assignee
Kyushu Hitachi Maxell Ltd., Nintendo Company Limited
|
Original Assignee
Kyushu Hitachi Maxell Ltd., Nintendo Company Limited
|
Alkaline battery charging method and battery charger | ||
Patent #
US 5,543,702 A
Filed 02/08/1993
|
Current Assignee
JDP Innovations Inc.
|
Original Assignee
JDP Innovations Inc.
|
Fixed core inductive charger | ||
Patent #
US 5,434,493 A
Filed 10/25/1993
|
Current Assignee
GM Global Technology Operations LLC
|
Original Assignee
Hughes Aircraft Company
|
Inductive charging of a moving electric vehicle's battery | ||
Patent #
US 5,311,973 A
Filed 07/31/1992
|
Current Assignee
Ling-Yuan Tseng
|
Original Assignee
Ling-Yuan Tseng
|
System for charging a rechargeable battery of a portable unit in a rack | ||
Patent #
US 5,367,242 A
Filed 09/18/1992
|
Current Assignee
Ascom Tateco AB
|
Original Assignee
Ericsson Messaging Systems Incorporated
|
Method and apparatus for determining battery type and modifying operating characteristics | ||
Patent #
US 5,237,257 A
Filed 03/16/1992
|
Current Assignee
Motorola Inc.
|
Original Assignee
Motorola Inc.
|
Inductive power coupling with constant voltage output | ||
Patent #
US 4,800,328 A
Filed 03/02/1988
|
Current Assignee
INDUCTRAN INC.
|
Original Assignee
INDUCTRAN INC.
|
Charging apparatus for an electronic device | ||
Patent #
US 4,873,677 A
Filed 07/07/1988
|
Current Assignee
Seiko Epson Corporation
|
Original Assignee
Seiko Epson Corporation
|
Antenna coupling circuit for magnetic resonance imaging | ||
Patent #
US 4,731,585 A
Filed 02/24/1987
|
Current Assignee
Kabushiki Kaisha Toshiba 72 Horikawa-Cho Saiwai-Ku Kawasaki-Shi Japan
|
Original Assignee
Toshiba Corporation
|
Forward converter switching at zero current | ||
Patent #
US 4,415,959 A
Filed 03/20/1981
|
Current Assignee
VLT CORPORATION ONE RIVERWALK PLACE 700 NORTH ST. MARYS SAN ANTONIO TEXAS 78205 A TX CORP.
|
Original Assignee
Vicor Corporation
|
Charger using one or more solar batteries | ||
Patent #
US 4,311,953 A
Filed 10/22/1979
|
Current Assignee
Sharp Corporation
|
Original Assignee
Sharp Electronics Corporation
|
Selenium derivatives of thyroxine and tri-iodothyronine | ||
Patent #
US 4,311,853 A
Filed 01/30/1980
|
Current Assignee
Amerlite Diagnostics Limited
|
Original Assignee
THE RADIOCHEMICAL CENTRE LIMITED
|
Induction charging system | ||
Patent #
US 3,938,018 A
Filed 09/16/1974
|
Current Assignee
Ernest A. Dahl
|
Original Assignee
Ernest A. Dahl
|
WIRELESS POWER SUPPLY SYSTEM AND MULTI-LAYER SHIM ASSEMBLY | ||
Patent #
US 20120049991A1
Filed 08/25/2011
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Inductively Powered Mobile Sensor System | ||
Patent #
US 20070296393A1
Filed 09/16/2005
|
Current Assignee
Auckland UniServices Limited
|
Original Assignee
Auckland UniServices Limited
|
METERED DELIVERY OF WIRELESS POWER | ||
Patent #
US 20120041843A1
Filed 10/31/2011
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Magnetic connector for electronic device | ||
Patent #
US 7,311,526 B2
Filed 09/26/2005
|
Current Assignee
Apple Inc.
|
Original Assignee
Apple Inc.
|
System and method for inductive charging of portable devices | ||
Patent #
US 8,169,185 B2
Filed 05/07/2008
|
Current Assignee
Mojo Mobility Inc.
|
Original Assignee
Mojo Mobility Inc.
|
SELECTIVELY CONTROLLABLE ELECTROMAGNETIC SHIELDING | ||
Patent #
US 20120112552A1
Filed 09/23/2011
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
INDUCTIVE POWER SUPPLY WITH DUTY CYCLE CONTROL | ||
Patent #
US 20120119588A1
Filed 01/23/2012
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
POWER SOURCE, CHARGING SYSTEM, AND INDUCTIVE RECEIVER FOR MOBILE DEVICES | ||
Patent #
US 20120126745A1
Filed 05/23/2011
|
Current Assignee
Mojo Mobility Inc.
|
Original Assignee
Mojo Mobility Inc.
|
Metered delivery of wireless power | ||
Patent #
US 8,234,189 B2
Filed 10/31/2011
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
SYSTEM FOR WIRELESS POWER TRANSFER THAT SUPPORTS INTEROPERABILITY, AND MULTI-POLE MAGNETS FOR USE THEREWITH | ||
Patent #
US 20120146576A1
Filed 06/10/2011
|
Current Assignee
Mojo Mobility Inc.
|
Original Assignee
Mojo Mobility Inc.
|
SYSTEMS AND METHODS FOR PROVIDING POSITIONING FREEDOM, AND SUPPORT OF DIFFERENT VOLTAGES, PROTOCOLS, AND POWER LEVELS IN A WIRELESS POWER SYSTEM | ||
Patent #
US 20120235636A1
Filed 01/17/2012
|
Current Assignee
Mojo Mobility Inc.
|
Original Assignee
Mojo Mobility Inc.
|
METERED DELIVERY OF WIRELESS POWER | ||
Patent #
US 20120259735A1
Filed 06/20/2012
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
WIRELESS POWER DELIVERY DURING PAYMENT | ||
Patent #
US 20120150670A1
Filed 10/31/2011
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
POWER SYSTEM | ||
Patent #
US 20140339916A1
Filed 08/01/2014
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
28 Claims
-
1. A mobile device capable of inductive powering or charging by a universal base unit for charging of different mobile devices and/or batteries of different charging characteristics associated therewith, comprising:
-
a battery, wherein one or both of a mobile device and the battery have particular charging characteristics associated therewith; a receiver and receiver coil, for one of inductively powering the device or charging the battery in the mobile device, wherein the receiver is one of attached to or incorporated into the battery or the mobile device, and wherein the receiver coil has a generally planar shape so that a magnetic field received in a direction substantially perpendicular to the plane of the receiver coil is used to inductively generate a current in the receiver coil; an identification component associated with the mobile device or battery, which is configured to provide wireless identification of the receiver to the universal base unit; a means for avoiding overcharging one or both of the mobile device and battery inductively; and a regulator, coupled to the output of the receiver or to the battery, that regulates an output voltage or output current provided by the receiver, to the mobile device or battery, to be within a range of parameters for the mobile device or the battery; wherein different mobile devices and batteries can have different charging characteristics associated therewith; and wherein the receiver communicates with the base unit to detect, identify and authenticate the receiver with the base unit, as provided by the identification component, determine and then activate one or more primary coils of the base unit which are aligned with the receiver coil, verify the continued presence of the receiver near the base unit, and communicate information describing the characteristics of the mobile device or the battery, for use by the base unit to provide power transfer to the receiver and to the mobile device and the battery according to their particular charging characteristics. - View Dependent Claims (2)
-
-
3. A system for use with a mobile device for charging or powering the mobile device inductively by a universal base unit for charging of different mobile devices and/or batteries of different charging characteristics associated therewith, comprising:
-
a universal base unit including one or more primary coils therein, each primary coil having a generally planar shape so that when a current is passed through the primary coil a magnetic field is generated in a direction substantially perpendicular to the plane of the primary coil; wherein the perpendicular magnetic field inductively generates a current in a matching secondary coil or coils within a mobile device placed close to and aligned with the base unit, to charge or power the mobile device; wherein one or both of the mobile device and a battery have a receiver and particular charging characteristics associated therewith, an identification component associated with the mobile device or battery, which is configured to provide wireless identification of the receiver to the base unit, a means for avoiding overcharging one or both of the mobile device and battery inductively, and a regulator, coupled to the output of the receiver or to the battery, that regulates an output voltage or output current provided by the receiver, to the mobile device or battery, to be within a range of parameters for the mobile device or the battery; wherein different mobile devices and batteries can have different charging characteristics associated therewith; and wherein the receiver communicates with the base unit to detect, identify and authenticate the receiver with the base unit, as provided by the identification component, determine and then activate one or more primary coils of the base unit which are aligned with the receiver coil, verify the continued presence of the receiver near the base unit, and communicate information describing the characteristics of the mobile device or the battery, for use by the base unit to provide power transfer to the receiver and to the mobile device and the battery according to their particular charging characteristics. - View Dependent Claims (4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26)
-
-
27. A system capable of inductive powering or charging by a universal base unit for charging of different mobile devices and/or batteries of different charging characteristics associated therewith, comprising:
-
a battery, wherein one or both of a device and the battery have particular charging characteristics associated therewith; a receiver and receiver coil, for one of inductively powering the device or charging the battery in the device, wherein the receiver is one of attached to or incorporated into the battery or the device, and wherein the receiver coil has a generally planar shape so that a magnetic field received in a direction substantially perpendicular to the plane of the receiver coil is used to inductively generate a current in the receiver coil; an identification component associated with the device or battery, which is configured to provide wireless identification of the receiver to the universal base unit; a means for avoiding overcharging one or both of the mobile device and battery inductively; and a regulator, coupled to the output of the receiver or to the battery, that regulates an output voltage or output current provided by the receiver, to the device or battery, to be within a range of parameters for the device or the battery; wherein different devices and batteries can have different charging characteristics associated therewith; and wherein the receiver communicates with the base unit to detect, identify and authenticate the receiver with the base unit, as provided by the identification component, determine and then activate one or more primary coils of the base unit which are aligned with the receiver coil, verify the continued presence of the receiver near the base unit, and communicate information describing the characteristics of the device or the battery, for use by the base unit to provide power transfer to the receiver and to the device and the battery according to their particular charging characteristics. - View Dependent Claims (28)
-
1 Specification
This application is a continuation of U.S. patent application Ser. No. 11/669,113, titled “INDUCTIVE POWER SOURCE AND CHARGING SYSTEM”, filed Jan. 30, 2007, which claims the benefit of priority to U.S. Provisional Patent Application titled “PORTABLE INDUCTIVE POWER SOURCE”, Application No. 60/763,816, filed Jan. 31, 2006; U.S. Provisional Patent Application titled “MOBILE DEVICE, CHARGER, AND POWER SUPPLY”, application No. 60/810,262, filed Jun. 1, 2006; U.S. Provisional Patent Application titled “MOBILE DEVICE, BATTERY, CHARGING SYSTEM, AND POWER SUPPLY SYSTEM”, application No. 60/810,298, filed Jun. 1, 2006; and U.S. Provisional Patent Application titled “SYSTEM AND METHOD FOR PROVIDING AND USING A PORTABLE INDUCTIVE POWER SOURCE”, application No. 60/868,674, filed Dec. 5, 2006; each of which applications are hereby incorporated by reference herein.
A portion of the disclosure of this patent document contains material which is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the Patent and Trademark Office patent file or records, but otherwise reserves all copyright rights whatsoever.
The invention is related generally to power supplies and other power sources, and particularly to a portable inductive power source.
There is currently a need for powering portable or mobile devices for use in commercial, business, personal, consumer, and other applications. Examples of such devices include cellular telephones, personal digital assistants (PDAs), notebook computers, mobile email devices, Blackberry devices, Bluetooth headsets, music players (for example, MP3 players), radios, compact disk players, video game consoles, digital cameras, electric shavers, and electric toothbrushes. Most of these devices include a rechargeable internal battery that must be first charged by an external power supply or charger, before the device itself can be used. The power supply typically provides direct current (DC) voltage through a special connector to the device. The power supply can then be disconnected, and the device will continue to run for a short period of time until the battery is depleted. The voltage and power requirements of the different devices vary, and to date there is currently no standardized connector for the devices. As a result of this, each mobile device is invariably sold or distributed bundled with its own charger. The costs associated with these multiple different types and numbers of charger are paid by the consumer indirectly by being incorporated into the prices being charged for the mobile device.
The rapid increase in the total number and variety of mobile products has meant that most people have several of the above-mentioned devices. In a typical day, that user would have to separately connect their multiple devices to each of their appropriate chargers for charging of each device. In addition, many people find it necessary to charge their devices in different locations such as their offices and cars. Thus, many users have purchased additional chargers for their offices and cars, for use in charging their mobile phones, notebook computers, and music players in those locations.
It will be evident that the above situation has caused typical users to have a multitude of incompatible devices (i.e. power supplies and chargers) that essentially provide the same function of charging a mobile device, but because of the number and variety that must be kept by the user are inconvenient to use. In many situations, users simply forget to charge their devices, or else find they need to recharge their device in situations where no appropriate charger is available. This leads to loss of ability to use the device when desired or needed.
In addition, when traveling away from home, mobile users have a particular problem in that they need to pack and carry the multiple chargers for their devices. In many situations, these chargers are bulkier and heavier than the devices themselves, and use of these devices in foreign countries requires clumsy adaptors, and sometimes voltage converters. This leads to a high degree of inconvenience for the ever-more-mobile consumer.
In addition, the power connector for the mobile devices is often cheaply manufactured, and a source of mechanical and electrical failure. In many applications, such as toothbrushes or applications where the device is exposed to water and needs to be hermetically sealed, such a physical connection can not be used. Thus an alternative means of powering those types of devices must be used.
Several products have tried to address this situation. Some companies propose the use of a universal charger that consists of a power supply base unit, and interchangeable tips that both fit into the base unit and in turn fit different devices. The tip includes a customized regulator that sets the voltage required by the particular device. However, a user must carry the multiple tips he or she needs for each of the various devices they have, and then charge each device serially by connecting the device to the power supply. While this product reduces the overall weight of the charging tools the user must carry, the user still needs to carry and exchange the tips to connect to different devices. In addition, the charging of multiple devices simultaneously is often not possible.
Realizing that a power supply typically contains a transformer for voltage conversion, another approach is to split the transformer into two parts: a first part can contain the first winding and the electronics to drive this winding at the appropriate operating frequency, while the second part consists of a winding where power is received and then rectified to obtain DC voltage. If the two parts are brought into physical proximity to each other, power is transformed from the first part to the second inductively, i.e. by induction, without any physical electrical connection. This is the approach that is used in many electrical toothbrushes, shavers, and other products that are expected to be used in wet environments. However, a common problem with such inductive units is that the windings are bulky, which restricts their use in lightweight portable devices. Furthermore, to achieve adequate power transfer, the parts must be designed to fit together suitably so that their windings are closely aligned. This is typically done by molding the device casing (for example, an electric toothbrush) and its charger/holder so that they fit together in only one suitable way. However, the molded base and shape of the portable device means they cannot be used in a universal fashion to power other devices.
Some companies have proposed pad-like charging devices based on inductive concepts, but that also ostensibly allow for different types of devices to be charged. These pads typically includes grids of wires in an x and y direction, that carry an electrical current, and that generate a uniform magnetic field parallel to the surface of the pad. A secondary coil wound around a magnetic core lies on the surface of the pad and picks up the magnetic field parallel to the surface, and in this manner energy can be transferred. However, each of these methods suffer from poor power transfer, in that most of the power in the primary is not picked up in the secondary, and thus the overall power efficiency of the charger is very low. In addition, the magnetic cores used for the primary and secondary are often bulky and add to the total cost and size of the system, and limit incorporation into many devices.
Another point to note is that, while all of the above devices allow a user to charge a device, they also require the charging device or base unit to be electrically connected to a power source, such as a power outlet or a DC source. In many cases, the user may not have access to such a power source such as when traveling, camping, or working in an area without access to power. However, to date, no device has been provided that is portable, and that allows for inductive charging of multiple devices with differing power requirements, and which itself can be intermittently or occasionally charged either by an external power source, or by other means, or that is self-powered or includes its own power source.
A portable inductive power source, power device, or unit, for use in powering or charging electrical, electronic, battery-operated, mobile, and other devices is disclosed herein. In accordance with an embodiment the system comprises 2 parts: The first part is a pad or similar base unit that contains a primary, which creates an alternating magnetic field by means of applying an alternating current to a winding, coil, or any type of current carrying wire. The second part of the system is a receiver that comprises a means for receiving the energy from the alternating magnetic field from the pad and transferring it to a mobile or other device. The receiver may comprise coils, windings, or any wire that can sense a changing magnetic field, and rectify it to produce a direct current (DC) voltage, which is then used to charge or power the device.
In some embodiments the receiver can also comprise electronic components or logic to set the voltage and current to the appropriate levels required by the mobile device, or to communicate information to the pad. In additional embodiments, the system can provide for additional functionality such as communication of data stored in the electronic device or to be transferred to the device. Some embodiments may also incorporate efficiency measures that improve the efficiency of power transfer between the charger and receiver, and ultimately to the mobile device. In accordance with an embodiment the device includes an internal battery for self-powered operation. In accordance with other embodiments the device can include a solar cell power source, hand crank, or other means of power supply for occasional self powered operation. Other embodiments can be incorporated into charging kiosks, automobiles, and other applications.
A portable inductive power source, power device, or unit, for use in powering or charging electrical, electronic, battery-operated, mobile, and other devices is disclosed herein. In accordance with an embodiment the system comprises 2 parts: The first part is a pad or similar base unit that contains a primary, which creates an alternating magnetic field by means of applying an alternating current to a winding, coil, or any type of current carrying wire. In some embodiments the pad can also contain various signaling, and switching or communication circuitry, or means of identifying the presence of devices to be charged. In some embodiments the pad can also contain multiple coils or sections to charge various devices or to allow charging of devices placed anywhere on the pad. The second part of the system is a receiver that comprises a means for receiving the energy from the alternating magnetic field from the pad and transferring it to a mobile or other device. The receiver can comprise coils, windings, or any wire that can sense a changing magnetic field, and rectify it to produce a direct current (DC) voltage, which is then used to charge or power the device.
In some embodiments the receiver can also comprise electronic components or logic to set the voltage and current to the appropriate levels required by the mobile device. In some embodiments, the receiver can also contain circuitry to sense and determine the status of the electronic device to be charged, the battery inside, or a variety of other parameters and to communicate this information to the pad. In additional embodiments, the system can provide for additional functionality such as communication of data stored in the electronic device (for example, digital images stored in cameras, telephone numbers in cell phones, songs in MP3 players) or data into the device.
Embodiments can also incorporate efficiency measures that improve the efficiency of power transfer between the charger and receiver, and ultimately to the mobile device. In accordance with an embodiment, the charger or power supply comprises a switch, (for example, a MOSFET device or another switching mechanism), that is switched at an appropriate frequency to generate an alternative current (AC) voltage across a primary coil, and generates an AC magnetic field. This field in turn generates a voltage in the coil in the receiver that is rectified and then smoothed by a capacitor to provide power to a load, with the result being greater efficiency.
In accordance with other embodiments the coils are mounted such that they can move laterally within the pad and within an area of their segments, while continuing to be connected to their driver electronics placed on the edges of the area. The floating coils and the drive circuit are sandwiched in between thin upper and lower cover layers that act to allow the coils lateral movement while limiting vertical movement. When a secondary is placed on the pad, the pad senses the position of the secondary coil and moves the coils to the right position to optimize power transfer. Magnets can be used to better orient the coils and improve greater power transfer efficiency.
Additional embodiments are also described herein. For example, in accordance with an embodiment the device includes an internal battery for self-powered operation. In accordance with other embodiments the device can include a solar cell power source, hand crank, or other means of power supply for occasional self powered operation. Other embodiments can be incorporated into charging kiosks, automobiles, computer cases, and other electronic devices and applications.
Inductive Charging System
While the above mentioned technologies describe various aspects of inductive charging, they do not address the basic requirements that a consumer and manufacturer desire in such a product. These include the following desired features:
- The pad should be able to charge a number of devices with various power requirements efficiently. A typical number would be 1-6 devices, and probably up to 4 low power (up to 5 W) devices simultaneously. When multiple devices are being charged, a method for energizing only those coils near a device is preferable.
- The same pad should be able to power low-power devices (mobile phones, PDAs, cameras, game consoles, etc.) with power requirements of 5 W or less, and higher-power devices such as notebook computers (which often have a power requirement of 60 W or higher).
- The power transfer efficiency between the primary coil and the secondary should be maximized. Lack of efficiency in the power transfer would necessitate larger and heavier AC to DC power supplies. This would add cost and decrease product attractiveness to customers. Thus methods where the entire pad is energized are not as attractive.
- A simple method for verification of the manufacturer of the secondary, and possibly information for power requirements, should be supported as necessary to ensure product compatibility and to provide means of product registration and licensing.
- The EMI radiation from the system should be minimized, and ideally, the system should radiate little or no EMI with no device present. A charger should preferably not emit any power until an appropriate device is brought close to the charger itself. In this way, electric power is not wasted, and electromagnetic power is not emitted needlessly. In addition, accidental effects on magnetically sensitive devices such as credit cards, disk drives and such are minimized.
- The pad and the receiver should be reasonably simple to construct, and cost effective. Since both parts can be integrated into mobile devices, the overall size, weight, and form factor should be minimized.
As used herein, the term “charger” can refer to a device for supplying power to a mobile or stationary device for the purpose of either charging its battery, operating the device at that moment in time, or both. For example, as is common in portable computers, the power supply can operate the portable computer, or charge its battery, or accomplish both tasks simultaneously. In accordance with an embodiment, the mobile device charger can have any suitable configuration, such as the configuration of a flat pad. The power received by the mobile device from the mobile device charger (such as the primary in the mobile device charger) can be rectified in the receiver and smoothed by a capacitor before being connected to the rechargeable battery which is represented by the load in the picture above. To ensure proper charging of the battery, a regulator can be placed between the output of the receiver and the battery. This regulator can sense the appropriate parameters of the battery (voltage, current, capacity), and regulate the current drawn from the receiver appropriately. The battery can contain a chip with information regarding its characteristics that can be read out by the regulator. Alternatively, such information can be stored in the regulator for the mobile device to be charged, and an appropriate charging profile can also be programmed into the regulator.
A mobile device can include a receiver that includes one or more coils or wires to receive the power from the mobile device charger. As described in further detail below, the receiver can be made part of the battery in the mobile device or of the shell of the mobile device. When it is part of the mobile device shell, the receiver can be part of the inside surface of the mobile device shell or of the outside surface of the mobile device shell. The receiver can be connected to the power input jack of the mobile device or can bypass the input jack and be directly connected to the battery. In any of these configurations, the receiver includes one or more appropriate coil or wire geometries that can receive power from the mobile device charger when it is placed adjacent to the mobile device charger. In accordance with an embodiment, the coils in the mobile device charger and/or the coils in the mobile devices can be printed circuit board (PCB) coils, and the PCB coils can be placed in one or more layers of PCB.
In some embodiments, the charger can also itself be built into a mobile device. For example, a laptop computer or other portable or mobile device can incorporate a charger section so that other mobile devices can be charged as described above. Alternatively, using the same set of coils or wires, or a separate set of coils or wires, any mobile device can itself be used as a charger to power or charge other mobile devices.
In accordance with an embodiment, the mobile device charger or pad, and the various mobile devices, can communicate with each other to transfer data. In one embodiment, the coils in the mobile device charger that are used for powering the mobile device, or another set of coils in the same PCB layer or in a separate layer, can be used for data transfer between the mobile device charger and the mobile device to be charged or the battery directly. Techniques employed in radio and network communication, such as radio frequency identification (RFID) can be used. In one embodiment a chip connected to an antenna (for example, the secondary coil or separate data antenna) or another means of transfer of information can be used to provide information about, for example, the presence of the mobile device, its authenticity (for example its manufacturer code) and the device'"'"'s charging requirements (such as its required voltage, battery capacity, and charge algorithm profile).
In accordance with an embodiment, a typical sequence for charger operation can be as follows: The mobile device charger can be in a low power status normally, thus minimizing power usage. However, periodically, each of the coils (or a separate data coil in another PCB layer) is powered up in rotation with a short signal such as a short radiofrequency (RF) signal that can activate a signal receiver in the secondary such as an RF ID tag. The mobile device charger then tries to identify a return signal from any mobile device (or any secondary) that may be nearby. Once a mobile device (or a secondary) is detected, the mobile device charger and the mobile device proceed to exchange information. This information can include a unique ID code that can verify the authenticity and manufacturer of the charger and mobile device, the voltage requirements of the battery or the mobile device, and the capacity of the battery. For security purposes or to avoid counterfeit device or pad manufacture, such information could be encrypted, as is common in some RFID tags.
In accordance with various embodiment, other protocols such as Near Field Communications (NFC) or Felica can be used, wherein the circuitry containing the ID and the necessary information is powered either by the mobile device or remotely by the mobile device charger. Depending on the particular implementation needs, Bluetooth, WiFi, and other information transfer processes can be used. Additional information regarding the charging profile for the battery can also be exchanged and can include parameters that would be used in a pre-programmed charge profile stored in the mobile device charger. However, the information exchanged could be as simple as an acknowledge signal that shows the mobile device charger that a mobile device is present. The charger can also contain means for detection and comparison of the strength of the signal over different locations on the charger. In this way, it could determine the location of the mobile device on the charger, and then proceed to activate the appropriate region for charging.
In some embodiments that require greater simplicity, no communication need take place between the mobile device charger and the mobile device. In some embodiments the mobile device charger can sense the mobile device by detecting a change in the conditions of a resonant circuit in the mobile device charger when the mobile device is brought nearby. In other embodiments the mobile device can be sensed by means of a number of proximity sensors such as capacitance, weight, magnetic, optical, or other sensors that determine the presence of a mobile device near a coil in the mobile device charger. Once a mobile device is sensed near a primary coil or section of the mobile device charger, the mobile device charger can then activate that primary coil or section to provide power to the secondary coil in the mobile device'"'"'s battery, shell, receiver module, or the device itself.
Inductive Charging Circuit
Each mobile device and its battery has particular characteristics (voltage, capacity, etc.). In order to facilitate these different devices with a single universal mobile device charger, several circuit architectures are possible, some of which are described in further detail below.
The mobile device or its battery typically can include additional rectifier(s) and capacitor(s) to change the AC induced voltage to a DC voltage. This is then fed to a regulator chip which includes the appropriate information for the battery and/or the mobile device. The mobile device charger provides power and the regulation is provided by the mobile device. The mobile device charger, after exchanging information with the mobile device, determines the appropriate charging/powering conditions to the mobile device. It then proceeds to power the mobile device with the appropriate parameters required. For example, to set the mobile device voltage to the right value required, the value of the voltage to the mobile device charger can be set. Alternatively, the duty cycle of the charger switching circuit or its frequency can be changed to modify the voltage in the mobile device. Alternatively, a combination of the above two approaches can be followed, wherein regulation is partially provided by the charger, and partially by the circuitry in the secondary.
Inductive Charger
To allow the operation of the mobile device charger regardless of position of the mobile device, the total area of the mobile device charger can be covered by coils or by another wire geometry that creates magnetic field.
It can be seen from the above example that by providing more layers of the PCB with coils, or by providing coils of different geometry or size, one can obtain as much resolution or coverage as desired.
In accordance with an embodiment, to power mobile devices with power requirements that exceed maximum powers attainable by typical coils in a surface, the mobile device, during its hand shake and verification process can indicate its power/voltage requirements to the mobile device charger. Several geometries for achieving power/voltage levels otherwise not attainable from a single primary coil of the mobile device charger are possible.
In one geometry, the power receiving unit of the mobile device has several coils or receiving units that are connected such that the power from several primary coils or sets of wires of the mobile device charger can add to produce a higher total power. For example, if each primary coil is capable of outputting a maximum of 10 Watts, by using 6 primary coils and 6 secondary coils, a total output power of 60 Watts can be achieved. The number of primary and secondary coils need not be the same, and a large secondary coil (receiving unit) that would be able to capture the majority of magnetic flux produced by 6 or other number of primary coils or a large primary coil powering 6 or some other number of secondary coils can achieve the same effect. The size and shape of the multiple primary coils and secondary coils also do not need to be the same. Furthermore, neither set of primary and secondary coils need to be in the same plane or PCB layer. For example, the primary coils in the examples shown above could be dispersed such that some lay on one PCB plane and the others in another plane.
In another geometry, the PCB of the mobile device charger has multiple layers, wherein coils or wire patterns of certain size and power range can be printed on one or more layers and other layers can contain coils or wire patterns of larger or smaller size and power capability. In this way, for example, for low power devices, a primary from one of the layers will provide power to the mobile device. If a device with higher power requirements is placed on the mobile device charger, the mobile device charger can detect its power requirements and activate a larger coil or wire pattern with higher power capabilities or a coil or wire pattern that is connected to higher power circuitry.
One may also achieve similar results by using a combination of the different processes and geometries described above.
Inductive Charging Receiver
As described above, the inductive charging pad is used to power a receiver, which in turn is used to power or to charge a portable or mobile device. In accordance with one embodiment of the receiver, the power from the mobile device charger is emitted at a magnitude that would be sufficient to power any foreseeable mobile device (such as 5 or 10 W for small mobile devices). The receiver that is appropriate for each mobile device has a power receiving part that when matched to the mobile device charger is able to receive sufficient power for the mobile device. For example a receiver for a mobile phone requiring 2.5 Watts can be a coil with certain diameter, number of turns, wire width, etc. to allow receipt of the appropriate power. The power is rectified, filtered, and then fed into the battery or power jack of the device. As discussed above, a regulator can be used before the power is provided to the battery or the mobile device.
To save energy, the power emitted by the mobile device charger can be regulated. It is desirable to regulate the power emitted by the charger because if the charger is emitting 10 W of power and the receiver is designed to receive 5 W, the rest of the emitted power is wasted. In one embodiment, the receiver or the mobile device can, through an electrical (such as RF), mechanical, or optical method, inform the charger about the voltage/current characteristics of the device. The primary of the charger in the circuit diagrams shown above then can be driven to create the appropriate voltage/current in the receiver. For example, the duty cycle of the switch in that circuit can be programmed with a microprocessor to be changed to provide the appropriate levels in the receiver.
In accordance with an embodiment, this can be done by a look up table in a memory location connected to a microprocessor or by using an algorithm pre-programmed into the microprocessor. Alternatively, the frequency of the switch can be changed to move the circuit into, and out of, resonance to create the appropriate voltage in the receiver. In an alternate geometry, the voltage into the circuitry in the primary can be changed to vary the voltage output from the receiver. Furthermore, the induced voltage/current in the mobile device can be sensed and communicated to the charger to form a closed-loop, and the duty cycle, frequency, and/or voltage of the switch can be adjusted to achieve the desired voltage/current in the mobile device.
In accordance with an embodiment, the receiver is built onto or into the battery for the mobile device. The receiver can include one or more coils or wires shaped to receive power from the charger. The one or more coils or wires can be either printed on one or more PCBs, or formed from regular wires. As described above, the receiver can also contain rectifier(s) and capacitor(s) to produce a cleaner DC voltage. This output can be directly, or through a current limiting resistor, connected to one of the contacts on the battery. To avoid overcharging the battery, a battery regulator chip can also be used. This circuit then measures the various parameters of the battery (voltage, degree of charging, temperature, etc.) and uses an internal program to regulate the power drawn from the circuit to ensure over-charging does not occur. The circuit could also include LEDs to show the receiver being in the presence of a magnetic field from the charger, complete charge LEDs and/or audible signals.
In typical commercial and end-user applications such as cell phones, PDAs, and MP3 players, the battery could be incorporated into the battery pack or device by the original equipment manufacturer (OEM), or as an after market size and shape compatible battery pack that can replace the original battery pack. The battery compartment in these applications is typically at the bottom of the device. The user can open the battery compartment, take out the conventional battery, replace it with a modified battery in accordance with an embodiment of the invention, and then replace the battery lid. The battery could then be charged inductively when the mobile device is placed adjacent a mobile device charger.
To enhance the ability of the receiver to receive power, it may be desirable to minimize the distance between the charger'"'"'s primary coil and the receiver'"'"'s coil or wire. In order to achieve this, in accordance with an embodiment the receiver'"'"'s coil or wire can be put on the outside of the battery pack.
In an alternative embodiment, the receiver battery can include a mechanical, magnetic, or optical method of alignment of the coils or wires of the charger and mobile device for optimum power transfer. In accordance with an embodiment, the center of the primary in the charger contains a magnet such as a cylinder or disk with the poles parallel to the charger surface and the magnetic field perpendicular to the charger surface. The receiver also contains a magnet or magnetic metal part of a similar shape behind or in front of the center of the coil or wire receivers. When the mobile device is placed on or adjacent to the charger, the magnets attract and pull the two parts into alignment with the centers of the two coils or wires aligned. The magnets do not need to be especially strong to actively do this. Weaker magnets can provide guidance to the user'"'"'s hand and largely achieve the intended results. Alternatively, audible, or visual signs (LEDs that get brighter with the parts aligned), or mechanical means (dimples, protrusions, etc.) can be used for alignment.
In another embodiment, the coil or wires and the magnet in the charger are mechanically attached to the body of the charger such that the coil can move to align itself appropriately with the mobile device when it is brought into close proximity to the charger. In this way, an automatic alignment of coils or wire patterns can be achieved.
In another embodiment, the receiver electronics described above are preferably made from flexible PCB which can be formed into a curved shape. Such a PCB can be placed on the surface of a battery pack that is not flat or that has a curved shape. The curve on the battery or back of a mobile device battery lid can be matched to a curved primary in the mobile device charger and be used for alignment. One example of usage of this embodiment can be for example flashlights that have circular handles: the batteries can be charged with coils on the side of circular batteries, or circling the cylindrical battery. Similarly, the mobile device charger can have a curved shape. For example, the charger surface can be in the shape of a bowl or some similar object. A mobile device that may have a flat or curved back can be placed into the bowl. The shape of the bowl can be made to ensure that the coil of the mobile device is aligned with a primary coil to receive power.
In another embodiment, the primary can be incorporated into a shape such as a cup. A mobile device can be placed into the cup standing on end and the receiver could be built-in to the end of the mobile device (such as a mobile phone) or on the back or circumference of the device. The receiver can receive power from the bottom or wall of the cup.
In another embodiment, the primary of the charger can have a flat shape and the mobile devices can be stood up to receive power. The receiver is built into the end of the device in this case and a stand or some mechanical means can be incorporated to hold the device while being charged.
In another embodiment, the charger can be made to be mounted on a wall or a similar surface, vertically or at an angle (such as on a surface in a car), so as to save space. The charger could incorporate physical features, magnets, fasteners or the like to enable attachment or holding of mobile devices to be charged. The devices to be charged can also incorporate a retainer, magnet, or physical shape to enable them to stay on the charger in a vertical, slanted, or some other position. In this way, the device could be charged by the primary while it is near or on it.
For those applications where the lid of the battery compartment or the bottom part of the mobile device is made from a metal, a replacement non-metallic lid or backing can be used. Alternatively, the coil can be attached to the outside of the metal surface. This allows electromagnetic (EM) fields to arrive at the power receiver coil or wires. The rest of the receiver (i.e. circuitry) can be placed behind a metal for the receiver to work. In some other applications where the battery has metal parts, these parts may interfere with the EM field and the operation of the coil in the receiver. In these cases, it may be desirable to provide a distance between the metal in the battery and the coils. This could be done with a thicker PCB or battery top surface. Alternatively, to provide additional immunity, ferrite material (such as those provided by Ferrishield Inc.) can be used between the receiver and the battery to shield the battery from the EM fields. These materials can be made so as to be thin, and then used during the construction of the integrated battery/receiver.
In another embodiment, the receiver in the battery also includes a means for providing information regarding battery manufacturer, required voltage, capacity; current, charge status, serial number, temperature, etc. to the charger. In a simplified embodiment, only the manufacturer, required voltage, and/or serial number is transmitted. This information is used by the charger to adjust the primary to provide the correct charge conditions. The regulator in the receiver can then regulate the current and the load to charge the battery correctly and can end charge at the end. In another embodiment, the receiver can control the charging process fully depending on the time dependent information on battery status provided to it. Alternatively, the charging process can be controlled by the charger in a similar manner. As described above, the information exchange between the charger and the receiver can be through an RF link or an optical transmitter/detector, RFID techniques, Near-Field Communication (NFC), Felica, Bluetooth, WiFi, or some other method of information transfer. Similarly, the receiver could send signals that can be used by the charger to determine the location of the receiver to determine which coil or section of the charger to activate. The communication link can also use the same coil or wires as antenna for data transfer or use a separate antenna. In some embodiments the received can use the actual capabilities of the mobile device (for example, the built-in Bluetooth or NFC capabilities of mobile phones) to communicated with the charging pad.
As described above, in accordance with some embodiments the receiver can be integrated into the body of the device itself at a location that may be appropriate and can be exposed to EM radiation from outside. The output of the receiver can be routed to the electrodes of the battery internally inside the device and appropriate circuitry inside the device can sense and regulate the power. The device can include LEDs, messages, etc. or audible signs that indicate to the user that charging is occurring or complete or indicate the strength of the received power (i.e. alignment with a primary in the charger) or the degree of battery charge. In other embodiments, the receiver is built into an inner or outer surface of a component that is a part of the mobile device'"'"'s outer surface where it would be closest to the charger. This can be done as original equipment or as an after-market item. The component can be the lid of the battery pack or the bottom cover of the mobile device. In yet other embodiments, the receiver can be integrated into the back or front of the battery compartment or an interchangeable shell for the mobile device for use in after-market applications. For example, in a mobile phone application, the back battery cover or shell can be removed and replaced with the new shell or battery cover with the receiver built in.
In accordance with another embodiment, the replacement receiver (i.e. the replacement shell) or the plug in unit, in addition to the power receiver components and circuitry, can include additional circuitry that can provide further functionalities to the mobile device. These could include, for example, the ability to exchange data through Bluetooth, WiFi, NFC, Felica, WiMax, RFID, or another wireless or optical mechanism. It could also provide extended functionalities such as Global Positioning System (GPS) location information, flashing lights, flashlight, or other decorative or electronic functions. As described above, various methods for improving coil alignment, or location, battery manufacturer, or battery condition information transfer can also be integrated into the receiver or replacement shell.
In another embodiment, the receiver is supplied in the form of a separate unit that is attached to the input jack of the mobile device or integrated into a secondary protective skin for the mobile device. Many leather or plastic covers for mobile phones, cameras, and MP3 players already exist. The primary purpose of these covers is to protect the device from mechanical scratches, shocks, and impact during daily use. However, they often have decorative or advertising applications. In accordance with one embodiment, the receiver is formed of a thin PCB with the electronics formed thereon, and the receiver coil or wire that is attached to the back of the device and plugs into the input jack similar to the shell described above. Alternatively, it can be connected through a flexible wire or flexible circuit board that is routed to a plug for the input power jack.
In another embodiment, the receiver can be a separate part that gets plugged into the input jack during charging and is placed on the charger and can then be unplugged after charging is finished.
In yet another embodiment, the receiver is built in the inside or outside surface or in between two layers of a plastic, leather, silicone, or cloth cover for the mobile device and plugs in or makes contact to the contact points on the device.
It will be noted that certain devices such as notebooks and some music players have metal bottom surfaces. The methods described above for changing the back surface or use of a plug in the mobile device or a secondary skin with an integrated receiver is particularly useful for these applications. As described previously, the effect of the metal surface can also be minimized, if necessary, by increasing the distance between the wires of the receiver and the metal surface or by placing a Ferrite layer in between the receiver and the metal bottom.
It is also noted that the use of methods such as curving the receiver or integrating magnets, LEDs, audio signals or messages, etc. for alignment, or methods for location, manufacturer or charging condition identification, as described above are possible with all embodiments of the present invention described above. In any of the above cases, the charger can contain lights, LEDs, displays, or audio signals or messages to help guide the user to place the mobile device on a primary coil for maximum reception, to show charging is occurring, and to show the device is fully charged. Displays to show how full the battery is or other information can also be incorporated.
Portable Inductive Charging Pad
In accordance with an embodiment a flexible mobile device charger is provided in the shape of a pad that can be folded or rolled up for carrying. In one implementation of the invention, the electronics of the charger are placed on a thin flexible PCB or the coils are made of wires that can be rolled up or shaped. The electronics components made of silicon chips, capacitors, resistors and the like may not be flexible but take up very little space. These rigid components can be mounted on a flexible or rigid circuit board, while the main section of the pad containing the coils or wires for energy transfer could be made to be flexible to allow conformity to a surface or to be rolled up. Thus the pad resembles a thin mouse pad or the like.
In some cases, it may be advantageous to the user to have a mobile device charger that is extendible in functionalities. The cases include but are not limited to:
- A user may purchase a mobile device charger for charging a single low power device but, at a later stage, may want to extend the capability to charge more devices simultaneously.
- A user may purchase a mobile device charger for charging one or more low power devices but may want to charge more low power or high power devices.
- A user may buy a mobile device charger that can charge one or more low-power or high-power devices and later wish to have the communication or local storage, or a rechargeable battery, or means of power generation such as solar panels or some other capability, added to the charger.
In all of the cases above and others, it can be useful to have a modular approach to expand the capabilities of the mobile device charger.
Some of the electronics devices that can benefit from these methods include: mobile phones, cordless phones, personal data assistants (PDAs), pagers, mobile electronic mail devices, Blackberry'"'"'s, MP3 players, CD players, DVD players, game consoles, headsets, Bluetooth headsets, head-mounted displays, GPS units, flashlights, watches, cassette players, laptops, electronic address books, handheld scanning devices, toys, electronic books, still cameras, video cameras, film cameras, portable printers, portable projection systems, IR viewers, underwater cameras or any waterproof device, toothbrushes, shavers, medical equipment, scientific equipment, dental equipment, military equipment, coffee mugs, kitchen appliances, cooking pots and pans, lamps or any battery, DC, or AC operated device.
In addition, inductive power transfer can provide power to devices that are not so far battery operated. For example, a mobile device charger in the shape of a pad placed on a desk or a kitchen table can be used to power lamps or kitchen appliances. In one embodiment for the use in a kitchen, a flat charger, such as a pad, placed on or built into a counter can allow the chef to place devices on the charger to be inductively charged during use and simply place them away after use. The devices can be, for example, a blender, mixer, can opener, or even pot, pan, or heater. This can eliminate the need for a separate cooking and work area. It will be noted that placement of a metal pan close to the inductive pad could directly heat the pan and the contents while keeping the charger surface cool. Due to this reason, inductive kitchen ranges have been commercialized and shown to be more efficient than the electric ranges that work by resistive heating of a coil.
In another embodiment, rather than direct heating of metal pans by nearby inductive fields, cooking pans may include a receiver and heating or even cooling elements. Once placed on a charger, the pan would heat up or cool down as desired by a dial or the like on the pan allowing precise temperature control of the pan and the contents.
Similarly, in an office or work area setting, if a charger is readily available for charging mobile devices, it can also be used to power up lamps for illumination of the desk or used to power or charge office appliances, such as fax machines, staplers, copiers, scanners, telephones, and computers. In one embodiment, the receiver can be built into the bottom of a table lamp and the received power would be used to power the incandescent or LED lamp.
In another embodiment, a mug, cup, glass, or other eating appliance such as a plate can be fitted with a receiver at its bottom. The received power can be used to heat the mug, etc. with a heating coil thus keeping beverages or food warm to any degree desired. Furthermore, in accordance with an embodiment, by use of devices such as thermoelectric coolers the contents could be cooled or heated as desired.
Similarly, many children'"'"'s toys often run out of battery due to extended use or simple forgetfulness to turn the device off. Often these batteries are included inside a battery compartment that for safety reasons can only be opened by a screwdriver. Inclusion of the receiver into toys could reduce the need to change the device batteries and allow recharging with a much simpler method.
In another implementation, the receiver can be built into medical devices that are implanted or inserted in the body. Since batteries in these devices such as pace makers, cochlear implants, or other monitoring devices may need periodic charging, inductive power transfer can provide an ideal non-contact method for charging and testing the performance of the devices (i.e. check up) or downloading data that the devices have logged.
In another implementation, some active RFID tags include batteries that can send out information about the status or location of a package or shipment. An inexpensive method for charging these tags would be to include a receiver with each tag. Thus, a charger can be used to power or charge these RFID tags.
It will be noted that the effective working distance of the inductive charger is dependent on the power and the frequency of the source. By increasing the frequency to several or tens of MHz, one can obtain a working distance of several inches or feet depending on the application for the technology. It will also be noted that any of the above embodiments that eliminate the input power jack are especially important because they add to product reliability by removing a source of mechanical or environmental failure. In addition, elimination of the jack is imperative for water proof applications and for extra safety.
Efficiency Enhancements in Circuit Design
In accordance with an embodiment of the invention, in order for the power efficiency to be maximized and to minimize losses in the coil, the coils should be manufactured to have as low a resistance as possible. This can be achieved by use of more conductive material such as gold, silver, etc. However in many applications, the cost of these materials are prohibitive. In practice, reduced resistivity can be obtained by using thicker copper-clad PCBs. Most common PCBs use 1-2 oz copper PCBs. In accordance with some embodiments the coil PCB used for the wireless charger can be made from PCBs clad with between 2 and 4, or even 6 oz copper. The process of manufacture of the PCB can also be optimized to achieve higher conductivity. For example, sputtered copper has a higher conductivity than rolled copper and is typically better for this application. In operation, the coil and the circuitry demonstrates a resonance at a frequency determined by the parameters of the design of the coil (for example, the number of windings, coil thickness, width, etc.). However, previous work has concentrated on circuits driven by square waves with a MOSFET. This approach has the disadvantage that since a square wave is not a pure sinusoid, it produces harmonics. These harmonics are undesirable because:
- The PCB coil produces optimum power transfer efficiency at a particular frequency. The harmonics in the primary signal are not transferred as efficiently and decrease the overall system efficiency.
- The rapid voltage change in the leading and falling edge of the square wave creates oscillations that create further harmonics resulting further EMI.
- The harmonics radiated by the primary create higher frequency components that contribute to the EMI that is more radiative (due to higher frequency). It is desirable to limit the frequency range of the operation of the overall system to as low a frequency as possible while maintaining the other requirements of the system (such as sufficient working distance, etc.). So these harmonics must be avoided.
- At the instance of switch turn-on and turn-off, the change in the in-rush current to the coil causes huge voltage swings across the coil for a short period of time. All the power is transferred to the secondary during these times that are short.
Previous attempts to achieve 90% transfer efficiency with PCB coil primary and receiver have used a laboratory power supply to drive their circuit. While this approach has demonstrated the higher efficiency that can be achieved with a sinusoidal voltage on the coil, such power supplies are complex, costly, and too large to be able to be used for any practical charger application.
In accordance with an embodiment of the present invention, a capacitor is added in parallel to the drain/source contacts of the MOSFET.
By way of example, in accordance with an embodiment that uses an IRFR0220 chip as a FET and use 4 Oz. copper coils with 9 turns and 1.25″ diameter, the circuit in
- High efficiency (˜90% coil to coil).
- Low ringing oscillation and EMI.
- Simplicity and low cost.
- Lower FET source-drain voltage swing allowing use of a larger selection of FETs.
In many applications, it is also desired that the pad and the receiver are arranged so that the pad does not emit power unless the receiver is nearby.
As shown in
One of the sensor mechanisms for this information are through the use of an RFID reader 280 that can detect an RFID tag of circuit and antenna in the secondary (i.e. device to be charged). The information on the tag can be detected to identify the voltage in the secondary required and to authenticate the circuit to be genuine or under license. The information on the tag can be encrypted to provide further security. Once a device containing the tag is nearby the pad, the RFID reader can be activated, read the information on the tag memory and compare with a table to determine authenticity/voltage required or other info. This information table can also reside on the MCU1 memory. Once the information is read and verified, the MCU1 can enable the FET driver to start driving the coil on the pad and to energize the receiver.
In another embodiment the MCU1 relies on a clock 270 to periodically start the FET driver. The current through the FET driver is monitored through a current sensor 264. Several methods can be implemented with this implementation, including for example:
- A small resistor can be placed in series with the FET to ground contact. The voltage across this resistor can be measured by a current sensor chip, such as a Linear Technology Current Sense Amplifier part number LT1787.
- A Hall sensor, such as a Sentron CSA-1A, that measures the current from a wire running under it, can be placed on top of the PCB line from the FET to the ground to measure the current without any electrical connection to the circuit. The advantage of this approach is that no extra resistor in series with this portion of the circuit is necessary reducing the impedance.
- Other techniques may be used to measure the current.
- A Hall sensor or a Reed switch can sense a magnetic field. If a small magnet is placed inside the receiver unit of the system, a Hall sensor or Reed switch can be used to sense presence of the magnet and can be used as a signal to start the FET.
- Other capacitance, optical, magnetic, or weight, etc. sensors can be incorporated to sense the presence of a secondary or receiver and to begin the energy transfer process.
Efficiency Enhancements in Coil Layout
An important aspect of power transfer efficiency relates to the alignment of coils with respect to each other.
In order to produce uniform fields, a number of coils around the secondary would typically need to be turned on to produce a field. However, with such a pattern, if a secondary coil is placed in between two primary coils, the voltage is still not optimized. Research has shown that to obtain uniform fields, three layers of coil patterns offset with respect to each other are required.
Efficiency Enhancements in Independent Coil Movement
In accordance with some embodiments, techniques are included to provide high transfer efficiency while maintaining position independence.
In accordance with an embodiment, each coil in this configuration can be suspended by the wires carrying power to the coil or by a separate wire/spring or by another mechanism so that each coil can move freely in the plane of the pad while it can receive power from an individual or shared driving circuit. In order to facilitate movement, the surface of the coils or the bottom surface of the top layer for the base unit (the area where the coils move against) or both layers can be made smooth by use of a low friction material, attachment of a low friction material, or lubrication. The wire/spring or current carrying mechanism described above can also be used to center each coil in an area at the center of desired movement sector for each coil. In this way, without a secondary coil in the vicinity, each coil in the base unit stays at the central location of its sector and responds and moves to match a secondary coil when a device is brought nearby. Overlap of movement between adjacent base unit coils can be controlled by means of limiting movement through limiting length of current carrying wires to the coil, arrangement of the suspension, or spring, or placement of dividing sectors, pillars or by any other mechanism.
In another embodiment, the pad will include a method for detecting the presence of the mobile device/receiver and taking appropriate action to turn on the coil and/or to drive the coil with the appropriate pattern to generate the required voltage in the receiver. This can be achieved through incorporation of RFID, proximity sensor, current sensor, etc. A sequence of events to enable position independence and automatic pad turn-on can be:
- Multiple movable coils are used to cover the pad surface area.
- The coils in the pad are normally off and periodically powered up sequentially to sense whether the secondary is nearby by measuring the current through the primary coil. Alternatively, proximity sensors under each section can sense the presence of a magnet or change in capacitance or other parameter to know where a device is placed. RFID techniques with localized antennas under each section or such can also be used.
- Once a device is identified as placed in a section, the pad can interrogate the device through one of the processes described earlier to authenticate and to understand its voltage/power, etc. requirements.
- The MCU1 unit uses the information received above to set the PWM pattern which it will use to drive the FET drive to produce the appropriate voltage in the receiver.
- The board continues to ‘search’ for other devices on the pad by scanning coils or using the RFID system, etc. and then turn on other coils as appropriate.
- The pad also use the monitoring to find out when and if the first mobile device is removed from the pad or end of charge is reached.
Efficiency Enhancements in Coil Registration and Switching
In accordance with an embodiment, a global RFID system that would identify the approach of a mobile device to the pad can be used to ‘wake up’ the board. This can be followed by sequential polling of individual coils to recognize where the device is placed in a manner similar to described above. Other embodiments of the invention provide safeguards against false charging of objects placed on the base unit. It is known that a metal object placed on coils such as the ones in the base of the charger system would cause current to flow in the primary and transfer power dissipated as heat to the metal object. In practical situations, this would cause placement of keys and other metal objects on the base unit to trigger a start and to needlessly draw current from the base unit coil and possibly lead to failure due to over-heating. To avoid this situation, in a system as described above, the switching of voltage to the coil would not start unless an electronic device with a verifiable RFID tag is nearby thereby triggering the sequence of events for recognizing the appropriate coil to turn on and operate. In an alternate geometry, the total system current or individual coil current is monitored, and, if a sudden unexpected drawn current is noticed, measures to investigate further or to shut down the appropriate coil indefinitely or for a period of time or to indicate an alarm would be taken.
In another embodiment, the regulators or battery charging circuit in mobile devices or regulator in a receiver electronics typically has a start voltage (such as 5 V) that is required to start the charging process. Once the battery charge circuit detects the presence of this voltage, it switches on and then proceeds to draw current at a preset rate from the input to feed the battery for charging. The battery charger circuits operate such that an under or over voltage at the start will prevent startup. Once the startup occurs, the voltage at the battery charger output is typically the voltage of the battery and depends on the state of charge, but is for example 4.4 V to 3.7V or lower for Lithium-Ion batteries. With a wireless charge system such as described here, the voltage on the secondary is highly dependent on relative position of the primary and secondary coil as shown in
Efficiency Enhancements in Coil Voltage Clamping
Efficiency Enhancements in Coil Stacking
In accordance with an embodiment, a transformer consisting of two PCB coils separated by a distance has many parameters that are defined by the design of the coil, including:
- R1 is the primary winding resistance,
- R′2 is the secondary winding resistance referred to the primary,
- RL is the resistive load,
- LIk1 is the primary leakage inductance,
- L′Ik2 is the secondary leakage inductance referred to the primary,
- LM1 is the primary mutual inductance,
- C1 is the primary winding capacitance,
- C′2 is the capacitance in the secondary winding referred to the primary,
- C12 is the capacitance between primary and secondary windings, and
- n is the turns ratio.
In accordance with the embodiment shown in
Inductive Charger with Self-Powered Operation
The ability of the unit to continue charging would depend on the capacity of the battery included. Thus, for example, with a 1500 mAH internal battery, the unit would be able to charge a mobile phone with a 1000 mAH battery completely if the losses due to conversion efficiency, operation of the circuitry in the unit, and other losses are up to 500 mAH.
In other embodiments of the invention, the unit can be powered by other power sources such as a fuel cell that generates power from methanol or other sources. The unit can also be connected to the electric grid through an outlet or to an external DC power source such as power from an outlet in a car or airplane or be itself charged or powered inductively by another unit. However, when not connected to outside power, the unit can be powered by its internal power generator from the fuel cell and can charge devices placed on it inductively.
Inductive Charger Applications and Kiosk
The technology described herein may also be used for other applications. In some applications, it may be desirable to build the inductive (as described above) or wire free charger into a case for an electronic device, a briefcase, or other carrier such as a box, holder, or container in a car or other wise. An example can be a brief case, hand bag, or back pack where the bottom part or the outside surface has an integrated charger. Any device enabled to receive power from such a charger (device containing coils and the appropriate electronics to receive power or with appropriate contacts for wire free charging) can be placed on or inside such a briefcase and be charged. The charging circuitry can be powered by plugging the briefcase, handbag, or back pack into an outlet power or having internal batteries that can be charged through power from a wall plug or by themselves being inductively charged when the briefcase, handbag, or backpack is placed on an another inductive or wire free charger. Uses can be applied to any bag, container, or object that can be used to essentially charge or power another device. This first object can itself be charged or powered through an outlet directly by wires or wirelessly through an inductive or wire free charging system. As an alternative, the first object (the charger) can be powered by solar cells, Fuel cells, mechanical methods (hand cranks, pendulums, etc.).
In all of the above case, it is possible for the functions of the inductor or wire free charger and the power source for the charger (battery, fuel cell, solar cell, etc.) to be separated. Furthermore, in some cases, the charger part can be separated from a portable power source to operate it (such as a rechargeable battery) which is in turn powered or charged by another source (power outlet, fuel cell, solar cell, mechanical source, etc.). The three parts can be in the same enclosure or area or separate from each other.
An additional example may be an after market inductive or wire free charger for a car where the inductive or wire free charger or pad including a solar cell on the pad or in another area and connected to the pad by wires is used to charge mobile devices. Such a device placed on the dashboard or tray between seats or a special compartment can be used to charge a number of devices such as phones, MP3 players, cameras, etc. Devices such as GPS navigation systems, radar detectors, etc. can also be powered from such a device. In another application, mugs, cups, or other containers with a receiver circuitry and means of heating or cooling the contents can be used in combination with the inductive charger to keep the contents hot or cold. A dial or buttons on the cup or container can set the temperature. The charging device or pad can also contain rechargeable batteries that allow the device or pad to store energy and operate in the absence of any external power if necessary.
Other applications of this technology include clothing, jackets, vests, etc. that have an integrated inductive charger such that a user can power or charge a device by simply placing it on or near a pocket or an area where wireless inductive power is available. The jacket or clothing can in turn be powered by solar cells, Fuel cells, batteries, or other forms of energy. It can also be powered by batteries that would be recharged through solar cells sown onto the clothing or be recharged by placing or hanging the clothing item on a rack or location where it is recharged wirelessly or inductively. By using inductive charging, the user does not have to plug in devices into individual wires and connectors at the appropriate jacket pocket.
In some cases, it may be desirable to build the charger or the secondary part (receiver for a charger) into the protective case of another device. For example, many products exist today that are after-market or optional items such as a skin or case for a music player, phone, PDA, or notebook computer. In one implementation, the case or skin can contain the electronics and the coil necessary to allow the device to be charged or charge other devices or both. The charger can be powered by the device it is attached to or can receive power from a separate source such as a solar cell, fuel cell, etc. that is integrated with the charger or in another location and electrically connected to the charger. For example, in a briefcase, while the charger is inside the briefcase and can charge devices inside, the surface of the briefcase can have solar cells that would power the charger inside. The briefcase can also contain rechargeable batteries that would store power generated by the solar cells and use them when necessary to charge devices inside. Similarly, the charger can be built on the outside or inside surface of the case and charge devices placed on or near the surface.
It is also possible to provide a charger with modular components that allow other capabilities to be added later or simultaneously as an option. In one embodiment, an inductive charging pad that contains a rechargeable battery can have a separate top surface module or all around cover or skin that contains a solar cell array and would simultaneously electrically connect to the charger pad to enable the battery internal to the unit to be charged without any external power input. It is also possible to have the cover or the outside skin to provide other capabilities such as communications, or simply provide a different look or texture so that the pad fits in with the user'"'"'s taste or décor.
In accordance with an embodiment, a single pad with multiple stations can charge multiplicity of devices simultaneously. The user may be asked to pay for the service before charging a device or the service may be for free. Alternatively, each charging station can be in a compartment and the device is secured by a door that can only be opened through a code given to the device owner when charging starts or payment occurs. The door can also be secured by a combination lock or physical key.
Alternatively, the charging station or kiosk can be open and not physically secure but when the user pays for the service, a code is issued. The user proceeds to place their device to be charged but when the charging ends or the user wants to pick up the device, the code must be entered first. If no code is entered, an alarm is sounded or the device is deactivated or some other warning occurs. In this way, a thief or the wrong user can not remove the device without attracting attention that may act as a deterrent. A combination of the above techniques may be used in implementing a public charging kiosk.
Since a typical charging process can take up to 30 minutes or more, it is possible to also synchronize data, download songs, movies, etc. into the device during this time. Many of current mobile devices have Bluetooth or WiFi capability. Other communication protocols such as WiMax can increase the data rate further. By combining the charging and information transfer process, the service provider can charge for additional services. In addition, if a camera is being charged and has wireless capability, it can download the pictures or movies to a designated website or online storage area or be emailed to a designated email address while charging. In this way, a traveler can simultaneously charge a camera while downloading the contents of its memory to a location with larger memory. This would enable the traveler to free up limited memory space in their camera or other mobile device. Such a service would enable devices that have limited or short range wireless communication capabilities (such as mobile phones, MP3 players, cameras, etc.) to be able to connect to the internet and send or receive data indirectly. It is important to recognize that without the charging capability, a device conducting such downloading or synchronization through an intermediate device (Bluetooth to internet gateway for example) would often run out of power due to the length of time this would take. In this manner the charging capability of the kiosk enables a more effective operation.
The foregoing description of the present invention has been provided for the purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise forms disclosed. The embodiments were chosen and described in order to best explain the principles of the invention and its practical application, thereby enabling others skilled in the art to understand the invention for various embodiments and with various modifications that are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the following claims and their equivalence.
Some aspects of the present invention may be conveniently implemented using a conventional general purpose or a specialized digital computer, microprocessor, or electronic circuitry programmed according to the teachings of the present disclosure. Appropriate software coding can readily be prepared by skilled programmers and circuit designers based on the teachings of the present disclosure, as will be apparent to those skilled in the art.
In some embodiments, the present invention includes a computer program product which is a storage medium (media) having instructions stored thereon/in which can be used to program a computer to perform any of the processes of the present invention. The storage medium can include, but is not limited to, any type of disk including floppy disks, optical discs, DVD, CD-ROMs, microdrive, and magneto-optical disks, ROMs, RAMs, EPROMs, EEPROMs, DRAMs, VRAMs, flash memory devices, magnetic or optical cards, nanosystems (including molecular memory ICs), or any type of media or device suitable for storing instructions and/or data.
The foregoing description of the present invention has been provided for the purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise forms disclosed. Many modifications and variations will be apparent to the practitioner skilled in the art. Particularly, while the embodiments of the systems and methods described above are described in the context of charging pads, it will be evident that the system and methods may be used with other types of chargers. Similarly, while the embodiments described above are described in the context of charging mobile devices, other types of devices can be used. The embodiments were chosen and described in order to best explain the principles of the invention and its practical application, thereby enabling others skilled in the art to understand the invention for various embodiments and with various modifications that are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the following claims and their equivalence.