×

Ultra-compact HUD utilizing waveguide pupil expander with surface relief gratings in high refractive index materials

  • US 9,715,067 B1
  • Filed: 09/30/2011
  • Issued: 07/25/2017
  • Est. Priority Date: 09/30/2011
  • Status: Active Grant
First Claim
Patent Images

1. A head up display, comprising:

  • an image source;

    a folded catadioptric collimator comprising a fold prism receiving light from the image source, a field lens receiving light from the fold prism, and a beam splitter receiving light from the field lens and redirecting light to a curved reflector, the curved reflector providing collimated light through the beam splitter to an exit surface on the beam splitter, wherein the folded catadioptric collimator is configured to a have a light path from the image source to the exit surface on the beam splitter, the light path having a single bounce within the fold prism as the light travels from the image source to the field lens, wherein the fold prism receives the light directly from the image source;

    a bracket; and

    a waveguide attached to a planar surface of the bracket, the waveguide having a first diffraction grating at a first end for receiving the collimated light at the exit surface and a second diffraction grating at a second end, the first diffraction grating being an input diffraction grating and the second diffraction grating being an output diffraction grating and the waveguide being positioned as a combiner and allowing viewing of an outside scene and information from the image source, the waveguide having a high index of refraction of greater than 1.6, wherein the first diffraction grating and the second diffraction grating have a period of 330 nm plus or minus 20 percent, wherein the waveguide provides single axis pupil expansion, the single axis pupil expansion provided by the waveguide being on the order of 3 to 8 times, wherein the waveguide comprises a first plate and a second plate and a beam splitting coating disposed between the first plate and the second plate along a line defined by the first plate and the second plate, the line disposed between the first diffraction grating and the second diffraction grating and parallel to main surfaces of the first diffraction grating and the second diffraction grating, the beam splitting coating being configured to cause light entering the waveguide from the image source and traveling from the first diffraction grating to the second diffraction grating via the first and second plates by total internal reflection between the main surfaces to have an increased number of rays propagating to the second diffraction grating.

View all claims
  • 1 Assignment
Timeline View
Assignment View
    ×
    ×