Wirelessly charged battery system
First Claim
1. A power transmitting apparatus for wireless power transfer to a receiver, the apparatus comprising:
- a housing having a form factor that corresponds to a container comprising lateral surfaces, a bottom surface, and an opening opposite the bottom surface;
a first coil comprising a first plurality of non-planar loops of electrically conductive material, wherein the first plurality of loops conforms to a first pair of opposite lateral surfaces and to the bottom surface; and
a second coil comprising a second plurality of non-planar loops of electrically conductive material, wherein the second plurality of loops conforms to a second pair of opposite lateral surfaces and to the bottom surface.
2 Assignments
0 Petitions

Accused Products

Abstract
The disclosure features power transmitting apparatus for wireless power transfer to a receiver that includes a housing having a form factor that corresponds to a container featuring lateral surfaces, a bottom surface, and an opening opposite the bottom surface, a first coil formed by a continuous path of electrically conductive material and featuring a plurality of non-planar loops that conform to a first pair of opposite lateral surfaces and to the bottom surface, and a second coil formed by a continuous path of electrically conductive material and featuring a plurality of non-planar loops that conform to a second pair of opposite lateral surfaces and to the bottom surface.
697 Citations
ENCAPSULATED INDUCTIVE CHARGING COIL | ||
Patent #
US 20150311740A1
Filed 04/28/2014
|
Current Assignee
Apple Inc.
|
Original Assignee
Apple Inc.
|
Inductive Peripheral Retention Device | ||
Patent #
US 20170248999A1
Filed 05/12/2017
|
Current Assignee
Microsoft Technology Licensing LLC
|
Original Assignee
Microsoft Technology Licensing LLC
|
Inductive peripheral retention device | ||
Patent #
US 10,156,889 B2
Filed 07/13/2016
|
Current Assignee
Microsoft Technology Licensing LLC
|
Original Assignee
Microsoft Technology Licensing LLC
|
PRIMARY-SIDE CHARGING DEVICE, SECONDARY-SIDE CHARGING DEVICE AND METHOD OF CHARGING A BATTERY FOR A VEHICLE HAVING AN ELECTRIC DRIVE | ||
Patent #
US 20190039464A1
Filed 07/31/2018
|
Current Assignee
FEAAM GmbH
|
Original Assignee
FEAAM GmbH
|
Power receiver and adapter | ||
Patent #
US 10,770,930 B2
Filed 09/27/2017
|
Current Assignee
Kyocera Corporation
|
Original Assignee
Kyocera Corporation
|
TUNING AND GAIN CONTROL IN ELECTRO-MAGNETIC POWER SYSTEMS | ||
Patent #
US 20110018361A1
Filed 10/01/2010
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
WIRELESS ENERGY TRANSFER WITH HIGH-Q CAPACITIVELY LOADED CONDUCTING LOOPS | ||
Patent #
US 20110043046A1
Filed 12/23/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
Tunable embedded inductor devices | ||
Patent #
US 7,884,697 B2
Filed 02/26/2008
|
Current Assignee
Industrial Technology Research Institute
|
Original Assignee
Industrial Technology Research Institute
|
High power wireless resonant energy transfer system | ||
Patent #
US 7,880,337 B2
Filed 10/25/2007
|
Current Assignee
Leslie Farkas
|
Original Assignee
Laszlo Farkas
|
WIRELESS DELIVERY OF POWER TO A FIXED-GEOMETRY POWER PART | ||
Patent #
US 20110049998A1
Filed 11/04/2010
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
Amplification relay device of electromagnetic wave and a radio electric power conversion apparatus using the above device | ||
Patent #
US 7,885,050 B2
Filed 07/29/2005
|
Current Assignee
Andong National University Industry Academic Cooperation Foundation, JC Protek Company Limited
|
Original Assignee
JC Protek Company Limited
|
RESONATORS FOR WIRELESS POWER TRANSFER | ||
Patent #
US 20110012431A1
Filed 09/10/2010
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
WIRELESS ENERGY TRANSFER | ||
Patent #
US 20110074347A1
Filed 11/18/2010
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
WIRELESS DESKTOP IT ENVIRONMENT | ||
Patent #
US 20110049996A1
Filed 08/25/2010
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
VEHICLE CHARGER SAFETY SYSTEM AND METHOD | ||
Patent #
US 20110074346A1
Filed 10/06/2010
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
NONCONTACT ELECTRIC POWER FEEDING APPARATUS, NONCONTACT ELECTRIC POWER RECEIVING APPARATUS, NONCONTACT ELECTRIC POWER FEEDING METHOD, NONCONTACT ELECTRIC POWER RECEIVING METHOD, AND NONCONTACT ELECTRIC POWER FEEDING SYSTEM | ||
Patent #
US 20110049995A1
Filed 07/30/2010
|
Current Assignee
Sony Corporation
|
Original Assignee
Sony Corporation
|
WIRELESS ENERGY TRANSFER | ||
Patent #
US 20110074218A1
Filed 11/18/2010
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
Soldier system wireless power and data transmission | ||
Patent #
US 20110031928A1
Filed 10/13/2010
|
Current Assignee
Cynetic Designs Ltd.
|
Original Assignee
Cynetic Designs Ltd.
|
WIRELESS ENERGY TRANSFER WITH HIGH-Q RESONATORS USING FIELD SHAPING TO IMPROVE K | ||
Patent #
US 20110043049A1
Filed 12/29/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER USING OBJECT POSITIONING FOR LOW LOSS | ||
Patent #
US 20110043048A1
Filed 12/29/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
PACKAGING AND DETAILS OF A WIRELESS POWER DEVICE | ||
Patent #
US 20110025131A1
Filed 10/01/2010
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
IMPLANTABLE PULSE GENERATOR FOR PROVIDING FUNCTIONAL AND/OR THERAPEUTIC STIMULATION OF MUSCLES AND/OR NERVES AND/OR CENTRAL NERVOUS SYSTEM TISSUE | ||
Patent #
US 20110004269A1
Filed 06/28/2010
|
Current Assignee
Medtronic Urinary Solutions Inc.
|
Original Assignee
Medtronic Urinary Solutions Inc.
|
WIRELESS ENERGY TRANSFER USING FIELD SHAPING TO REDUCE LOSS | ||
Patent #
US 20110043047A1
Filed 12/28/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Contactless battery charging apparel | ||
Patent #
US 7,863,859 B2
Filed 06/28/2006
|
Current Assignee
Cynetic Designs Ltd.
|
Original Assignee
Cynetic Designs Ltd.
|
WIRELESS ENERGY TRANSFER RESONATOR THERMAL MANAGEMENT | ||
Patent #
US 20110121920A1
Filed 02/07/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER | ||
Patent #
US 20110089895A1
Filed 11/18/2010
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
SELECTIVE WIRELESS POWER TRANSFER | ||
Patent #
US 20110115431A1
Filed 08/04/2010
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
WIRELESS ENERGY TRANSFER USING REPEATER RESONATORS | ||
Patent #
US 20110095618A1
Filed 04/13/2010
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
MULTIPLE USE WIRELESS POWER SYSTEMS | ||
Patent #
US 20110115303A1
Filed 11/18/2010
|
Current Assignee
Access Business Group International LLC
|
Original Assignee
Access Business Group International LLC
|
Noncontact power transmission system and power transmitting device | ||
Patent #
US 7,923,870 B2
Filed 03/13/2008
|
Current Assignee
Seiko Epson Corporation
|
Original Assignee
Seiko Epson Corporation
|
Wireless charger system for battery pack solution and controlling method thereof | ||
Patent #
US 7,948,209 B2
Filed 09/13/2007
|
Current Assignee
Intel Corporation
|
Original Assignee
Hanrim Postech Co. Ltd.
|
Inductive power source and charging system | ||
Patent #
US 7,952,322 B2
Filed 01/30/2007
|
Current Assignee
Mojo Mobility Inc.
|
Original Assignee
Mojo Mobility Inc.
|
System, an inductive power device, an energizable load and a method for enabling a wireless power transfer | ||
Patent #
US 7,932,798 B2
Filed 03/09/2006
|
Current Assignee
Koninklijke Philips N.V.
|
Original Assignee
Koninklijke Philips N.V.
|
Foreign Object Detection in Inductive Coupled Devices | ||
Patent #
US 20110128015A1
Filed 10/29/2010
|
Current Assignee
Robert Bosch GmbH
|
Original Assignee
Robert Bosch GmbH
|
Installation | ||
Patent #
US 7,969,045 B2
Filed 05/10/2007
|
Current Assignee
Sew-Eurodrive GmbH Company KG
|
Original Assignee
Sew-Eurodrive GmbH Company KG
|
Intra-abdominal medical method and associated device | ||
Patent #
US 7,963,941 B2
Filed 03/22/2006
|
Current Assignee
WILK Patent LLC
|
Original Assignee
Peter J. Wilk
|
ADAPTIVE WIRELESS POWER TRANSFER APPARATUS AND METHOD THEREOF | ||
Patent #
US 20110140544A1
Filed 02/18/2011
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
SHORT RANGE EFFICIENT WIRELESS POWER TRANSFER | ||
Patent #
US 20110148219A1
Filed 02/18/2011
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
Power receiving device and power transfer system | ||
Patent #
US 7,919,886 B2
Filed 08/29/2008
|
Current Assignee
Sony Corporation
|
Original Assignee
Sony Corporation
|
POWER SUPPLY SYSTEM AND METHOD OF CONTROLLING POWER SUPPLY SYSTEM | ||
Patent #
US 20110221278A1
Filed 05/20/2011
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
METHOD AND APPARATUS OF LOAD DETECTION FOR A PLANAR WIRELESS POWER SYSTEM | ||
Patent #
US 20110169339A1
Filed 03/18/2011
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
FLAT, ASYMMETRIC, AND E-FIELD CONFINED WIRELESS POWER TRANSFER APPARATUS AND METHOD THEREOF | ||
Patent #
US 20110198939A1
Filed 03/04/2011
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
WIRELESS ENERGY TRANSFER | ||
Patent #
US 20110193419A1
Filed 02/28/2011
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
WIRELESSLY POWERED SPEAKER | ||
Patent #
US 20110181122A1
Filed 04/01/2011
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
Wirelessly-chargeable stretch-resistant light-emitting or heat-emitting structure | ||
Patent #
US 20110215086A1
Filed 02/23/2011
|
Current Assignee
WindStream Technology Co. Ltd.
|
Original Assignee
Winharbor Technology Co. Ltd.
|
System to automatically recharge vehicles with batteries | ||
Patent #
US 7,999,506 B1
Filed 04/09/2008
|
Current Assignee
SeventhDigit Corporation
|
Original Assignee
SeventhDigit Corporation
|
ADAPTIVE MATCHING, TUNING, AND POWER TRANSFER OF WIRELESS POWER | ||
Patent #
US 20110227528A1
Filed 05/13/2011
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
Energy transferring system and method thereof | ||
Patent #
US 7,994,880 B2
Filed 06/19/2008
|
Current Assignee
Darfon Electronics Corporation
|
Original Assignee
Darfon Electronics Corporation
|
TUNABLE WIRELESS ENERGY TRANSFER SYSTEMS | ||
Patent #
US 20110193416A1
Filed 01/06/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS POWER TRANSMISSION FOR PORTABLE WIRELESS POWER CHARGING | ||
Patent #
US 20110227530A1
Filed 05/26/2011
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
Wireless non-radiative energy transfer | ||
Patent #
US 8,022,576 B2
Filed 03/31/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
NONCONTACT ELECTRIC POWER RECEIVING DEVICE, NONCONTACT ELECTRIC POWER TRANSMITTING DEVICE, NONCONTACT ELECTRIC POWER FEEDING SYSTEM, AND ELECTRICALLY POWERED VEHICLE | ||
Patent #
US 20110162895A1
Filed 03/18/2011
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
Transmitters and receivers for wireless energy transfer | ||
Patent #
US 20110266878A9
Filed 09/16/2008
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Nigel Power LLC
|
WIRELESS POWER TRANSMISSION SYSTEM | ||
Patent #
US 20110248573A1
Filed 04/06/2011
|
Current Assignee
Panasonic Corporation
|
Original Assignee
Panasonic Corporation
|
WIRELESS POWER TRANSMISSION IN ELECTRIC VEHICLES | ||
Patent #
US 20110254377A1
Filed 04/07/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Qualcomm Inc.
|
METHODS AND SYSTEMS FOR WIRELESS POWER TRANSMISSION | ||
Patent #
US 20110241618A1
Filed 06/17/2011
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
System including wearable power receiver and wearable power-output device | ||
Patent #
US 20110278943A1
Filed 05/11/2010
|
Current Assignee
Searete LLC
|
Original Assignee
Searete LLC
|
WIRELESS POWER ANTENNA ALIGNMENT ADJUSTMENT SYSTEM FOR VEHICLES | ||
Patent #
US 20110254503A1
Filed 04/07/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Qualcomm Inc.
|
Wireless energy transfer using planar capacitively loaded conducting loop resonators | ||
Patent #
US 8,035,255 B2
Filed 11/06/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
OPTIMIZATION OF WIRELESS POWER DEVICES | ||
Patent #
US 20100244576A1
Filed 02/25/2010
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
PHASED ARRAY WIRELESS RESONANT POWER DELIVERY SYSTEM | ||
Patent #
US 20100033021A1
Filed 09/30/2008
|
Current Assignee
Avago Technologies General IP PTE Limited
|
Original Assignee
Broadcom Corporation
|
WIRELESS ENERGY TRANSFER USING VARIABLE SIZE RESONATORS AND SYSTEM MONITORING | ||
Patent #
US 20100164296A1
Filed 12/28/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER WITH FEEDBACK CONTROL FOR LIGHTING APPLICATIONS | ||
Patent #
US 20100201203A1
Filed 02/02/2010
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER FOR REFRIGERATOR APPLICATION | ||
Patent #
US 20100181843A1
Filed 03/11/2010
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS POWER FOR CHARGEABLE AND CHARGING DEVICES | ||
Patent #
US 20100225272A1
Filed 01/28/2010
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
REDUCED JAMMING BETWEEN RECEIVERS AND WIRELESS POWER TRANSMITTERS | ||
Patent #
US 20100151808A1
Filed 11/05/2009
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
WIRELESS HIGH POWER TRANSFER UNDER REGULATORY CONSTRAINTS | ||
Patent #
US 20100117596A1
Filed 07/06/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Qualcomm Inc.
|
Self-Charging Electric Vehicles and Aircraft, and Wireless Energy Distribution System | ||
Patent #
US 20100231163A1
Filed 09/26/2008
|
Current Assignee
Paradigm Shift Solutions
|
Original Assignee
Governing Dynamics LLC
|
WIRELESS ENERGY TRANSFER | ||
Patent #
US 20100289449A1
Filed 12/18/2008
|
Current Assignee
Nokia Corporation
|
Original Assignee
Nokia Technologies Oy
|
WIRELESS POWER TRANSFER APPARATUS AND METHOD THEREOF | ||
Patent #
US 20100187913A1
Filed 04/06/2010
|
Current Assignee
Intel Corporation
|
Original Assignee
Intel Corporation
|
EFFICIENCY INDICATOR FOR INCREASING EFFICIENCY OF WIRELESS POWER TRANSFER | ||
Patent #
US 20100201513A1
Filed 10/16/2009
|
Current Assignee
Avago Technologies International Sales Pte Limited
|
Original Assignee
Broadcom Corporation
|
WIRELESS TRANSFER OF INFORMATION USING MAGNETO-ELECTRIC DEVICES | ||
Patent #
US 20100015918A1
Filed 07/17/2009
|
Current Assignee
Ferro Solutions Inc.
|
Original Assignee
Ferro Solutions Inc.
|
METHOD AND APPARATUS FOR SUPPLYING ENERGY TO A MEDICAL DEVICE | ||
Patent #
US 20100234922A1
Filed 10/10/2008
|
Current Assignee
Kirk Promotion Ltd.
|
Original Assignee
Teslux Holding SA
|
WIRELESS POWER TRANSFER SYSTEM AND A LOAD APPARATUS IN THE SAME WIRELESS POWER TRANSFER SYSTEM | ||
Patent #
US 20100164295A1
Filed 11/16/2009
|
Current Assignee
Maxell Ltd.
|
Original Assignee
Hitachi Consumer Electronics Company Limited
|
Security for wireless transfer of electrical power | ||
Patent #
US 20100276995A1
Filed 04/29/2009
|
Current Assignee
Alcatel-Lucent USA Inc.
|
Original Assignee
Alcatel-Lucent USA Inc.
|
WIRELESS POWER TRANSFER FOR FURNISHINGS AND BUILDING ELEMENTS | ||
Patent #
US 20100201202A1
Filed 10/02/2009
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
WIRELESSLY POWERED SPEAKER | ||
Patent #
US 20100081379A1
Filed 09/25/2009
|
Current Assignee
Intel Corporation
|
Original Assignee
Intel Corporation
|
ELECTRICAL POWERED VEHICLE AND POWER FEEDING DEVICE FOR VEHICLE | ||
Patent #
US 20100225271A1
Filed 09/25/2008
|
Current Assignee
Ibaraki Toyota Jidosha Kabushiki Kaisha
|
Original Assignee
Ibaraki Toyota Jidosha Kabushiki Kaisha
|
APPLICATIONS OF WIRELESS ENERGY TRANSFER USING COUPLED ANTENNAS | ||
Patent #
US 20100117456A1
Filed 01/15/2010
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
WIRELESS POWER AND DATA TRANSFER FOR ELECTRONIC DEVICES | ||
Patent #
US 20100194335A1
Filed 11/06/2009
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
EFFICIENT NEAR-FIELD WIRELESS ENERGY TRANSFER USING ADIABATIC SYSTEM VARIATIONS | ||
Patent #
US 20100148589A1
Filed 10/01/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
INDUCTIVELY RECHARGEABLE EXTERNAL ENERGY SOURCE, CHARGER, SYSTEM AND METHOD FOR A TRANSCUTANEOUS INDUCTIVE CHARGER FOR AN IMPLANTABLE MEDICAL DEVICE | ||
Patent #
US 20100076524A1
Filed 10/28/2009
|
Current Assignee
Medtronic Incorporated
|
Original Assignee
Medtronic Incorporated
|
SYSTEM FOR ELECTRICAL POWER SUPPLY AND FOR TRANSMITTING DATA WITHOUT ELECTRICAL CONTACT | ||
Patent #
US 20100104031A1
Filed 03/10/2008
|
Current Assignee
Delachaux SA
|
Original Assignee
Delachaux SA
|
RESONANCE-TYPE NON-CONTACT CHARGING APPARATUS | ||
Patent #
US 20100156346A1
Filed 12/23/2009
|
Current Assignee
Toyota Jidoshi Kabushiki Kaisha
|
Original Assignee
Ibaraki Toyota Jidosha Kabushiki Kaisha, Kabushiki Kaisha Toyota Jidoshokki
|
INCREASING EFFICIENCY OF WIRELESS POWER TRANSFER | ||
Patent #
US 20100201313A1
Filed 10/16/2009
|
Current Assignee
Avago Technologies International Sales Pte Limited
|
Original Assignee
Broadcom Corporation
|
BIDIRECTIONAL WIRELESS POWER TRANSMISSION | ||
Patent #
US 20100148723A1
Filed 09/01/2009
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
Narrow spectrum light source | ||
Patent #
US 7,835,417 B2
Filed 07/15/2008
|
Current Assignee
OctroliX B.V.
|
Original Assignee
OctroliX B.V.
|
WIRELESS POWER TRANSFER IN PUBLIC PLACES | ||
Patent #
US 20100201201A1
Filed 10/02/2009
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
NONCONTACT ELECTRIC POWER RECEIVING DEVICE, NONCONTACT ELECTRIC POWER TRANSMITTING DEVICE, NONCONTACT ELECTRIC POWER FEEDING SYSTEM, AND ELECTRICALLY POWERED VEHICLE | ||
Patent #
US 20100065352A1
Filed 08/27/2009
|
Current Assignee
Ibaraki Toyota Jidosha Kabushiki Kaisha
|
Original Assignee
Ibaraki Toyota Jidosha Kabushiki Kaisha
|
WIRELESS POWER TRANSFER FOR CHARGEABLE DEVICES | ||
Patent #
US 20100225270A1
Filed 10/22/2009
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
PACKAGING AND DETAILS OF A WIRELESS POWER DEVICE | ||
Patent #
US 20100327661A1
Filed 09/10/2010
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
WIRELESS ENERGY TRANSFER USING COUPLED RESONATORS | ||
Patent #
US 20100117455A1
Filed 01/15/2010
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
RETROFITTING WIRELESS POWER AND NEAR-FIELD COMMUNICATION IN ELECTRONIC DEVICES | ||
Patent #
US 20100194334A1
Filed 11/02/2009
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
WIRELESS ENERGY TRANSFER SYSTEMS | ||
Patent #
US 20100141042A1
Filed 09/25/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER OVER DISTANCES TO A MOVING DEVICE | ||
Patent #
US 20100187911A1
Filed 12/30/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
WIRELESS POWER TRANSFER WITH LIGHTING | ||
Patent #
US 20100194207A1
Filed 02/04/2010
|
Current Assignee
David S. Graham
|
Original Assignee
David S. Graham
|
WIRELESS POWER TRANSFER FOR PORTABLE ENCLOSURES | ||
Patent #
US 20100201312A1
Filed 10/02/2009
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
Coupling system | ||
Patent #
US 7,825,544 B2
Filed 11/29/2006
|
Current Assignee
Koninklijke Philips N.V.
|
Original Assignee
Koninklijke Philips N.V.
|
RESONATORS AND THEIR COUPLING CHARACTERISTICS FOR WIRELESS POWER TRANSFER VIA MAGNETIC COUPLING | ||
Patent #
US 20100327660A1
Filed 08/26/2010
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
ADAPTIVE MATCHING AND TUNING OF HF WIRELESS POWER TRANSMIT ANTENNA | ||
Patent #
US 20100117454A1
Filed 07/17/2009
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
WIRELESS POWER DISTRIBUTION SYSTEM AND METHOD FOR POWER TOOLS | ||
Patent #
US 20100181964A1
Filed 01/22/2010
|
Current Assignee
Techtronic Power Tools Technology Limited
|
Original Assignee
Techtronic Power Tools Technology Limited
|
SYSTEMS AND METHODS FOR ELECTRIC VEHICLE CHARGING AND POWER MANAGEMENT | ||
Patent #
US 20100017249A1
Filed 07/13/2009
|
Current Assignee
Charge Fusion Technologies LLC
|
Original Assignee
Charge Fusion Technologies LLC
|
Resonator for wireless power transmission | ||
Patent #
US 20100156570A1
Filed 12/17/2009
|
Current Assignee
Samsung Electronics Co. Ltd.
|
Original Assignee
Samsung Electronics Co. Ltd.
|
WIRELESS ENERGY TRANSFER OVER A DISTANCE WITH DEVICES AT VARIABLE DISTANCES | ||
Patent #
US 20100207458A1
Filed 12/16/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
SYSTEM AND METHOD FOR INDUCTIVE POWER PROVISION OVER AN EXTENDED SURFACE | ||
Patent #
US 20100259401A1
Filed 04/09/2010
|
Current Assignee
Powermat Ltd.
|
Original Assignee
Powermat Ltd.
|
Method and Apparatus of Load Detection for a Planar Wireless Power System | ||
Patent #
US 20100066349A1
Filed 09/12/2008
|
Current Assignee
University of Florida Research Foundation Incorporated
|
Original Assignee
University of Florida Research Foundation Incorporated
|
Multilayer structures for magnetic shielding | ||
Patent #
US 7,795,708 B2
Filed 06/02/2006
|
Current Assignee
Honeywell International Inc.
|
Original Assignee
Honeywell International Inc.
|
CONCURRENT WIRELESS POWER TRANSMISSION AND NEAR-FIELD COMMUNICATION | ||
Patent #
US 20100190436A1
Filed 08/25/2009
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
WIRELESS ENERGY TRANSFER SYSTEMS | ||
Patent #
US 20100109445A1
Filed 11/06/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Short Range Efficient Wireless Power Transfer | ||
Patent #
US 20100038970A1
Filed 04/21/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Nigel Power LLC
|
Wireless energy transfer | ||
Patent #
US 7,825,543 B2
Filed 03/26/2008
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
APPARATUS FOR DRIVING ARTIFICIAL RETINA USING MEDIUM-RANGE WIRELESS POWER TRANSMISSION TECHNIQUE | ||
Patent #
US 20100094381A1
Filed 06/04/2009
|
Current Assignee
Electronics and Telecommunications Research Institute
|
Original Assignee
Electronics and Telecommunications Research Institute
|
RECEIVE ANTENNA ARRANGEMENT FOR WIRELESS POWER | ||
Patent #
US 20100210233A1
Filed 09/04/2009
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
RESONATOR ARRAYS FOR WIRELESS ENERGY TRANSFER | ||
Patent #
US 20100237709A1
Filed 05/28/2010
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Wirelessly Powered Medical Devices And Instruments | ||
Patent #
US 20100179384A1
Filed 08/21/2009
|
Current Assignee
KARL Storz Development Corp.
|
Original Assignee
KARL Storz Development Corp.
|
MULTI POWER SOURCED ELECTRIC VEHICLE | ||
Patent #
US 20100109604A1
Filed 05/09/2008
|
Current Assignee
Auckland UniServices Limited
|
Original Assignee
Auckland UniServices Limited
|
WIRELESS ENERGY TRANSFER WITH FREQUENCY HOPPING | ||
Patent #
US 20100171368A1
Filed 12/31/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS POWER INFRASTRUCTURE | ||
Patent #
US 20100256831A1
Filed 04/03/2009
|
Current Assignee
International Business Machines Corporation
|
Original Assignee
International Business Machines Corporation
|
Apparatus and system for transmitting power wirelessly | ||
Patent #
US 7,843,288 B2
Filed 04/30/2008
|
Current Assignee
Samsung Electronics Co. Ltd., Postech Academy-Industry Foundation
|
Original Assignee
Samsung Electronics Co. Ltd., Postech Academy-Industry Foundation
|
WIRELESS ENERGY TRANSFER BETWEEN A SOURCE AND A VEHICLE | ||
Patent #
US 20100277121A1
Filed 04/29/2010
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER WITH HIGH-Q TO MORE THAN ONE DEVICE | ||
Patent #
US 20100127575A1
Filed 12/16/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
ADAPTIVE WIRELESS POWER TRANSFER APPARATUS AND METHOD THEREOF | ||
Patent #
US 20100045114A1
Filed 08/20/2009
|
Current Assignee
Intel Corporation
|
Original Assignee
Intel Corporation
|
WIRELESS POWER TRANSFER SYSTEM | ||
Patent #
US 20100201310A1
Filed 04/10/2009
|
Current Assignee
Avago Technologies General IP PTE Limited
|
Original Assignee
Broadcom Corporation
|
Apparatus for wireless power transmission using high Q low frequency near magnetic field resonator | ||
Patent #
US 20100123530A1
Filed 11/17/2009
|
Current Assignee
Samsung Electronics Co. Ltd.
|
Original Assignee
Samsung Electronics Co. Ltd.
|
ANTENNA SHARING FOR WIRELESSLY POWERED DEVICES | ||
Patent #
US 20100222010A1
Filed 01/28/2010
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
MAGNETIC INDUCTIVE CHARGING WITH LOW FAR FIELDS | ||
Patent #
US 20100244767A1
Filed 03/27/2009
|
Current Assignee
Microsoft Technology Licensing LLC
|
Original Assignee
Microsoft Corporation
|
MAXIMIZING POWER YIELD FROM WIRELESS POWER MAGNETIC RESONATORS | ||
Patent #
US 20100171370A1
Filed 03/18/2010
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
WIRELESS POWER APPARATUS AND WIRELESS POWER-RECEIVING METHOD | ||
Patent #
US 20100244583A1
Filed 03/31/2010
|
Current Assignee
Fujitsu Limited
|
Original Assignee
Fujitsu Limited
|
SYSTEM AND METHOD FOR CHARGING A PLUG-IN ELECTRIC VEHICLE | ||
Patent #
US 20100156355A1
Filed 12/19/2008
|
Current Assignee
GM Global Technology Operations LLC
|
Original Assignee
GM Global Technology Operations Incorporated
|
POWER TRANSMITTING APPARATUS | ||
Patent #
US 20100244839A1
Filed 03/15/2010
|
Current Assignee
Fujitsu Limited
|
Original Assignee
Fujitsu Limited
|
PASSIVE RECEIVERS FOR WIRELESS POWER TRANSMISSION | ||
Patent #
US 20100190435A1
Filed 08/24/2009
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
SPREAD SPECTRUM WIRELESS RESONANT POWER DELIVERY | ||
Patent #
US 20100034238A1
Filed 09/30/2008
|
Current Assignee
Avago Technologies General IP PTE Limited
|
Original Assignee
Broadcom Corporation
|
NON-CONTACT POWER TRANSMISSION DEVICE | ||
Patent #
US 20100052431A1
Filed 09/01/2009
|
Current Assignee
Sony Corporation
|
Original Assignee
Sony Corporation
|
NON-CONTACT POWER TRANSMISSION APPARATUS AND METHOD FOR DESIGNING NON-CONTACT POWER TRANSMISSION APPARATUS | ||
Patent #
US 20100115474A1
Filed 11/03/2009
|
Current Assignee
Toyota Industries Corporation
|
Original Assignee
Kabushiki Kaisha Toyota Jidoshokki
|
TRANSMITTERS AND RECEIVERS FOR WIRELESS ENERGY TRANSFER | ||
Patent #
US 20100237708A1
Filed 03/26/2010
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
Noncontact Electric Power Transmission System | ||
Patent #
US 20100219696A1
Filed 02/19/2010
|
Current Assignee
Murata Manufacturing Co Limited
|
Original Assignee
TOKO Incorporated
|
PARASITIC DEVICES FOR WIRELESS POWER TRANSFER | ||
Patent #
US 20100277120A1
Filed 04/08/2010
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
WIRELESS ENERGY TRANSFER WITH HIGH-Q SUB-WAVELENGTH RESONATORS | ||
Patent #
US 20100123355A1
Filed 12/16/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
WIRELESS ENERGY TRANSFER WITH HIGH-Q AT HIGH EFFICIENCY | ||
Patent #
US 20100127574A1
Filed 12/16/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
WIRELESS POWER TRANSMISSION SCHEDULING | ||
Patent #
US 20100253281A1
Filed 03/02/2010
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
Power Transfer Apparatus | ||
Patent #
US 20100244582A1
Filed 03/30/2010
|
Current Assignee
Fujitsu Limited
|
Original Assignee
Fujitsu Limited
|
WIRELESS POWERING AND CHARGING STATION | ||
Patent #
US 20100277005A1
Filed 07/16/2010
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
NONCONTACT POWER RECEIVING APPARATUS AND VEHICLE INCLUDING THE SAME | ||
Patent #
US 20100295506A1
Filed 09/19/2008
|
Current Assignee
Ibaraki Toyota Jidosha Kabushiki Kaisha
|
Original Assignee
Ibaraki Toyota Jidosha Kabushiki Kaisha
|
TRANSMITTERS FOR WIRELESS POWER TRANSMISSION | ||
Patent #
US 20100184371A1
Filed 09/16/2009
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
TRACKING RECEIVER DEVICES WITH WIRELESS POWER SYSTEMS, APPARATUSES, AND METHODS | ||
Patent #
US 20100248622A1
Filed 10/02/2009
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
GLAZING | ||
Patent #
US 20100060077A1
Filed 11/07/2007
|
Current Assignee
Pilkington Automotive Deutschland GmbH
|
Original Assignee
Pilkington Automotive Deutschland GmbH
|
WIRELESS ENERGY TRANSFER WITH HIGH-Q DEVICES AT VARIABLE DISTANCES | ||
Patent #
US 20100123354A1
Filed 12/16/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
IMPEDANCE CHANGE DETECTION IN WIRELESS POWER TRANSMISSION | ||
Patent #
US 20100217553A1
Filed 12/17/2009
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
INTEGRATED WIRELESS RESONANT POWER CHARGING AND COMMUNICATION CHANNEL | ||
Patent #
US 20100036773A1
Filed 09/30/2008
|
Current Assignee
Avago Technologies General IP PTE Limited
|
Original Assignee
Broadcom Corporation
|
FLAT, ASYMMETRIC, AND E-FIELD CONFINED WIRELESS POWER TRANSFER APPARATUS AND METHOD THEREOF | ||
Patent #
US 20100052811A1
Filed 08/20/2009
|
Current Assignee
Intel Corporation
|
Original Assignee
Intel Corporation
|
WIRELESS NON-RADIATIVE ENERGY TRANSFER | ||
Patent #
US 20100102639A1
Filed 09/03/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
WIRELESS ENERGY TRANSFER ACROSS VARIABLE DISTANCES | ||
Patent #
US 20100102641A1
Filed 12/30/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
WIRELESS ENERGY TRANSFER WITH HIGH-Q SIMILAR RESONANT FREQUENCY RESONATORS | ||
Patent #
US 20100096934A1
Filed 12/23/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
WIRELESS ENERGY TRANSFER TO A MOVING DEVICE BETWEEN HIGH-Q RESONATORS | ||
Patent #
US 20100102640A1
Filed 12/30/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
WIRELESS POWER TRANSMISSION FOR ELECTRONIC DEVICES | ||
Patent #
US 20100109443A1
Filed 07/27/2009
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
WIRELESS ENERGY TRANSFER OVER A DISTANCE AT HIGH EFFICIENCY | ||
Patent #
US 20100127573A1
Filed 12/16/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
WIRELESS POWER TRANSMISSION FOR PORTABLE WIRELESS POWER CHARGING | ||
Patent #
US 20100127660A1
Filed 08/18/2009
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
WIRELESS ENERGY TRANSFER WITH HIGH-Q FROM MORE THAN ONE SOURCE | ||
Patent #
US 20100123353A1
Filed 12/16/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
Power supply system and method of controlling power supply system | ||
Patent #
US 20100123452A1
Filed 10/13/2009
|
Current Assignee
Ibaraki Toyota Jidosha Kabushiki Kaisha
|
Original Assignee
Ibaraki Toyota Jidosha Kabushiki Kaisha
|
WIRELESS ENERGY TRANSFER ACROSS VARIABLE DISTANCES WITH HIGH-Q CAPACITIVELY-LOADED CONDUCTING-WIRE LOOPS | ||
Patent #
US 20100133919A1
Filed 12/30/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
Magnetic Induction Devices And Methods For Producing Them | ||
Patent #
US 20100188183A1
Filed 06/12/2008
|
Current Assignee
Advanced Magnetic Solutions Limited
|
Original Assignee
Advanced Magnetic Solutions Limited
|
Wireless non-radiative energy transfer | ||
Patent #
US 7,741,734 B2
Filed 07/05/2006
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
WIRELESS ENERGY TRANSFER OVER VARIABLE DISTANCES BETWEEN RESONATORS OF SUBSTANTIALLY SIMILAR RESONANT FREQUENCIES | ||
Patent #
US 20100133918A1
Filed 12/30/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
ADAPTIVE POWER CONTROL FOR WIRELESS CHARGING | ||
Patent #
US 20100181961A1
Filed 11/10/2009
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
WIRELESS ENERGY TRANSFER ACROSS A DISTANCE TO A MOVING DEVICE | ||
Patent #
US 20100133920A1
Filed 12/30/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
WIRELESS ENERGY TRANSFER USING MAGNETIC MATERIALS TO SHAPE FIELD AND REDUCE LOSS | ||
Patent #
US 20100164298A1
Filed 12/28/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
TEMPERATURE COMPENSATION IN A WIRELESS TRANSFER SYSTEM | ||
Patent #
US 20100181845A1
Filed 03/30/2010
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER USING CONDUCTING SURFACES TO SHAPE FIELDS AND REDUCE LOSS | ||
Patent #
US 20100164297A1
Filed 12/28/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
HIGH EFFICIENCY AND POWER TRANSFER IN WIRELESS POWER MAGNETIC RESONATORS | ||
Patent #
US 20100181844A1
Filed 03/18/2010
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
WIRELESS POWER TRANSFER FOR VEHICLES | ||
Patent #
US 20100201189A1
Filed 10/02/2009
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
WIRELESS POWER FOR CHARGING DEVICES | ||
Patent #
US 20100194206A1
Filed 11/13/2009
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
WIRELESS POWER CHARGING TIMING AND CHARGING CONTROL | ||
Patent #
US 20100213895A1
Filed 10/30/2009
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
BIOLOGICAL EFFECTS OF MAGNETIC POWER TRANSFER | ||
Patent #
US 20100201205A1
Filed 04/23/2010
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
INDUCED POWER TRANSMISSION CIRCUIT | ||
Patent #
US 20100213770A1
Filed 09/15/2008
|
Current Assignee
Hideo Kikuchi
|
Original Assignee
Hideo Kikuchi
|
NON-CONTACT POWER TRANSMISSION APPARATUS | ||
Patent #
US 20100201316A1
Filed 02/08/2010
|
Current Assignee
Toyota Industries Corporation
|
Original Assignee
Kabushiki Kaisha Toyota Jidoshokki
|
NON-CONTACT POWER TRANSMISSION APPARATUS | ||
Patent #
US 20100201204A1
Filed 02/08/2010
|
Current Assignee
Toyota Industries Corporation
|
Original Assignee
Kabushiki Kaisha Toyota Jidoshokki
|
INCREASING THE Q FACTOR OF A RESONATOR | ||
Patent #
US 20100237707A1
Filed 02/26/2010
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
ELECTRIC POWER SUPPLYING APPARATUS AND ELECTRIC POWER TRANSMITTING SYSTEM USING THE SAME | ||
Patent #
US 20100219695A1
Filed 02/18/2010
|
Current Assignee
Sony Corporation
|
Original Assignee
Sony Corporation
|
COIL UNIT, AND POWER TRANSMISSION DEVICE AND POWER RECEPTION DEVICE USING THE COIL UNIT | ||
Patent #
US 20100244579A1
Filed 03/19/2010
|
Current Assignee
Samsung Electronics Co. Ltd.
|
Original Assignee
Seiko Epson Corporation
|
WIRELESS ELECTRIC POWER SUPPLY METHOD AND WIRELESS ELECTRIC POWER SUPPLY APPARATUS | ||
Patent #
US 20100244581A1
Filed 03/29/2010
|
Current Assignee
Fujitsu Limited
|
Original Assignee
Fujitsu Limited
|
WIRELESS ENERGY TRANSFER RESONATOR ENCLOSURES | ||
Patent #
US 20100231340A1
Filed 03/10/2010
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS POWER SYSTEM AND PROXIMITY EFFECTS | ||
Patent #
US 20100237706A1
Filed 02/19/2010
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
WIRELESS ENERGY TRANSFER IN LOSSY ENVIRONMENTS | ||
Patent #
US 20100219694A1
Filed 02/13/2010
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
POWER TRANSMMISSION APPARATUS, POWER TRANSMISSION/RECEPTION APPARATUS, AND METHOD OF TRANSMITTING POWER | ||
Patent #
US 20100244578A1
Filed 03/16/2010
|
Current Assignee
Fujitsu Limited
|
Original Assignee
Fujitsu Limited
|
WIRELESS POWER BRIDGE | ||
Patent #
US 20100225175A1
Filed 05/21/2010
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
WIRELESS POWER SUPPLY APPARATUS | ||
Patent #
US 20100244580A1
Filed 03/24/2010
|
Current Assignee
Fujitsu Limited
|
Original Assignee
Fujitsu Limited
|
WIRELESS POWER RANGE INCREASE USING PARASITIC RESONATORS | ||
Patent #
US 20100231053A1
Filed 05/26/2010
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
WIRELESS POWER SUPPLY SYSTEM AND WIRELESS POWER SUPPLY METHOD | ||
Patent #
US 20100244577A1
Filed 03/11/2010
|
Current Assignee
Fujitsu Limited
|
Original Assignee
Fujitsu Limited
|
Method and Apparatus for Automatic Charging of an Electrically Powered Vehicle | ||
Patent #
US 20100235006A1
Filed 04/22/2009
|
Current Assignee
Wendell Brown
|
Original Assignee
Wendell Brown
|
WIRELESS ENERGY TRANSFER CONVERTERS | ||
Patent #
US 20100264747A1
Filed 04/26/2010
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
POWER TRANSMISSION DEVICE, POWER TRANSMISSION METHOD, POWER RECEPTION DEVICE, POWER RECEPTION METHOD, AND POWER TRANSMISSION SYSTEM | ||
Patent #
US 20100259109A1
Filed 04/06/2010
|
Current Assignee
Sony Corporation
|
Original Assignee
Sony Corporation
|
WIRELESS POWER TRANSMITTING SYSTEM, POWER RECEIVING STATION, POWER TRANSMITTING STATION, AND RECORDING MEDIUM | ||
Patent #
US 20100264746A1
Filed 03/30/2010
|
Current Assignee
Fujitsu Limited
|
Original Assignee
Fujitsu Limited
|
LONG RANGE LOW FREQUENCY RESONATOR | ||
Patent #
US 20100253152A1
Filed 03/04/2010
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
WIRELESS ENERGY TRANSFER USING REPEATER RESONATORS | ||
Patent #
US 20100259108A1
Filed 03/10/2010
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Method and Apparatus for Providing a Wireless Multiple-Frequency MR Coil | ||
Patent #
US 20100256481A1
Filed 09/29/2008
|
Current Assignee
University of Florida Research Foundation Incorporated
|
Original Assignee
University of Florida Research Foundation Incorporated
|
RESONATORS FOR WIRELESS POWER APPLICATIONS | ||
Patent #
US 20100264745A1
Filed 03/18/2010
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
RESONATOR OPTIMIZATIONS FOR WIRELESS ENERGY TRANSFER | ||
Patent #
US 20100259110A1
Filed 04/09/2010
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
PLANAR COIL AND CONTACTLESS ELECTRIC POWER TRANSMISSION DEVICE USING THE SAME | ||
Patent #
US 20100277004A1
Filed 12/24/2008
|
Current Assignee
Panasonic Corporation
|
Original Assignee
Panasonic Corporation
|
MOBILE TERMINALS AND BATTERY PACKS FOR MOBILE TERMINALS | ||
Patent #
US 20100295505A1
Filed 05/24/2010
|
Current Assignee
GE Hybrid Technologies LLC
|
Original Assignee
Hanrim Postech Co. Ltd.
|
Power transmission network | ||
Patent #
US 7,844,306 B2
Filed 05/22/2006
|
Current Assignee
Powercast Corporation
|
Original Assignee
Powercast Corporation
|
ADAPTIVE IMPEDANCE TUNING IN WIRELESS POWER TRANSMISSION | ||
Patent #
US 20100277003A1
Filed 02/25/2010
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
SYSTEMS AND METHODS RELATING TO MULTI-DIMENSIONAL WIRELESS CHARGING | ||
Patent #
US 20100289341A1
Filed 09/25/2009
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
FLOOR COVERING AND INDUCTIVE POWER SYSTEM | ||
Patent #
US 20100314946A1
Filed 10/23/2007
|
Current Assignee
Koninklijke Philips N.V.
|
Original Assignee
Koninklijke Philips N.V.
|
INDUCTIVE POWER SYSTEM AND METHOD OF OPERATION | ||
Patent #
US 20100328044A1
Filed 10/16/2007
|
Current Assignee
Koninklijke Philips N.V.
|
Original Assignee
Koninklijke Philips N.V.
|
INTEGRATED RESONATOR-SHIELD STRUCTURES | ||
Patent #
US 20100308939A1
Filed 08/20/2010
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Inductively powered secondary assembly | ||
Patent #
US 7,474,058 B2
Filed 11/10/2006
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
INDUCTIVE POWER SUPPLY, REMOTE DEVICE POWERED BY INDUCTIVE POWER SUPPLY AND METHOD FOR OPERATING SAME | ||
Patent #
US 20090010028A1
Filed 09/25/2008
|
Current Assignee
Access Business Group International LLC
|
Original Assignee
Access Business Group International LLC
|
Wireless Energy Transfer Using Coupled Antennas | ||
Patent #
US 20090015075A1
Filed 07/09/2007
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Nigel Power LLC
|
Wireless Power System and Proximity Effects | ||
Patent #
US 20090045772A1
Filed 06/10/2008
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Nigel Power LLC
|
Transmitter head and system for contactless energy transmission | ||
Patent #
US 7,492,247 B2
Filed 02/20/2004
|
Current Assignee
Sew-Eurodrive GmbH Company KG
|
Original Assignee
Sew-Eurodrive GmbH Company KG
|
INCREASING THE Q FACTOR OF A RESONATOR | ||
Patent #
US 20090051224A1
Filed 08/11/2008
|
Current Assignee
Nigel Power LLC
|
Original Assignee
Nigel Power LLC
|
INDUCTIVE POWER TRANSFER SYSTEM FOR PALATAL IMPLANT | ||
Patent #
US 20090038623A1
Filed 08/15/2008
|
Current Assignee
Pavad Medical Inc.
|
Original Assignee
Pavad Medical Inc.
|
Deployable Antennas for Wireless Power | ||
Patent #
US 20090033564A1
Filed 08/02/2007
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Nigel Power LLC
|
CONTACT-LESS POWER SUPPLY, CONTACT-LESS CHARGER SYSTEMS AND METHOD FOR CHARGING RECHARGEABLE BATTERY CELL | ||
Patent #
US 20090033280A1
Filed 01/23/2007
|
Current Assignee
LS Cable And System Limited
|
Original Assignee
LS Cable Limited
|
POWER TRANSMISSION CONTROL DEVICE, POWER TRANSMITTING DEVICE, POWER-TRANSMITTING-SIDE DEVICE, AND NON-CONTACT POWER TRANSMISSION SYSTEM | ||
Patent #
US 20090079387A1
Filed 09/25/2008
|
Current Assignee
Sony Ericsson Mobile Communications Japan Incorporated, Seiko Epson Corporation
|
Original Assignee
Sony Ericsson Mobile Communications Japan Incorporated, Seiko Epson Corporation
|
LONG RANGE LOW FREQUENCY RESONATOR AND MATERIALS | ||
Patent #
US 20090058189A1
Filed 08/11/2008
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Nigel Power LLC
|
CONTACTLESS POWER SUPPLY | ||
Patent #
US 20090067198A1
Filed 08/28/2008
|
Current Assignee
Powercast Corporation
|
Original Assignee
Michael Thomas Mcelhinny, David Jeffrey Graham, Jesse Frederick Goellner, Alexander Brailovsky
|
High Efficiency and Power Transfer in Wireless Power Magnetic Resonators | ||
Patent #
US 20090072629A1
Filed 09/16/2008
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Nigel Power LLC
|
VERSATILE APPARATUS AND METHOD FOR ELECTRONIC DEVICES | ||
Patent #
US 20090072782A1
Filed 03/05/2007
|
Current Assignee
Pure Energy Solutions Inc.
|
Original Assignee
Pure Energy Solutions Inc.
|
Antennas for Wireless Power applications | ||
Patent #
US 20090072628A1
Filed 09/14/2008
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Nigel Power LLC
|
Systems and Methods for Wireless Power | ||
Patent #
US 20090058361A1
Filed 06/02/2008
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Maximizing Power Yield from Wireless Power Magnetic Resonators | ||
Patent #
US 20090072627A1
Filed 09/14/2008
|
Current Assignee
Nigel Power LLC
|
Original Assignee
Nigel Power LLC
|
Transmitters and receivers for wireless energy transfer | ||
Patent #
US 20090079268A1
Filed 09/16/2008
|
Current Assignee
Nigel Power LLC
|
Original Assignee
Nigel Power LLC
|
WIRELESS ENERGY TRANSFER | ||
Patent #
US 20090108679A1
Filed 10/30/2007
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
ATI Technologies ULC
|
Power supply system | ||
Patent #
US 7,514,818 B2
Filed 10/24/2006
|
Current Assignee
Panasonic Electric Works Company Limited
|
Original Assignee
Matsushita Electric Industrial Company Limited
|
System and method for selective transfer of radio frequency power | ||
Patent #
US 7,521,890 B2
Filed 12/27/2005
|
Current Assignee
Power Science Inc.
|
Original Assignee
Power Science Inc.
|
SYSTEM AND METHOD FOR INDUCTIVE CHARGING OF PORTABLE DEVICES | ||
Patent #
US 20090096413A1
Filed 05/07/2008
|
Current Assignee
Mojo Mobility Inc.
|
Original Assignee
Mojo Mobility Inc.
|
Power adapter for a remote device | ||
Patent #
US 7,518,267 B2
Filed 10/20/2003
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
SYSTEM, DEVICES, AND METHOD FOR ENERGIZING PASSIVE WIRELESS DATA COMMUNICATION DEVICES | ||
Patent #
US 20090108997A1
Filed 10/31/2007
|
Current Assignee
Intermec IP Corporation
|
Original Assignee
Intermec IP Corporation
|
APPARATUS AND METHOD FOR WIRELESS ENERGY AND/OR DATA TRANSMISSION BETWEEN A SOURCE DEVICE AND AT LEAST ONE TARGET DEVICE | ||
Patent #
US 20090085408A1
Filed 08/29/2008
|
Current Assignee
Maquet GmbH Company KG
|
Original Assignee
Maquet GmbH Company KG
|
PRINTED CIRCUIT BOARD COIL | ||
Patent #
US 20090085706A1
Filed 09/24/2008
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Biological Effects of Magnetic Power Transfer | ||
Patent #
US 20090102292A1
Filed 09/18/2008
|
Current Assignee
Witricity Corporation
|
Original Assignee
Nigel Power LLC
|
Contact-less power transfer | ||
Patent #
US 7,525,283 B2
Filed 02/28/2005
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Wireless Power Range Increase Using Parasitic Antennas | ||
Patent #
US 20090134712A1
Filed 11/26/2008
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Nigel Power LLC
|
SYSTEMS AND METHODS FOR WIRELESS PROCESSING AND ADAPTER-BASED COMMUNICATION WITH A MEDICAL DEVICE | ||
Patent #
US 20090115628A1
Filed 10/23/2007
|
Current Assignee
Medapps Incorporated
|
Original Assignee
Medapps Incorporated
|
Wireless Power Bridge | ||
Patent #
US 20090127937A1
Filed 02/29/2008
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Nigel Power LLC
|
NON-CONTACT WIRELESS COMMUNICATION APPARATUS, METHOD OF ADJUSTING RESONANCE FREQUENCY OF NON-CONTACT WIRELESS COMMUNICATION ANTENNA, AND MOBILE TERMINAL APPARATUS | ||
Patent #
US 20090146892A1
Filed 11/14/2008
|
Current Assignee
Sony Corporation
|
Original Assignee
Sony Ericsson Mobile Communications Japan Incorporated
|
ENERGY TRANSFERRING SYSTEM AND METHOD THEREOF | ||
Patent #
US 20090153273A1
Filed 06/19/2008
|
Current Assignee
Darfon Electronics Corporation
|
Original Assignee
Darfon Electronics Corporation
|
Projector, and mobile device and computer device having the same | ||
Patent #
US 20090161078A1
Filed 12/21/2007
|
Current Assignee
OCULON OPTOELECTRONICS INC.
|
Original Assignee
OCULON OPTOELECTRONICS INC.
|
Antenna arrangement for inductive power transmission and use of the antenna arrangement | ||
Patent #
US 7,545,337 B2
Filed 11/13/2006
|
Current Assignee
Vacuumschmelze GmbH Company KG
|
Original Assignee
Vacuumschmelze GmbH Company KG
|
WIRELESS ENERGY TRANSFER | ||
Patent #
US 20090160261A1
Filed 12/19/2007
|
Current Assignee
Nokia Corporation
|
Original Assignee
Nokia Corporation
|
Controlling inductive power transfer systems | ||
Patent #
US 7,554,316 B2
Filed 05/11/2005
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Wireless powering and charging station | ||
Patent #
US 20090179502A1
Filed 01/14/2009
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Nigel Power LLC
|
Wireless Power Transfer using Magneto Mechanical Systems | ||
Patent #
US 20090167449A1
Filed 10/13/2008
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Nigel Power LLC
|
VEHICLE POWER SUPPLY APPARATUS AND VEHICLE WINDOW MEMBER | ||
Patent #
US 20090189458A1
Filed 01/21/2009
|
Current Assignee
Nippon Soken Inc., Ibaraki Toyota Jidosha Kabushiki Kaisha
|
Original Assignee
Ibaraki Toyota Jidosha Kabushiki Kaisha
|
OVEN WITH WIRELESS TEMPERATURE SENSOR FOR USE IN MONITORING FOOD TEMPERATURE | ||
Patent #
US 20090188396A1
Filed 08/05/2008
|
Current Assignee
Premark FEG LLC
|
Original Assignee
Premark FEG LLC
|
INDUCTIVE POWER SUPPLY WITH DUTY CYCLE CONTROL | ||
Patent #
US 20090174263A1
Filed 01/07/2009
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
WIRELESS NON-RADIATIVE ENERGY TRANSFER | ||
Patent #
US 20090195333A1
Filed 03/31/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
WIRELESS NON-RADIATIVE ENERGY TRANSFER | ||
Patent #
US 20090195332A1
Filed 03/31/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
Wireless desktop IT environment | ||
Patent #
US 20090212636A1
Filed 01/11/2009
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Nigel Power LLC
|
Antennas and Their Coupling Characteristics for Wireless Power Transfer via Magnetic Coupling | ||
Patent #
US 20090213028A1
Filed 02/26/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Nigel Power LLC
|
APPARATUS, A SYSTEM AND A METHOD FOR ENABLING ELECTROMAGNETIC ENERGY TRANSFER | ||
Patent #
US 20090237194A1
Filed 09/11/2007
|
Current Assignee
Koninklijke Philips N.V.
|
Original Assignee
Koninklijke Philips N.V.
|
WIRELESS ENERGY TRANSFER | ||
Patent #
US 20090224856A1
Filed 05/08/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
Packaging and Details of a Wireless Power device | ||
Patent #
US 20090224609A1
Filed 03/09/2009
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Nigel Power LLC
|
Contactless Battery Charging Apparel | ||
Patent #
US 20090218884A1
Filed 06/28/2006
|
Current Assignee
Cynetic Designs Ltd.
|
Original Assignee
Cynetic Designs Ltd.
|
CHARGING APPARATUS | ||
Patent #
US 20090224723A1
Filed 03/06/2009
|
Current Assignee
Canon Kabushiki Kaisha
|
Original Assignee
Canon Kabushiki Kaisha
|
Ferrite Antennas for Wireless Power Transfer | ||
Patent #
US 20090224608A1
Filed 02/23/2009
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Nigel Power LLC
|
INDUCTIVE POWER SUPPLY SYSTEM WITH MULTIPLE COIL PRIMARY | ||
Patent #
US 20090230777A1
Filed 03/12/2009
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Power Transmitting Apparatus, Power Transmission Method, Program, and Power Transmission System | ||
Patent #
US 20090271048A1
Filed 04/27/2009
|
Current Assignee
Sony Corporation
|
Original Assignee
Sony Corporation
|
POWER TRANSMITTING APPARATUS, POWER RECEIVING APPARATUS, POWER TRANSMISSION METHOD, PROGRAM, AND POWER TRANSMISSION SYSTEM | ||
Patent #
US 20090271047A1
Filed 04/23/2009
|
Current Assignee
Sony Corporation
|
Original Assignee
Sony Corporation
|
Tuning and Gain Control in Electro-Magnetic power systems | ||
Patent #
US 20090243394A1
Filed 03/28/2008
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Nigel Power LLC
|
Power Exchange Device, Power Exchange Method, Program, and Power Exchange System | ||
Patent #
US 20090251008A1
Filed 04/01/2009
|
Current Assignee
Sony Corporation
|
Original Assignee
Sony Corporation
|
Non-Contact Charger Available Of Wireless Data and Power Transmission, Charging Battery-Pack and Mobile Device Using Non-Contact Charger | ||
Patent #
US 20090261778A1
Filed 10/25/2006
|
Current Assignee
GE Hybrid Technologies LLC
|
Original Assignee
Hanrim Postech Co. Ltd.
|
WIRELESS NON-RADIATIVE ENERGY TRANSFER | ||
Patent #
US 20090267709A1
Filed 03/31/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
WIRELESS NON-RADIATIVE ENERGY TRANSFER | ||
Patent #
US 20090267710A1
Filed 03/31/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
Low frequency transcutaneous energy transfer to implanted medical device | ||
Patent #
US 7,599,743 B2
Filed 06/24/2004
|
Current Assignee
Ethicon Endo-Surgery Inc.
|
Original Assignee
Ethicon Endo-Surgery Inc.
|
Packaging and Details of a Wireless Power device | ||
Patent #
US 20090243397A1
Filed 03/04/2009
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Nigel Power LLC
|
Wireless Power Charging System | ||
Patent #
US 20090267558A1
Filed 06/26/2008
|
Current Assignee
GE Hybrid Technologies LLC
|
Original Assignee
Spacon Co. Ltd.
|
WIRELESS CHARGING MODULE AND ELECTRONIC APPARATUS | ||
Patent #
US 20090289595A1
Filed 10/09/2008
|
Current Assignee
Darfon Electronics Corporation
|
Original Assignee
Darfon Electronics Corporation
|
Inductively powered apparatus | ||
Patent #
US 7,615,936 B2
Filed 04/27/2007
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Power Transmission Device, Power Transmission Method, Program, Power Receiving Device and Power Transfer System | ||
Patent #
US 20090281678A1
Filed 05/06/2009
|
Current Assignee
Sony Corporation
|
Original Assignee
Sony Corporation
|
REVERSE LINK SIGNALING VIA RECEIVE ANTENNA IMPEDANCE MODULATION | ||
Patent #
US 20090286476A1
Filed 10/10/2008
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
SIGNALING CHARGING IN WIRELESS POWER ENVIRONMENT | ||
Patent #
US 20090286475A1
Filed 10/10/2008
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
TIME REMAINING TO CHARGE AN IMPLANTABLE MEDICAL DEVICE, CHARGER INDICATOR, SYSTEM AND METHOD THEREFORE | ||
Patent #
US 20090273318A1
Filed 04/30/2008
|
Current Assignee
Medtronic Incorporated
|
Original Assignee
Medtronic Incorporated
|
METHOD AND APPARATUS FOR AN ENLARGED WIRELESS CHARGING AREA | ||
Patent #
US 20090284218A1
Filed 10/10/2008
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
WIRELESS POWER TRANSFER FOR APPLIANCES AND EQUIPMENTS | ||
Patent #
US 20090284245A1
Filed 11/07/2008
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
TRANSMIT POWER CONTROL FOR A WIRELESS CHARGING SYSTEM | ||
Patent #
US 20090284369A1
Filed 10/10/2008
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
METHOD AND APPARATUS FOR ADAPTIVE TUNING OF WIRELESS POWER TRANSFER | ||
Patent #
US 20090284220A1
Filed 11/06/2008
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
WIRELESS ENERGY TRANSFER, INCLUDING INTERFERENCE ENHANCEMENT | ||
Patent #
US 20090284083A1
Filed 05/14/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
RECEIVE ANTENNA FOR WIRELESS POWER TRANSFER | ||
Patent #
US 20090284227A1
Filed 10/10/2008
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
Wireless Delivery of power to a Fixed-Geometry power part | ||
Patent #
US 20090273242A1
Filed 05/05/2008
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Nigel Power LLC
|
REPEATERS FOR ENHANCEMENT OF WIRELESS POWER TRANSFER | ||
Patent #
US 20090286470A1
Filed 11/06/2008
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
METHOD AND APPARATUS WITH NEGATIVE RESISTANCE IN WIRELESS POWER TRANSFERS | ||
Patent #
US 20090284082A1
Filed 11/06/2008
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
Wireless power receiving device | ||
Patent #
US 20090308933A1
Filed 11/13/2007
|
Current Assignee
Semiconductor Energy Laboratory Co. Ltd.
|
Original Assignee
Semiconductor Energy Laboratory Co. Ltd.
|
Adaptive inductive power supply | ||
Patent #
US 7,639,514 B2
Filed 03/12/2007
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
CONTROLLING INDUCTIVE POWER TRANSFER SYSTEMS | ||
Patent #
US 20090322158A1
Filed 09/09/2009
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Wireless delivery of power to a mobile powered device | ||
Patent #
US 20090299918A1
Filed 05/28/2008
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Nigel Power LLC
|
POWER TRANSMISSION CONTROL DEVICE, POWER TRANSMISSION DEVICE, POWER RECEIVING CONTROL DEVICE, POWER RECEIVING DEVICE, AND ELECTRONIC APPARATUS | ||
Patent #
US 20090322280A1
Filed 06/23/2009
|
Current Assignee
Samsung Electronics Co. Ltd.
|
Original Assignee
Seiko Epson Corporation
|
Downhole Coils | ||
Patent #
US 20080012569A1
Filed 09/25/2007
|
Current Assignee
Schlumberger Technology Corporation
|
Original Assignee
Schlumberger Technology Corporation
|
Method and apparatus for delivering energy to an electrical or electronic device via a wireless link | ||
Patent #
US 20080014897A1
Filed 01/17/2007
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
WIRELESS ELECTROMAGNETIC PARASITIC POWER TRANSFER | ||
Patent #
US 20080036588A1
Filed 06/25/2007
|
Current Assignee
Securaplane Technologies Inc.
|
Original Assignee
Securaplane Technologies Inc.
|
MRI COMPATIBLE IMPLANTED ELECTRONIC MEDICAL DEVICE WITH POWER AND DATA COMMUNICATION CAPABILITY | ||
Patent #
US 20080051854A1
Filed 08/24/2007
|
Current Assignee
Kenergy Inc.
|
Original Assignee
Kenergy Inc.
|
ELECTRICAL WIRE AND METHOD OF FABRICATING THE ELECTRICAL WIRE | ||
Patent #
US 20080047727A1
Filed 10/31/2007
|
Current Assignee
Newire Incorporated
|
Original Assignee
Newire Incorporated
|
Flexible Circuit for Downhole Antenna | ||
Patent #
US 20080030415A1
Filed 08/02/2006
|
Current Assignee
Schlumberger Technology Corporation
|
Original Assignee
Schlumberger Technology Corporation
|
Method and apparatus for wireless power transmission | ||
Patent #
US 20080067874A1
Filed 09/14/2007
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
Biothermal power source for implantable devices | ||
Patent #
US 7,340,304 B2
Filed 09/13/2004
|
Current Assignee
Biomed Solutions LLC
|
Original Assignee
Biomed Solutions LLC
|
Inductive power adapter | ||
Patent #
US 7,378,817 B2
Filed 12/12/2003
|
Current Assignee
Microsoft Technology Licensing LLC
|
Original Assignee
Microsoft Corporation
|
Inductive battery charger | ||
Patent #
US 7,375,493 B2
Filed 12/12/2003
|
Current Assignee
Microsoft Technology Licensing LLC
|
Original Assignee
Microsoft Corporation
|
Inductively charged battery pack | ||
Patent #
US 7,375,492 B2
Filed 12/12/2003
|
Current Assignee
Microsoft Technology Licensing LLC
|
Original Assignee
Microsoft Corporation
|
Device for multicentric brain modulation, repair and interface | ||
Patent #
US 20080154331A1
Filed 12/21/2006
|
Current Assignee
University of Pittsburgh of The Commonwealth System of Higher Education
|
Original Assignee
E-Soc, University of Pittsburgh of The Commonwealth System of Higher Education
|
Portable electromagnetic navigation system | ||
Patent #
US 20080132909A1
Filed 12/01/2006
|
Current Assignee
Medtronic Navigation Incorporated
|
Original Assignee
Medtronic Navigation Incorporated
|
Inductively coupled ballast circuit | ||
Patent #
US 7,385,357 B2
Filed 11/28/2006
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
System and method for powering a load | ||
Patent #
US 7,382,636 B2
Filed 10/14/2005
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
METHOD AND SYSTEM FOR POWER SAVING IN WIRELESS COMMUNICATIONS | ||
Patent #
US 20080176521A1
Filed 01/15/2008
|
Current Assignee
Samsung Electronics Co. Ltd.
|
Original Assignee
Samsung Electronics Co. Ltd.
|
Power transmission control device, power reception control device, non-contact power transmission system, power transmission device, power reception device, and electronic instrument | ||
Patent #
US 20080197802A1
Filed 02/15/2008
|
Current Assignee
Sony Ericsson Mobile Communications Japan Incorporated, Seiko Epson Corporation
|
Original Assignee
Sony Ericsson Mobile Communications Japan Incorporated, Seiko Epson Corporation
|
INDUCTIVELY COUPLED BALLAST CIRCUIT | ||
Patent #
US 20080191638A1
Filed 02/25/2008
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Transmission Of Power Supply For Robot Applications Between A First Member And A Second Member Arranged Rotatable Relative To One Another | ||
Patent #
US 20080197710A1
Filed 11/30/2005
|
Current Assignee
ABB Research Ltd.
|
Original Assignee
ABB Research Ltd.
|
WIRELESS POWER APPARATUS AND METHODS | ||
Patent #
US 20080211320A1
Filed 01/22/2008
|
Current Assignee
Witricity Corporation
|
Original Assignee
Nigel Power LLC
|
SYSTEM FOR INDUCTIVE POWER TRANSFER | ||
Patent #
US 20080238364A1
Filed 04/02/2007
|
Current Assignee
Visteon Global Technologies Incorporated
|
Original Assignee
Visteon Global Technologies Incorporated
|
Amplification Relay Device of Electromagnetic Wave and a Radio Electric Power Conversion Apparatus Using the Above Device | ||
Patent #
US 20080266748A1
Filed 07/29/2005
|
Current Assignee
Andong National University Industry Academic Cooperation Foundation, JC Protek Company Limited
|
Original Assignee
Andong National University Industry Academic Cooperation Foundation, JC Protek Company Limited
|
No point of contact charging system | ||
Patent #
US 7,443,135 B2
Filed 04/11/2005
|
Current Assignee
GE Hybrid Technologies LLC
|
Original Assignee
Hanrim Postech Co. Ltd.
|
High power wireless resonant energy transfer system | ||
Patent #
US 20080265684A1
Filed 10/25/2007
|
Current Assignee
Leslie Farkas
|
Original Assignee
Laszlo Farkas
|
Kiosk systems and methods | ||
Patent #
US 20080255901A1
Filed 03/26/2008
|
Current Assignee
Ryko Manufacturing Co.
|
Original Assignee
Ryko Manufacturing Co.
|
Monocular display device | ||
Patent #
US 20080291277A1
Filed 01/08/2008
|
Current Assignee
Kopin Corporation
|
Original Assignee
Kopin Corporation
|
WIRELESS ENERGY TRANSFER | ||
Patent #
US 20080278264A1
Filed 03/26/2008
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
Directional Display Apparatus | ||
Patent #
US 20080273242A1
Filed 05/28/2008
|
Current Assignee
AU Optronics Corporation
|
Original Assignee
Jonathan Harrold, Graham J. Woodgate
|
Tunable Dielectric Resonator Circuit | ||
Patent #
US 20080272860A1
Filed 05/01/2007
|
Current Assignee
Cobham Defense Electronic Systems Corporation
|
Original Assignee
MA Com
|
THERAPY SYSTEM | ||
Patent #
US 20080300657A1
Filed 11/20/2007
|
Current Assignee
ReShape LifeSciences Inc.
|
Original Assignee
ReShape LifeSciences Inc.
|
Resonator structure and method of producing it | ||
Patent #
US 7,466,213 B2
Filed 09/27/2004
|
Current Assignee
Qorvo Inc.
|
Original Assignee
NXP B.V.
|
Wireless battery charging | ||
Patent #
US 7,471,062 B2
Filed 06/12/2002
|
Current Assignee
Koninklijke Philips N.V.
|
Original Assignee
Koninklijke Philips N.V.
|
Portable inductive power station | ||
Patent #
US 7,462,951 B1
Filed 08/11/2004
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Power generation for implantable devices | ||
Patent #
US 20080300660A1
Filed 06/02/2008
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Power transmission system, apparatus and method with communication | ||
Patent #
US 20070010295A1
Filed 07/06/2006
|
Current Assignee
Powercast Llc
|
Original Assignee
Firefly Power Technologies LLC
|
Passive dynamic antenna tuning circuit for a radio frequency identification reader | ||
Patent #
US 20070013483A1
Filed 06/29/2006
|
Current Assignee
Allflex USA Incorporated
|
Original Assignee
Allflex USA Incorporated
|
Implantable device for vital signs monitoring | ||
Patent #
US 20070016089A1
Filed 07/15/2005
|
Current Assignee
Angel Medical Systems Inc., Hi-Tronics Designs Inc.
|
Original Assignee
Angel Medical Systems Inc., Hi-Tronics Designs Inc.
|
Wireless power transmission systems and methods | ||
Patent #
US 20070021140A1
Filed 07/22/2005
|
Current Assignee
Emerson Process Management Power Water Solutions Incorporated
|
Original Assignee
Emerson Process Management Power Water Solutions Incorporated
|
Battery Chargers and Methods for Extended Battery Life | ||
Patent #
US 20070024246A1
Filed 07/27/2006
|
Current Assignee
David Flaugher
|
Original Assignee
David Flaugher
|
Inductively coupled ballast circuit | ||
Patent #
US 7,180,248 B2
Filed 10/22/2004
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Inductive power transfer units having flux shields | ||
Patent #
US 20070064406A1
Filed 09/08/2004
|
Current Assignee
Amway Corporation
|
Original Assignee
Amway Corporation
|
Spatially decoupled twin secondary coils for optimizing transcutaneous energy transfer (TET) power transfer characteristics | ||
Patent #
US 7,191,007 B2
Filed 06/24/2004
|
Current Assignee
Ethicon Endo-Surgery Inc.
|
Original Assignee
Ethicon Endo-Surgery Inc.
|
Resonator system | ||
Patent #
US 7,193,418 B2
Filed 06/13/2005
|
Current Assignee
Bruker Switzerland AG
|
Original Assignee
Bruker Biospin AG
|
CHARGING APPARATUS AND CHARGING SYSTEM | ||
Patent #
US 20070069687A1
Filed 08/09/2006
|
Current Assignee
Sony Corporation
|
Original Assignee
Sony Ericsson Mobile Communications Japan Incorporated
|
HIGH PERFORMANCE INTERCONNECT DEVICES & STRUCTURES | ||
Patent #
US 20070105429A1
Filed 11/06/2006
|
Current Assignee
Georgia Tech Research Corporation
|
Original Assignee
Georgia Tech Research Corporation
|
Radio-frequency (RF) power portal | ||
Patent #
US 20070117596A1
Filed 11/17/2006
|
Current Assignee
Powercast Corporation
|
Original Assignee
Powercast Llc
|
Adaptive inductive power supply | ||
Patent #
US 7,212,414 B2
Filed 10/20/2003
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
RADIO TAG AND SYSTEM | ||
Patent #
US 20070096875A1
Filed 05/22/2006
|
Current Assignee
Visible Assets Incorporated
|
Original Assignee
Visible Assets Incorporated
|
System and method for contact free transfer of power | ||
Patent #
US 20070145830A1
Filed 12/27/2005
|
Current Assignee
Power Science Inc.
|
Original Assignee
MOBILEWISE INC.
|
Antenna Arrangement For Inductive Power Transmission And Use Of The Antenna Arrangement | ||
Patent #
US 20070126650A1
Filed 11/13/2006
|
Current Assignee
Vacuumschmelze GmbH Company KG
|
Original Assignee
Vacuumschmelze GmbH Company KG
|
Power supply system | ||
Patent #
US 7,233,137 B2
Filed 09/23/2004
|
Current Assignee
Sharp Electronics Corporation
|
Original Assignee
Sharp Electronics Corporation
|
ADAPTIVE INDUCTIVE POWER SUPPLY | ||
Patent #
US 20070171681A1
Filed 03/12/2007
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Method for monitoring end of life for battery | ||
Patent #
US 7,251,527 B2
Filed 07/31/2003
|
Current Assignee
Cardiac Pacemakers Incorporated
|
Original Assignee
Cardiac Pacemakers Incorporated
|
Primary units, methods and systems for contact-less power transfer | ||
Patent #
US 7,239,110 B2
Filed 12/01/2004
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Splashpower Limited
|
Portable contact-less power transfer devices and rechargeable batteries | ||
Patent #
US 7,248,017 B2
Filed 11/22/2005
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
SPASHPOWER LIMITED
|
Electric machine signal selecting element | ||
Patent #
US 20070164839A1
Filed 06/13/2005
|
Current Assignee
Panasonic Corporation
|
Original Assignee
Matsushita Electric Industrial Company Limited
|
Multi-receiver communication system with distributed aperture antenna | ||
Patent #
US 20070176840A1
Filed 02/06/2003
|
Current Assignee
Hamilton Sundstrand Corporation
|
Original Assignee
Hamilton Sundstrand Corporation
|
INDUCTIVE POWER SOURCE AND CHARGING SYSTEM | ||
Patent #
US 20070182367A1
Filed 01/30/2007
|
Current Assignee
Mojo Mobility Inc.
|
Original Assignee
Mojo Mobility Inc.
|
Method and system for powering an electronic device via a wireless link | ||
Patent #
US 20070178945A1
Filed 04/21/2006
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
Systems and methods of medical monitoring according to patient state | ||
Patent #
US 20070208263A1
Filed 02/27/2007
|
Current Assignee
Angel Medical Systems Inc.
|
Original Assignee
Angel Medical Systems Inc.
|
Wireless non-radiative energy transfer | ||
Patent #
US 20070222542A1
Filed 07/05/2006
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
Wireless battery charger via carrier frequency signal | ||
Patent #
US 7,288,918 B2
Filed 03/02/2004
|
Current Assignee
Michael Vincent Distefano
|
Original Assignee
Michael Vincent Distefano
|
Device and Method of Non-Contact Energy Transmission | ||
Patent #
US 20070267918A1
Filed 04/29/2005
|
Current Assignee
Geir Gyland
|
Original Assignee
Geir Gyland
|
HOLSTER FOR CHARGING PECTORALLY IMPLANTED MEDICAL DEVICES | ||
Patent #
US 20070257636A1
Filed 04/27/2007
|
Current Assignee
Medtronic Incorporated
|
Original Assignee
Medtronic Incorporated
|
Tool for an Industrial Robot | ||
Patent #
US 20070276538A1
Filed 04/06/2004
|
Current Assignee
ABB Research Ltd.
|
Original Assignee
ABB Research Ltd.
|
Adaptive pulse width modulated resonant Class-D converter | ||
Patent #
US 5,986,895 A
Filed 06/05/1998
|
Current Assignee
Astec International Limited
|
Original Assignee
Astec International Limited
|
Coaxial cable | ||
Patent #
US 5,959,245 A
Filed 05/29/1997
|
Current Assignee
CommScope Inc.
|
Original Assignee
CommScope Inc.
|
Structure of signal transmission line | ||
Patent #
US 6,683,256 B2
Filed 03/27/2002
|
Current Assignee
Ta-San Kao
|
Original Assignee
Ta-San Kao
|
Tunable ferroelectric resonator arrangement | ||
Patent #
US 7,069,064 B2
Filed 02/20/2004
|
Current Assignee
Telefonaktiebolaget LM Ericsson
|
Original Assignee
Telefonaktiebolaget LM Ericsson
|
Planar resonator for wireless power transfer | ||
Patent #
US 6,960,968 B2
Filed 06/26/2002
|
Current Assignee
Koninklijke Philips N.V.
|
Original Assignee
Koninklijke Philips N.V.
|
Transponders, Interrogators, systems and methods for elimination of interrogator synchronization requirement | ||
Patent #
US 5,541,604 A
Filed 09/03/1993
|
Current Assignee
Texas Instruments Inc.
|
Original Assignee
Texas Instruments Deutschland Gesellschaft Mit BeschrNkter Haftung
|
Operation in very close coupling of an electromagnetic transponder system | ||
Patent #
US 6,703,921 B1
Filed 04/05/2000
|
Current Assignee
Stmicroelectronics SA
|
Original Assignee
Stmicroelectronics SA
|
Systems and methods for automated resonant circuit tuning | ||
Patent #
US 20060001509A1
Filed 06/29/2005
|
Current Assignee
Stheno Corp.
|
Original Assignee
Phillip R. Gibbs
|
Thermal therapeutic method | ||
Patent #
US 20060010902A1
Filed 09/19/2005
|
Current Assignee
Dennis Sam Trinh, Albert Long Trinh, David Lam Trinh
|
Original Assignee
Dennis Sam Trinh, Albert Long Trinh, David Lam Trinh
|
Wireless and powerless sensor and interrogator | ||
Patent #
US 6,988,026 B2
Filed 11/04/2003
|
Current Assignee
American Vehicular Sciences LLC
|
Original Assignee
Automotive Technologies International Incorporated
|
Pulse frequency modulation for induction charge device | ||
Patent #
US 20060022636A1
Filed 07/30/2004
|
Current Assignee
KYE Systems Corporation
|
Original Assignee
KYE Systems Corporation
|
Method for authenticating a user to a service of a service provider | ||
Patent #
US 20060053296A1
Filed 05/23/2003
|
Current Assignee
Telefonaktiebolaget LM Ericsson
|
Original Assignee
Telefonaktiebolaget LM Ericsson
|
Contact-less power transfer | ||
Patent #
US 20060061323A1
Filed 10/28/2003
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Self-adjusting RF assembly | ||
Patent #
US 20060066443A1
Filed 09/13/2005
|
Current Assignee
Tagsys SA
|
Original Assignee
Tagsys SA
|
Method and apparatus for a wireless power supply | ||
Patent #
US 7,027,311 B2
Filed 10/15/2004
|
Current Assignee
Powercast Corporation
|
Original Assignee
Firefly Power Technologies LLC
|
Feedthrough filter capacitor assembly with internally grounded hermetic insulator | ||
Patent #
US 7,035,076 B1
Filed 08/15/2005
|
Current Assignee
Greatbatch Limited
|
Original Assignee
Greatbatch-Sierra Inc.
|
Ultrasonic rod waveguide-radiator | ||
Patent #
US 20060090956A1
Filed 11/04/2004
|
Current Assignee
Sergei L. Peshkovsky
|
Original Assignee
Advanced Ultrasound Solutions Inc.
|
Contact-less power transfer | ||
Patent #
US 7,042,196 B2
Filed 12/01/2004
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Splashpower Limited
|
Heating system and heater | ||
Patent #
US 20060132045A1
Filed 12/17/2004
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Philips IP Ventures B.V.
|
Method and apparatus for a wireless power supply | ||
Patent #
US 20060164866A1
Filed 02/17/2006
|
Current Assignee
Powercast Corporation
|
Original Assignee
Powercast Corporation
|
Device for brain stimulation using RF energy harvesting | ||
Patent #
US 20060184209A1
Filed 09/02/2005
|
Current Assignee
University of Pittsburgh of The Commonwealth System of Higher Education
|
Original Assignee
University of Pittsburgh of The Commonwealth System of Higher Education
|
Explantation of implantable medical device | ||
Patent #
US 20060184210A1
Filed 04/13/2006
|
Current Assignee
Medtronic Incorporated
|
Original Assignee
Medtronic Incorporated
|
Sensor apparatus management methods and apparatus | ||
Patent #
US 20060181242A1
Filed 03/01/2006
|
Current Assignee
KLA-Tencor Corporation
|
Original Assignee
KLA-Tencor Corporation
|
Energy harvesting circuit | ||
Patent #
US 7,084,605 B2
Filed 10/18/2004
|
Current Assignee
University of Pittsburgh of The Commonwealth System of Higher Education
|
Original Assignee
University Of Pittsburgh
|
Actuator system for use in control of a sheet or web forming process | ||
Patent #
US 20060185809A1
Filed 02/23/2005
|
Current Assignee
ABB Limited
|
Original Assignee
ABB
|
Battery charging assembly for use on a locomotive | ||
Patent #
US 20060214626A1
Filed 03/25/2005
|
Current Assignee
KIM HOTSTART MANUFACTURING COMPANY
|
Original Assignee
KIM HOTSTART MANUFACTURING COMPANY
|
Adapting portable electrical devices to receive power wirelessly | ||
Patent #
US 20060205381A1
Filed 12/16/2003
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Method, apparatus and system for power transmission | ||
Patent #
US 20060199620A1
Filed 02/16/2006
|
Current Assignee
Powercast Llc
|
Original Assignee
Firefly Power Technologies LLC
|
Inductive powering surface for powering portable devices | ||
Patent #
US 20060202665A1
Filed 05/13/2005
|
Current Assignee
Microsoft Technology Licensing LLC
|
Original Assignee
Microsoft Corporation
|
Inductively powered apparatus | ||
Patent #
US 7,126,450 B2
Filed 02/04/2003
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Electric vehicle having multiple-use APU system | ||
Patent #
US 20060219448A1
Filed 03/08/2006
|
Current Assignee
Aptiv Technologies Limited
|
Original Assignee
Delphi Technologies Inc.
|
Inductive coil assembly | ||
Patent #
US 7,116,200 B2
Filed 04/27/2005
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Inductively powered apparatus | ||
Patent #
US 7,118,240 B2
Filed 01/14/2005
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Short-range wireless power transmission and reception | ||
Patent #
US 20060238365A1
Filed 09/12/2005
|
Current Assignee
Elio Vecchione, Conor Keegan
|
Original Assignee
Elio Vecchione, Conor Keegan
|
Biothermal power source for implantable devices | ||
Patent #
US 7,127,293 B2
Filed 03/28/2005
|
Current Assignee
Biomed Solutions LLC
|
Original Assignee
Biomed Solutions LLC
|
Inductive coil assembly | ||
Patent #
US 7,132,918 B2
Filed 10/20/2003
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Power transmission network | ||
Patent #
US 20060270440A1
Filed 05/22/2006
|
Current Assignee
Powercast Corporation
|
Original Assignee
Firefly Power Technologies LLC
|
High Q factor sensor | ||
Patent #
US 7,147,604 B1
Filed 08/07/2002
|
Current Assignee
St. Jude Medical Luxembourg Holdings Ii S.A.R.L.
|
Original Assignee
CardioMEMS Incorporated
|
Powering devices using RF energy harvesting | ||
Patent #
US 20060281435A1
Filed 06/06/2006
|
Current Assignee
Powercast Corporation
|
Original Assignee
Firefly Power Technologies LLC
|
System, method and apparatus for contact-less battery charging with dynamic control | ||
Patent #
US 6,844,702 B2
Filed 05/16/2002
|
Current Assignee
Koninklijke Philips N.V.
|
Original Assignee
Koninklijke Philips N.V.
|
Method of rendering a mechanical heart valve non-thrombogenic with an electrical device | ||
Patent #
US 20050021134A1
Filed 06/30/2004
|
Current Assignee
JS Vascular Inc.
|
Original Assignee
JS Vascular Inc.
|
Magnetically coupled antenna range extender | ||
Patent #
US 6,839,035 B1
Filed 10/07/2003
|
Current Assignee
CTT Corporation Systems
|
Original Assignee
CTT Corporation Systems
|
Vehicle interface | ||
Patent #
US 20050007067A1
Filed 06/18/2004
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Multi-frequency piezoelectric energy harvester | ||
Patent #
US 6,858,970 B2
Filed 10/21/2002
|
Current Assignee
The Boeing Co.
|
Original Assignee
The Boeing Co.
|
Temperature regulated implant | ||
Patent #
US 20050033382A1
Filed 08/04/2004
|
Current Assignee
Cochlear Limited
|
Original Assignee
Peter Single
|
Energy transfer amplification for intrabody devices | ||
Patent #
US 20050027192A1
Filed 07/29/2003
|
Current Assignee
Biosense Webster Incorporated
|
Original Assignee
Biosense Webster Incorporated
|
Energy harvesting circuits and associated methods | ||
Patent #
US 6,856,291 B2
Filed 07/21/2003
|
Current Assignee
University Of Pittsburgh
|
Original Assignee
University of Pittsburgh of The Commonwealth System of Higher Education
|
Method and apparatus for efficient power/data transmission | ||
Patent #
US 20050085873A1
Filed 10/14/2004
|
Current Assignee
Alfred E. Mann Foundation For Scientific Research
|
Original Assignee
Alfred E. Mann Foundation For Scientific Research
|
Semiconductor photodetector | ||
Patent #
US 20050104064A1
Filed 03/03/2003
|
Current Assignee
The Provost Fellows and Scholars of the College of the Holy and Undivided Trinity of Queen Elizabeth near Dublin
|
Original Assignee
The Provost Fellows and Scholars of the College of the Holy and Undivided Trinity of Queen Elizabeth near Dublin
|
Inductively coupled ballast circuit | ||
Patent #
US 20050093475A1
Filed 10/22/2004
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Method and apparatus for a wireless power supply | ||
Patent #
US 20050104453A1
Filed 10/15/2004
|
Current Assignee
Powercast Corporation
|
Original Assignee
Firefly Power Technologies LLC
|
Method of manufacturing a lamp assembly | ||
Patent #
US 20050116650A1
Filed 10/29/2004
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Contact-less power transfer | ||
Patent #
US 20050140482A1
Filed 12/01/2004
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Lily Ka-Lai Cheng, James Westwood Hay, Pilgrim Giles William Beart
|
Contact-less power transfer | ||
Patent #
US 20050116683A1
Filed 05/13/2003
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Splashpower Limited
|
Contact-less power transfer | ||
Patent #
US 6,906,495 B2
Filed 12/20/2002
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Splashpower Limited
|
Opportunistic power supply charge system for portable unit | ||
Patent #
US 20050127866A1
Filed 12/11/2003
|
Current Assignee
Symbol Technologies LLC
|
Original Assignee
Symbol Technologies Inc.
|
Inductively powered apparatus | ||
Patent #
US 20050127849A1
Filed 01/14/2005
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Christopher Houghton, Stephen J. Mcphilliamy, David W. Baarman
|
Relaying apparatus and communication system | ||
Patent #
US 20050125093A1
Filed 09/21/2004
|
Current Assignee
Sony Corporation
|
Original Assignee
Sony Corporation
|
Inductively powered apparatus | ||
Patent #
US 20050122059A1
Filed 01/14/2005
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Christopher Houghton, Stephen J. Mcphilliamy, David W. Baarman
|
Inductively powered apparatus | ||
Patent #
US 20050122058A1
Filed 01/14/2005
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Christopher Houghton, Stephen J. Mcphilliamy, David W. Baarman
|
Inductively powered apparatus | ||
Patent #
US 20050127850A1
Filed 01/14/2005
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Christopher Houghton, Stephen J. Mcphilliamy, David W. Baarman
|
Contact-less power transfer | ||
Patent #
US 20050135122A1
Filed 12/01/2004
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Lily Ka-Lai Cheng, James Westwood Hay, Pilgrim Giles William Beart
|
Inductively powered lamp assembly | ||
Patent #
US 6,917,163 B2
Filed 02/18/2004
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Mach-Zehnder interferometer using photonic band gap crystals | ||
Patent #
US 6,917,431 B2
Filed 05/15/2002
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
Charging apparatus by non-contact dielectric feeding | ||
Patent #
US 20050156560A1
Filed 04/04/2003
|
Current Assignee
ALPS Electric Company Limited
|
Original Assignee
ALPS Electric Company Limited
|
Transferring power between devices in a personal area network | ||
Patent #
US 20050151511A1
Filed 01/14/2004
|
Current Assignee
Intel Corporation
|
Original Assignee
Intel Corporation
|
Magnetic field production system, and configuration for wire-free supply of a large number of sensors and/or actuators using a magnetic field production system | ||
Patent #
US 6,937,130 B2
Filed 09/16/2002
|
Current Assignee
ABB Research Ltd.
|
Original Assignee
ABB Research Ltd.
|
Method and apparatus of using magnetic material with residual magnetization in transient electromagnetic measurement | ||
Patent #
US 20050189945A1
Filed 01/18/2005
|
Current Assignee
Baker Hughes Incorporated
|
Original Assignee
Baker Hughes Incorporated
|
Wireless battery charger via carrier frequency signal | ||
Patent #
US 20050194926A1
Filed 03/02/2004
|
Current Assignee
Michael Vincent Di Stefano
|
Original Assignee
Michael Vincent Di Stefano
|
Non-contact pumping of light emitters via non-radiative energy transfer | ||
Patent #
US 20050253152A1
Filed 05/11/2004
|
Current Assignee
Los Alamos National Security LLC
|
Original Assignee
Los Alamos National Security LLC
|
Subcutaneously implantable power supply | ||
Patent #
US 6,961,619 B2
Filed 07/08/2002
|
Current Assignee
Don E. Casey
|
Original Assignee
Don E. Casey
|
Charging of devices by microwave power beaming | ||
Patent #
US 6,967,462 B1
Filed 06/05/2003
|
Current Assignee
NasaGlenn Research Center
|
Original Assignee
NasaGlenn Research Center
|
Transcutaneous energy transfer primary coil with a high aspect ferrite core | ||
Patent #
US 20050288742A1
Filed 06/24/2004
|
Current Assignee
Ethicon Endo-Surgery Inc.
|
Original Assignee
Ethicon Endo-Surgery Inc.
|
Medical implant having closed loop transcutaneous energy transfer (TET) power transfer regulation circuitry | ||
Patent #
US 20050288739A1
Filed 06/24/2004
|
Current Assignee
Ethicon Endo-Surgery Inc.
|
Original Assignee
Ethicon Incorporated
|
Low frequency transcutaneous energy transfer to implanted medical device | ||
Patent #
US 20050288741A1
Filed 06/24/2004
|
Current Assignee
Ethicon Endo-Surgery Inc.
|
Original Assignee
Ethicon Endo-Surgery Inc.
|
Inductive coil assembly | ||
Patent #
US 6,975,198 B2
Filed 04/27/2005
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Low frequency transcutaneous telemetry to implanted medical device | ||
Patent #
US 20050288740A1
Filed 06/24/2004
|
Current Assignee
Ethicon Endo-Surgery Inc.
|
Original Assignee
Ethicon Endo-Surgery Inc.
|
Planar resonator for wireless power transfer | ||
Patent #
US 20040000974A1
Filed 06/26/2002
|
Current Assignee
Koninklijke Philips N.V.
|
Original Assignee
Koninklijke Philips N.V.
|
Radio frequency identification system for a fluid treatment system | ||
Patent #
US 6,673,250 B2
Filed 06/18/2002
|
Current Assignee
Access Business Group International LLC
|
Original Assignee
Access Business Group International LLC
|
Low voltage electrified furniture unit | ||
Patent #
US 20040026998A1
Filed 06/12/2003
|
Current Assignee
Kimball International Incorporated
|
Original Assignee
Kimball International Incorporated
|
Coaxial cable and coaxial multicore cable | ||
Patent #
US 6,696,647 B2
Filed 05/23/2002
|
Current Assignee
Hitachi Cable Limited
|
Original Assignee
Hitachi Cable Limited
|
Oscillator module incorporating looped-stub resonator | ||
Patent #
US 20040100338A1
Filed 11/13/2003
|
Current Assignee
Microsemi Corporation
|
Original Assignee
Phasor Technologies Corporation
|
Inductively powered lamp assembly | ||
Patent #
US 6,731,071 B2
Filed 04/26/2002
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Antenna with near-field radiation control | ||
Patent #
US 20040113847A1
Filed 12/12/2002
|
Current Assignee
Blackberry Limited
|
Original Assignee
Blackberry Limited
|
System for a machine having a large number of proximity sensors, as well as a proximity sensor, and a primary winding for this purpose | ||
Patent #
US 6,749,119 B2
Filed 12/11/2001
|
Current Assignee
ABB Research Ltd.
|
Original Assignee
ABB Research Ltd.
|
Adaptive inductive power supply with communication | ||
Patent #
US 20040130915A1
Filed 10/20/2003
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Enhanced RF wireless adaptive power provisioning system for small devices | ||
Patent #
US 20040130425A1
Filed 08/12/2003
|
Current Assignee
MOBILEWISE INC.
|
Original Assignee
MOBILEWISE INC.
|
Adaptive inductive power supply | ||
Patent #
US 20040130916A1
Filed 10/20/2003
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Remote power recharge for electronic equipment | ||
Patent #
US 20040142733A1
Filed 12/29/2003
|
Current Assignee
Ronald J. Parise
|
Original Assignee
Ronald J. Parise
|
Adapter | ||
Patent #
US 20040150934A1
Filed 10/20/2003
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Transmission of information from an implanted medical device | ||
Patent #
US 6,772,011 B2
Filed 08/20/2002
|
Current Assignee
TC1 LLC
|
Original Assignee
Thoratec LLC
|
System and method for wireless electrical power transmission | ||
Patent #
US 6,798,716 B1
Filed 06/19/2003
|
Current Assignee
BC SYSTEMS INC.
|
Original Assignee
BC SYSTEMS INC.
|
System and method for inductive charging a wireless mouse | ||
Patent #
US 20040189246A1
Filed 12/16/2003
|
Current Assignee
SelfCHARGE Inc.
|
Original Assignee
SelfCHARGE Inc.
|
Starter assembly for a gas discharge lamp | ||
Patent #
US 6,806,649 B2
Filed 02/18/2003
|
Current Assignee
Access Business Group International LLC
|
Original Assignee
Access Business Group International LLC
|
Charging system for robot | ||
Patent #
US 20040201361A1
Filed 11/14/2003
|
Current Assignee
Samsung Electronics Co. Ltd.
|
Original Assignee
Samsung Electronics Co. Ltd.
|
Alignment independent and self aligning inductive power transfer system | ||
Patent #
US 6,803,744 B1
Filed 10/31/2000
|
Current Assignee
Anthony Sabo
|
Original Assignee
Anthony Sabo
|
Inductively powered lamp assembly | ||
Patent #
US 6,812,645 B2
Filed 06/05/2003
|
Current Assignee
Access Business Group International LLC
|
Original Assignee
Access Business Group International LLC
|
Communication system | ||
Patent #
US 20040233043A1
Filed 11/13/2003
|
Current Assignee
Hitachi America Limited
|
Original Assignee
Hitachi America Limited
|
Starter assembly for a gas discharge lamp | ||
Patent #
US 20040222751A1
Filed 05/20/2004
|
Current Assignee
Access Business Group International LLC
|
Original Assignee
Scott A. Mollema, Roy W. Kuennen, David W. Baarman
|
Inductive coil assembly | ||
Patent #
US 20040232845A1
Filed 10/20/2003
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Inductively coupled ballast circuit | ||
Patent #
US 6,825,620 B2
Filed 09/18/2002
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Wireless power transmission | ||
Patent #
US 20040227057A1
Filed 04/07/2004
|
Current Assignee
AILOCOM OY
|
Original Assignee
AILOCOM OY
|
Sensor apparatus management methods and apparatus | ||
Patent #
US 20040267501A1
Filed 07/10/2004
|
Current Assignee
KLA-Tencor Corporation
|
Original Assignee
KLA-Tencor Corporation
|
Method of manufacturing a lamp assembly | ||
Patent #
US 6,831,417 B2
Filed 06/05/2003
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Method and apparatus for supplying contactless power | ||
Patent #
US 6,515,878 B1
Filed 08/07/1998
|
Current Assignee
MEINS-SINSLEY PARTNERSHIP
|
Original Assignee
MEINS-SINSLEY PARTNERSHIP
|
Proximity sensor | ||
Patent #
US 20030038641A1
Filed 09/03/2002
|
Current Assignee
ABB Research Ltd.
|
Original Assignee
ABB Research Ltd.
|
Vehicle slide door power supply apparatus and method of supplying power to vehicle slide door | ||
Patent #
US 6,535,133 B2
Filed 11/15/2001
|
Current Assignee
Yazaki Corporation
|
Original Assignee
Yazaki Corporation
|
Resonant frequency tracking system and method for use in a radio frequency (RF) power supply | ||
Patent #
US 20030071034A1
Filed 11/25/2002
|
Current Assignee
Ambrell Corporation
|
Original Assignee
Daniel J. Lincoln, Gary A. Schwenck, Leslie L. Thompson
|
Magnetic field production system, and configuration for wire-free supply of a large number of sensors and/or actuators using a magnetic field production system | ||
Patent #
US 20030062794A1
Filed 09/16/2002
|
Current Assignee
ABB Research Ltd.
|
Original Assignee
ABB Research Ltd.
|
Configuration for producing electrical power from a magnetic field | ||
Patent #
US 20030062980A1
Filed 09/09/2002
|
Current Assignee
ABB Research Ltd.
|
Original Assignee
ABB Research Ltd.
|
RFID passive repeater system and apparatus | ||
Patent #
US 6,563,425 B2
Filed 08/08/2001
|
Current Assignee
Datalogic IP Tech S.r.l.
|
Original Assignee
Escort Memory Systems
|
Method and apparatus for communicating with medical device systems | ||
Patent #
US 6,561,975 B1
Filed 10/25/2000
|
Current Assignee
Medtronic Incorporated
|
Original Assignee
Medtronic Incorporated
|
High purity fine metal powders and methods to produce such powders | ||
Patent #
US 20030126948A1
Filed 12/10/2002
|
Current Assignee
PPG Industries Ohio Incorporated
|
Original Assignee
NanoProducts Corporation
|
Post-processed nanoscale powders and method for such post-processing | ||
Patent #
US 20030124050A1
Filed 03/29/2002
|
Current Assignee
PPG Industries Ohio Incorporated
|
Original Assignee
NANOPRODUCT CORPORATION
|
System for wirelessly supplying a large number of actuators of a machine with electrical power | ||
Patent #
US 6,597,076 B2
Filed 12/11/2001
|
Current Assignee
ABB Patent GmbH
|
Original Assignee
ABB Patent GmbH
|
System for the detection of cardiac events | ||
Patent #
US 6,609,023 B1
Filed 09/20/2002
|
Current Assignee
Angel Medical Systems Inc.
|
Original Assignee
Angel Medical Systems Inc.
|
Method and apparatus for charging sterilizable rechargeable batteries | ||
Patent #
US 20030160590A1
Filed 02/25/2003
|
Current Assignee
LIVATEC CORPORATION
|
Original Assignee
LIVATEC CORPORATION
|
Apparatus for energizing a remote station and related method | ||
Patent #
US 20030199778A1
Filed 06/11/2003
|
Current Assignee
University Of Pittsburgh
|
Original Assignee
Leonid Mats, Carl Taylor, Minhong Mi, Dmitry Gorodetsky, Lorenz Neureuter, Marlin Mickle, Chad Emahizer
|
Charge storage device | ||
Patent #
US 6,631,072 B1
Filed 08/24/2001
|
Current Assignee
Cap-Xx Ltd.
|
Original Assignee
Energy Storage Systems Inc.
|
Inductively powered apparatus | ||
Patent #
US 20030214255A1
Filed 02/04/2003
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Reader for a radio frequency identification system having automatic tuning capability | ||
Patent #
US 6,650,227 B1
Filed 12/08/1999
|
Current Assignee
Assa Abloy AB
|
Original Assignee
HID Corporation
|
Wireless power transmission system with increased output voltage | ||
Patent #
US 6,664,770 B1
Filed 10/10/2001
|
Current Assignee
IQ-MOBIL ELECTRONICS GMBH.
|
Original Assignee
IQ- MOBIL GMBH
|
Low-power, high-modulation-index amplifier for use in battery-powered device | ||
Patent #
US 20020032471A1
Filed 08/31/2001
|
Current Assignee
Boston Scientific Neuromodulation Corporation
|
Original Assignee
Advanced Bionics Corporation
|
System for wirelessly supplying a large number of actuators of a machine with electrical power | ||
Patent #
US 20020118004A1
Filed 12/11/2001
|
Current Assignee
ABB Patent GmbH
|
Original Assignee
ABB Patent GmbH
|
Water treatment system with an inductively coupled ballast | ||
Patent #
US 6,436,299 B1
Filed 06/12/2000
|
Current Assignee
Access Business Group International LLC
|
Original Assignee
Amway Corporation
|
System for a machine having a large number of proximity sensors, as well as a proximity sensor, and a primary winding for this purpose | ||
Patent #
US 20020105343A1
Filed 12/11/2001
|
Current Assignee
ABB Research Ltd.
|
Original Assignee
ABB Research Ltd.
|
Food intake restriction with wireless energy transfer | ||
Patent #
US 6,450,946 B1
Filed 02/11/2000
|
Current Assignee
Obtech Medical AG
|
Original Assignee
Obtech Medical AG
|
High quality-factor tunable resonator | ||
Patent #
US 6,452,465 B1
Filed 06/27/2000
|
Current Assignee
M-SQUARED FILTERS L.L.C.
|
Original Assignee
M-SQUARED FILTERS LLC
|
Inductive coupling system with capacitive parallel compensation of the mutual self-inductance between the primary and the secondary windings | ||
Patent #
US 20020130642A1
Filed 02/27/2002
|
Current Assignee
Koninklijke Philips N.V.
|
Original Assignee
Koninklijke Philips N.V.
|
Detection of the distance between an electromagnetic transponder and a terminal | ||
Patent #
US 6,473,028 B1
Filed 04/05/2000
|
Current Assignee
Stmicroelectronics SA
|
Original Assignee
Stmicroelectronics SA
|
Inductively powered lamp unit | ||
Patent #
US 6,459,218 B2
Filed 02/12/2001
|
Current Assignee
Auckland UniServices Limited
|
Original Assignee
Auckland UniServices Limited
|
Control of inductive power transfer pickups | ||
Patent #
US 6,483,202 B1
Filed 07/24/2000
|
Current Assignee
Auckland UniServices Limited
|
Original Assignee
Auckland UniServices Limited
|
Rechargeable power supply system and method of protection against abnormal charging | ||
Patent #
US 20020167294A1
Filed 03/20/2002
|
Current Assignee
Acer Inc.
|
Original Assignee
International Business Machines Corporation
|
Reader/writer having coil arrangements to restrain electromagnetic field intensity at a distance | ||
Patent #
US 6,176,433 B1
Filed 05/15/1998
|
Current Assignee
Hitachi Ltd.
|
Original Assignee
Hitachi America Limited
|
Contactless battery charger with wireless control link | ||
Patent #
US 6,184,651 B1
Filed 03/20/2000
|
Current Assignee
Google Technology Holdings LLC
|
Original Assignee
Motorola Inc.
|
Miniature milliwatt electric power generator | ||
Patent #
US 6,207,887 B1
Filed 07/07/1999
|
Current Assignee
HI-Z Technology Inc.
|
Original Assignee
HI-Z Technology Inc.
|
Electrosurgical generator | ||
Patent #
US 6,238,387 B1
Filed 11/16/1998
|
Current Assignee
Microline Surgical Inc.
|
Original Assignee
Team Medical LLC
|
Integrated tunable high efficiency power amplifier | ||
Patent #
US 6,232,841 B1
Filed 07/01/1999
|
Current Assignee
OL Security LLC
|
Original Assignee
Rockwell Science Center LLC
|
Rechargeable hybrid battery/supercapacitor system | ||
Patent #
US 6,252,762 B1
Filed 04/21/1999
|
Current Assignee
Rutgers University
|
Original Assignee
Telcordia Technologies Incorporated
|
Method for discriminating between used and unused gas generators for air bags during car scrapping process | ||
Patent #
US 6,012,659 A
Filed 09/12/1997
|
Current Assignee
Daicel Chemical Industries Limited, Toyota Jidosha Kabushiki Kaisha
|
Original Assignee
Daicel Chemical Industries Limited, Toyota Jidosha Kabushiki Kaisha
|
System and method for powering, controlling, and communicating with multiple inductively-powered devices | ||
Patent #
US 6,047,214 A
Filed 06/09/1998
|
Current Assignee
North Carolina State University
|
Original Assignee
North Carolina State University
|
Adaptive brain stimulation method and system | ||
Patent #
US 6,066,163 A
Filed 02/02/1996
|
Current Assignee
Michael Sasha John
|
Original Assignee
Michael Sasha John
|
Implantable medical device using audible sound communication to provide warnings | ||
Patent #
US 6,067,473 A
Filed 03/31/1999
|
Current Assignee
Medtronic Incorporated
|
Original Assignee
Medtronic Incorporated
|
Battery monitoring apparatus and method for programmers of cardiac stimulating devices | ||
Patent #
US 6,108,579 A
Filed 04/11/1997
|
Current Assignee
Pacesetter Incorporated
|
Original Assignee
Pacesetter Incorporated
|
Method and apparatus for wireless powering and recharging | ||
Patent #
US 6,127,799 A
Filed 05/14/1999
|
Current Assignee
Raytheon BBN Technlogies Corp.
|
Original Assignee
GTE Internetworking Incorporated
|
Ring antennas for resonant circuits | ||
Patent #
US 5,864,323 A
Filed 12/19/1996
|
Current Assignee
Texas Instruments Inc.
|
Original Assignee
Texas Instruments Inc.
|
Non-contact power distribution system | ||
Patent #
US 5,898,579 A
Filed 11/24/1997
|
Current Assignee
Auckland UniServices Limited, Daifuku Company Limited
|
Original Assignee
Auckland UniServices Limited, Daifuku Company Limited
|
Inductive battery charger | ||
Patent #
US 5,903,134 A
Filed 05/19/1998
|
Current Assignee
Tdk-Lambda Corporation
|
Original Assignee
Nippon Electric Industry Company Limited
|
Noncontact power transmitting apparatus | ||
Patent #
US 5,923,544 A
Filed 07/21/1997
|
Current Assignee
TDK Corporation
|
Original Assignee
TDK Corporation
|
Method and apparatus for controlling country specific frequency allocation | ||
Patent #
US 5,940,509 A
Filed 11/18/1997
|
Current Assignee
Avago Technologies General IP PTE Limited
|
Original Assignee
Intermec IP Corporation
|
Implantable cardioverter defibrillator having a smaller mass | ||
Patent #
US 5,957,956 A
Filed 11/03/1997
|
Current Assignee
Ela Medical S.A.
|
Original Assignee
Angeion Corporation
|
Carbon supercapacitor electrode materials | ||
Patent #
US 5,993,996 A
Filed 09/16/1997
|
Current Assignee
INORGANIC SPECIALISTS INC.
|
Original Assignee
INORGANIC SPECIALISTS INC.
|
Methods and systems for introducing electromagnetic radiation into photonic crystals | ||
Patent #
US 5,999,308 A
Filed 04/01/1998
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
H-field electromagnetic heating system for fusion bonding | ||
Patent #
US 5,710,413 A
Filed 03/29/1995
|
Current Assignee
3M Company
|
Original Assignee
3M Company
|
Nanostructure multilayer dielectric materials for capacitors and insulators | ||
Patent #
US 5,742,471 A
Filed 11/25/1996
|
Current Assignee
Lawrence Livermore National Security LLC
|
Original Assignee
Regents of the University of California
|
Connection system and connection method for an electric automotive vehicle | ||
Patent #
US 5,821,731 A
Filed 01/30/1997
|
Current Assignee
Sumitomo Wiring Systems Limited
|
Original Assignee
Sumitomo Wiring Systems Limited
|
Armature induction charging of moving electric vehicle batteries | ||
Patent #
US 5,821,728 A
Filed 07/22/1996
|
Current Assignee
Stanley A. Tollison
|
Original Assignee
Stanley A. Tollison
|
Method and apparatus for the suppression of far-field interference signals for implantable device data transmission systems | ||
Patent #
US 5,630,835 A
Filed 07/24/1995
|
Current Assignee
SIRROM CAPITAL CORPORATION
|
Original Assignee
CARDIAC CONTROL SYSTEMS INC.
|
Implantable stimulation device having means for optimizing current drain | ||
Patent #
US 5,697,956 A
Filed 06/02/1995
|
Current Assignee
Pacesetter Incorporated
|
Original Assignee
Pacesetter Incorporated
|
Transmitter-receiver for non-contact IC card system | ||
Patent #
US 5,703,573 A
Filed 01/11/1996
|
Current Assignee
Sony Chemicals Company Limited
|
Original Assignee
Sony Chemicals Company Limited
|
Inductive coupler for electric vehicle charger | ||
Patent #
US 5,703,461 A
Filed 06/27/1996
|
Current Assignee
KABUSHIKI KAIHSA TOYODA JIDOSHOKKI SEISAKUSHO
|
Original Assignee
Kabushiki Kaisha Toyoda Jidoshokki Seisakusho
|
Oscillator-shuttle-circuit (OSC) networks for conditioning energy in higher-order symmetry algebraic topological forms and RF phase conjugation | ||
Patent #
US 5,493,691 A
Filed 12/23/1993
|
Current Assignee
BARRETT HOLDING LLC
|
Original Assignee
Terence W. Barrett
|
Inductive power pick-up coils | ||
Patent #
US 5,528,113 A
Filed 10/21/1994
|
Current Assignee
Auckland UniServices Limited
|
Original Assignee
Auckland UniServices Limited
|
Pacemaker with improved shelf storage capacity | ||
Patent #
US 5,522,856 A
Filed 09/20/1994
|
Current Assignee
VITATRON MEDICAL B.V.
|
Original Assignee
VITATRON MEDICAL B.V.
|
Induction charging apparatus | ||
Patent #
US 5,550,452 A
Filed 07/22/1994
|
Current Assignee
Kyushu Hitachi Maxell Ltd., Nintendo Company Limited
|
Original Assignee
Kyushu Hitachi Maxell Ltd., Nintendo Company Limited
|
Thermoelectric method and apparatus for charging superconducting magnets | ||
Patent #
US 5,565,763 A
Filed 11/19/1993
|
Current Assignee
General Atomics Inc.
|
Original Assignee
Lockheed Martin Corporation
|
Cooled secondary coils of electric automobile charging transformer | ||
Patent #
US 5,408,209 A
Filed 11/02/1993
|
Current Assignee
GM Global Technology Operations LLC
|
Original Assignee
Hughes Aircraft Company
|
Wireless communications using near field coupling | ||
Patent #
US 5,437,057 A
Filed 12/03/1992
|
Current Assignee
Xerox Corporation
|
Original Assignee
Xerox Corporation
|
Power connection scheme | ||
Patent #
US 5,455,467 A
Filed 03/02/1994
|
Current Assignee
Apple Computer Incorporated
|
Original Assignee
Apple Computer Incorporated
|
High speed read/write AVI system | ||
Patent #
US 5,287,112 A
Filed 04/14/1993
|
Current Assignee
Texas Instruments Inc.
|
Original Assignee
Texas Instruments Inc.
|
Contactless battery charging system | ||
Patent #
US 5,341,083 A
Filed 10/20/1992
|
Current Assignee
Electric Power Research Institute
|
Original Assignee
Electric Power Research Institute Incorporated
|
System for charging a rechargeable battery of a portable unit in a rack | ||
Patent #
US 5,367,242 A
Filed 09/18/1992
|
Current Assignee
Ascom Tateco AB
|
Original Assignee
Ericsson Messaging Systems Incorporated
|
High speed read/write AVI system | ||
Patent #
US 5,374,930 A
Filed 11/12/1993
|
Current Assignee
Texas Instruments Inc.
|
Original Assignee
Texas Instruments Deutschland Gesellschaft Mit BeschrNkter Haftung
|
Separable inductive coupler | ||
Patent #
US 5,216,402 A
Filed 01/22/1992
|
Current Assignee
General Motors Corporation
|
Original Assignee
Hughes Aircraft Company
|
Non-contact data and power connector for computer based modules | ||
Patent #
US 5,229,652 A
Filed 04/20/1992
|
Current Assignee
Wayne E. Hough
|
Original Assignee
Wayne E. Hough
|
Dual feedback control for a high-efficiency class-d power amplifier circuit | ||
Patent #
US 5,118,997 A
Filed 08/16/1991
|
Current Assignee
General Electric Company
|
Original Assignee
General Electric Company
|
Christmas-tree, decorative, artistic and ornamental object illumination apparatus | ||
Patent #
US 5,034,658 A
Filed 01/12/1990
|
Current Assignee
Roland Hierig, Vladimir Ilberg
|
Original Assignee
Roland Hierig, Vladimir Ilberg
|
Magnetic induction mine arming, disarming and simulation system | ||
Patent #
US 5,027,709 A
Filed 11/13/1990
|
Current Assignee
Glenn B. Slagle
|
Original Assignee
Glenn B. Slagle
|
Device for transmission and evaluation of measurement signals for the tire pressure of motor vehicles | ||
Patent #
US 5,033,295 A
Filed 02/04/1989
|
Current Assignee
Robert Bosch GmbH
|
Original Assignee
Robert Bosch GmbH
|
Transponder arrangement | ||
Patent #
US 5,053,774 A
Filed 02/13/1991
|
Current Assignee
Texas Instruments Deutschland Gesellschaft Mit BeschrNkter Haftung
|
Original Assignee
Texas Instruments Deutschland Gesellschaft Mit BeschrNkter Haftung
|
Electric power transmitting device with inductive coupling | ||
Patent #
US 5,070,293 A
Filed 03/02/1990
|
Current Assignee
Nippon Soken Inc., Nippondenso Co. Ltd.
|
Original Assignee
Nippon Soken Inc., Nippondenso Co. Ltd.
|
Remote switch-sensing system | ||
Patent #
US 4,588,978 A
Filed 06/21/1984
|
Current Assignee
CONCHA CORPORATION A CA CORPORATION
|
Original Assignee
TRANSENSORY DEVICES INC.
|
Condition monitoring system (tire pressure) | ||
Patent #
US 4,450,431 A
Filed 05/26/1981
|
Current Assignee
Aisin Seiki Co. Ltd.
|
Original Assignee
Peter A Hochstein
|
Variable mutual transductance tuned antenna | ||
Patent #
US 4,280,129 A
Filed 09/10/1979
|
Current Assignee
WELLS FAMILY CORPORATION THE
|
Original Assignee
Donald H. Wells
|
Alarm device for informing reduction of pneumatic pressure of tire | ||
Patent #
US 4,180,795 A
Filed 12/12/1977
|
Current Assignee
Bridgestone Tire Company Limited, Mitaka Instrument Company Limited
|
Original Assignee
Bridgestone Tire Company Limited, Mitaka Instrument Company Limited
|
RF beam center location method and apparatus for power transmission system | ||
Patent #
US 4,088,999 A
Filed 05/21/1976
|
Current Assignee
Fletcher James C Administrator of The National Aeronautics and Space Administration With Respect To An Invention of, Richard M. Dickinson
|
Original Assignee
Fletcher James C Administrator of The National Aeronautics and Space Administration With Respect To An Invention of, Richard M. Dickinson
|
Thermoelectric voltage generator | ||
Patent #
US 4,095,998 A
Filed 09/30/1976
|
Current Assignee
The United States Of America As Represented By The Secretary Of The Army
|
Original Assignee
The United States Of America As Represented By The Secretary Of The Army
|
Wireless energy transfer, including interference enhancement | ||
Patent #
US 8,076,801 B2
Filed 05/14/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
Wireless Power Harvesting and Transmission with Heterogeneous Signals. | ||
Patent #
US 20120007441A1
Filed 08/29/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Wireless non-radiative energy transfer | ||
Patent #
US 8,076,800 B2
Filed 03/31/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
Inductive power transfer apparatus | ||
Patent #
US 20120025602A1
Filed 02/05/2010
|
Current Assignee
Auckland UniServices Limited
|
Original Assignee
Auckland UniServices Limited
|
APPARATUS FOR POWER WIRELESS TRANSFER BETWEEN TWO DEVICES AND SIMULTANEOUS DATA TRANSFER | ||
Patent #
US 20120001593A1
Filed 06/30/2011
|
Current Assignee
STMicroelectronics SRL
|
Original Assignee
STMicroelectronics SRL
|
Wireless energy transfer | ||
Patent #
US 8,097,983 B2
Filed 05/08/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
POWER GENERATOR AND POWER GENERATION SYSTEM | ||
Patent #
US 20120007435A1
Filed 06/28/2011
|
Current Assignee
Panasonic Intellectual Property Management Co. Ltd.
|
Original Assignee
Panasonic Corporation
|
INCREASING THE Q FACTOR OF A RESONATOR | ||
Patent #
US 20120001492A9
Filed 08/11/2008
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Nigel Power LLC
|
Systems and methods for wireless power | ||
Patent #
US 8,115,448 B2
Filed 06/02/2008
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Wireless non-radiative energy transfer | ||
Patent #
US 8,084,889 B2
Filed 03/31/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
WIRELESS ENERGY TRANSFER FOR IMPLANTABLE DEVICES | ||
Patent #
US 20120032522A1
Filed 06/06/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Wireless energy transfer for refrigerator application | ||
Patent #
US 8,106,539 B2
Filed 03/11/2010
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
FLUSH-MOUNTED LOW-PROFILE RESONANT HOLE ANTENNA | ||
Patent #
US 20120038525A1
Filed 09/10/2009
|
Current Assignee
Advanced Automotive Antennas S.L.
|
Original Assignee
Advanced Automotive Antennas S.L.
|
Inductive repeater coil for an implantable device | ||
Patent #
US 8,131,378 B2
Filed 10/28/2007
|
Current Assignee
Second Sight Enterprises Incorporated
|
Original Assignee
Second Sight Enterprises Incorporated
|
LOW RESISTANCE ELECTRICAL CONDUCTOR | ||
Patent #
US 20120062345A1
Filed 08/31/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER, INCLUDING INTERFERENCE ENHANCEMENT | ||
Patent #
US 20120068549A1
Filed 11/03/2011
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
WIRELESS TRANSMISSION OF SOLAR GENERATED POWER | ||
Patent #
US 20120086284A1
Filed 10/06/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
MODULAR UPGRADES FOR WIRELESSLY POWERED TELEVISIONS | ||
Patent #
US 20120086867A1
Filed 10/06/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS POWERED TELEVISION | ||
Patent #
US 20120091795A1
Filed 10/06/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS POWERED PROJECTOR | ||
Patent #
US 20120091796A1
Filed 10/06/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS POWER TRANSFER WITHIN A CIRCUIT BREAKER | ||
Patent #
US 20120091820A1
Filed 10/06/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESSLY POWERED LAPTOP AND DESKTOP ENVIRONMENT | ||
Patent #
US 20120091794A1
Filed 10/06/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
ENERGIZED TABLETOP | ||
Patent #
US 20120091797A1
Filed 10/06/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
POSITION INSENSITIVE WIRELESS CHARGING | ||
Patent #
US 20120091950A1
Filed 10/06/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER FOR ENERGIZING POWER TOOLS | ||
Patent #
US 20120091949A1
Filed 10/06/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
COMPUTER THAT WIRELESSLY POWERS ACCESSORIES | ||
Patent #
US 20120091819A1
Filed 10/06/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER FOR PHOTOVOLTAIC PANELS | ||
Patent #
US 20120098350A1
Filed 10/19/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER WITH MULTI RESONATOR ARRAYS FOR VEHICLE APPLICATIONS | ||
Patent #
US 20120112534A1
Filed 10/17/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER FOR VEHICLE APPLICATIONS | ||
Patent #
US 20120112538A1
Filed 11/03/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
SECURE WIRELESS ENERGY TRANSFER FOR VEHICLE APPLICATIONS | ||
Patent #
US 20120112531A1
Filed 11/03/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER FOR VEHICLES | ||
Patent #
US 20120112535A1
Filed 10/19/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER FOR VEHICLES | ||
Patent #
US 20120112536A1
Filed 10/19/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
TUNABLE WIRELESS ENERGY TRANSFER FOR IN-VEHICLE APPLICATIONS | ||
Patent #
US 20120112532A1
Filed 11/03/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER FOR VEHICLES | ||
Patent #
US 20120112691A1
Filed 10/18/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Power supply system and method of controlling power supply system | ||
Patent #
US 8,178,995 B2
Filed 10/13/2009
|
Current Assignee
Ibaraki Toyota Jidosha Kabushiki Kaisha
|
Original Assignee
Ibaraki Toyota Jidosha Kabushiki Kaisha
|
MULTI-RESONATOR WIRELESS ENERGY TRANSFER INSIDE VEHICLES | ||
Patent #
US 20120119569A1
Filed 10/17/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER FOR VEHICLES | ||
Patent #
US 20120119575A1
Filed 10/18/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
SAFETY SYSTEMS FOR WIRELESS ENERGY TRANSFER IN VEHICLE APPLICATIONS | ||
Patent #
US 20120119576A1
Filed 10/18/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER FOR VEHICLES | ||
Patent #
US 20120119698A1
Filed 10/17/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Inductively chargeable audio devices | ||
Patent #
US 8,193,769 B2
Filed 01/25/2010
|
Current Assignee
Powermat Technologies Ltd.
|
Original Assignee
Powermat Technologies Ltd.
|
WIRELESS ENERGY TRANSFER FOR MEDICAL APPLICATIONS | ||
Patent #
US 20120139355A1
Filed 04/20/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER WITH HIGH-Q RESONATORS USING FIELD SHAPING TO IMPROVE K | ||
Patent #
US 20120153735A1
Filed 12/29/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER USING CONDUCTING SURFACES TO SHAPE FIELD AND IMPROVE K | ||
Patent #
US 20120153734A1
Filed 12/29/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER USING OBJECT POSITIONING FOR IMPROVED K | ||
Patent #
US 20120153736A1
Filed 12/29/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER FOR COMPUTER PERIPHERAL APPLICATIONS | ||
Patent #
US 20120153732A1
Filed 11/05/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER SYSTEMS | ||
Patent #
US 20120153733A1
Filed 12/14/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER OVER DISTANCE USING FIELD SHAPING TO IMPROVE THE COUPLING FACTOR | ||
Patent #
US 20120153737A1
Filed 12/30/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER ACROSS VARIABLE DISTANCES USING FIELD SHAPING WITH MAGNETIC MATERIALS TO IMPROVE THE COUPLING FACTOR | ||
Patent #
US 20120153738A1
Filed 12/30/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER FOR SUPPLYING POWER AND HEAT TO A DEVICE | ||
Patent #
US 20120153893A1
Filed 12/31/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
IMPLANTABLE WIRELESS POWER SYSTEM | ||
Patent #
US 20120146575A1
Filed 03/02/2011
|
Current Assignee
Corvion Incorporated
|
Original Assignee
Everheart Systems LLC
|
Resonant, contactless radio frequency power coupling | ||
Patent #
US 8,212,414 B2
Filed 05/29/2009
|
Current Assignee
Lockheed Martin Corporation
|
Original Assignee
Lockheed Martin Corporation
|
INTEGRATED REPEATERS FOR CELL PHONE APPLICATIONS | ||
Patent #
US 20120184338A1
Filed 03/23/2012
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
SYSTEMS AND METHODS FOR WIRELESS POWER | ||
Patent #
US 20120206096A1
Filed 01/20/2012
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Non-contact wireless communication apparatus, method of adjusting resonance frequency of non-contact wireless communication antenna, and mobile terminal apparatus | ||
Patent #
US 8,260,200 B2
Filed 11/14/2008
|
Current Assignee
Sony Corporation
|
Original Assignee
Sony Ericsson Mobile Communications AB
|
FLEXIBLE RESONATOR ATTACHMENT | ||
Patent #
US 20120223573A1
Filed 01/30/2012
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
TUNABLE WIRELESS ENERGY TRANSFER FOR APPLIANCES | ||
Patent #
US 20120228952A1
Filed 11/08/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
TUNABLE WIRELESS ENERGY TRANSFER FOR FURNITURE APPLICATIONS | ||
Patent #
US 20120228953A1
Filed 11/08/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
TUNABLE WIRELESS ENERGY TRANSFER FOR CLOTHING APPLICATIONS | ||
Patent #
US 20120228954A1
Filed 11/08/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY DISTRIBUTION SYSTEM | ||
Patent #
US 20120235500A1
Filed 09/14/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER USING REPEATER RESONATORS | ||
Patent #
US 20120235505A1
Filed 02/08/2012
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
TUNABLE WIRELESS ENERGY TRANSFER FOR OUTDOOR LIGHTING APPLICATIONS | ||
Patent #
US 20120235567A1
Filed 11/07/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
TUNABLE WIRELESS ENERGY TRANSFER FOR LIGHTING APPLICATIONS | ||
Patent #
US 20120235566A1
Filed 11/07/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER WITH VARIABLE SIZE RESONATORS FOR IMPLANTED MEDICAL DEVICES | ||
Patent #
US 20120235633A1
Filed 10/21/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
MULTI-RESONATOR WIRELESS ENERGY TRANSFER FOR IMPLANTED MEDICAL DEVICES | ||
Patent #
US 20120235502A1
Filed 10/21/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
MULTI-RESONATOR WIRELESS ENERGY TRANSFER FOR MEDICAL APPLICATIONS | ||
Patent #
US 20120235501A1
Filed 10/21/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
TUNABLE WIRELESS ENERGY TRANSFER FOR SENSORS | ||
Patent #
US 20120235504A1
Filed 11/08/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
SECURE WIRELESS ENERGY TRANSFER IN MEDICAL APPLICATIONS | ||
Patent #
US 20120235503A1
Filed 11/07/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER WITH VARIABLE SIZE RESONATORS FOR MEDICAL APPLICATIONS | ||
Patent #
US 20120235634A1
Filed 10/21/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER WITH RESONATOR ARRAYS FOR MEDICAL APPLICATIONS | ||
Patent #
US 20120239117A1
Filed 10/21/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
MULTI-RESONATOR WIRELESS ENERGY TRANSFER FOR APPLIANCES | ||
Patent #
US 20120242159A1
Filed 10/28/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
MULTI-RESONATOR WIRELESS ENERGY TRANSFER FOR EXTERIOR LIGHTING | ||
Patent #
US 20120242225A1
Filed 10/28/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
TUNABLE WIRELESS ENERGY TRANSFER FOR MEDICAL APPLICATIONS | ||
Patent #
US 20120256494A1
Filed 11/07/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS POWER TRANSMITTER TUNING | ||
Patent #
US 20120267960A1
Filed 02/17/2012
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
Wireless energy transfer using field shaping to reduce loss | ||
Patent #
US 8,304,935 B2
Filed 12/28/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Low AC resistance conductor designs | ||
Patent #
US 20120280765A1
Filed 12/16/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Wireless energy transfer using magnetic materials to shape field and reduce loss | ||
Patent #
US 8,324,759 B2
Filed 12/28/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
RESONATOR OPTIMIZATIONS FOR WIRELESS ENERGY TRANSFER | ||
Patent #
US 20120313449A1
Filed 06/22/2012
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Compact resonators for wireless energy transfer in vehicle applications | ||
Patent #
US 20120313742A1
Filed 06/28/2012
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Load impedance decision device, wireless power transmission device, and wireless power transmission method | ||
Patent #
US 8,334,620 B2
Filed 11/04/2010
|
Current Assignee
Samsung Electronics Co. Ltd.
|
Original Assignee
Samsung Electronics Co. Ltd.
|
WIRELESS ENERGY TRANSFER FOR PERSON WORN PERIPHERALS | ||
Patent #
US 20130007949A1
Filed 07/09/2012
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS POWER COMPONENT SELECTION | ||
Patent #
US 20130020878A1
Filed 07/23/2012
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Efficient near-field wireless energy transfer using adiabatic system variations | ||
Patent #
US 8,362,651 B2
Filed 10/01/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
TUNABLE WIRELESS POWER ARCHITECTURES | ||
Patent #
US 20130033118A1
Filed 08/06/2012
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS POWER COMPONENT SELECTION | ||
Patent #
US 20130038402A1
Filed 08/20/2012
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
RESONATOR ENCLOSURE | ||
Patent #
US 20130057364A1
Filed 09/04/2012
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Wireless energy transfer over a distance at high efficiency | ||
Patent #
US 8,395,283 B2
Filed 12/16/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
Wireless non-radiative energy transfer | ||
Patent #
US 8,395,282 B2
Filed 03/31/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
RECONFIGURABLE CONTROL ARCHITECTURES AND ALGORITHMS FOR ELECTRIC VEHICLE WIRELESS ENERGY TRANSFER SYSTEMS | ||
Patent #
US 20130062966A1
Filed 09/12/2012
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS POWER TRANSMISSION APPARATUS | ||
Patent #
US 20120248884A1
Filed 05/06/2011
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
Wireless energy transfer for computer peripheral applications | ||
Patent #
US 8,400,017 B2
Filed 11/05/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Wireless energy transfer with high-Q similar resonant frequency resonators | ||
Patent #
US 8,400,022 B2
Filed 12/23/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
Wireless energy transfer with high-Q sub-wavelength resonators | ||
Patent #
US 8,400,021 B2
Filed 12/16/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
Wireless energy transfer with high-Q devices at variable distances | ||
Patent #
US 8,400,020 B2
Filed 12/16/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
Wireless energy transfer with high-Q at high efficiency | ||
Patent #
US 8,400,018 B2
Filed 12/16/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
Wireless energy transfer with high-Q from more than one source | ||
Patent #
US 8,400,019 B2
Filed 12/16/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
Wireless energy transfer with high-Q capacitively loaded conducting loops | ||
Patent #
US 8,400,023 B2
Filed 12/23/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
Wireless energy transfer across variable distances | ||
Patent #
US 8,400,024 B2
Filed 12/30/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
FOREIGN OBJECT DETECTION IN WIRELESS ENERGY TRANSFER SYSTEMS | ||
Patent #
US 20130069441A1
Filed 09/10/2012
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
HIGH FREQUENCY PCB COILS | ||
Patent #
US 20130069753A1
Filed 09/17/2012
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Low AC resistance conductor designs | ||
Patent #
US 8,410,636 B2
Filed 12/16/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
SLOT-TYPE INDUCTION CHARGER | ||
Patent #
US 20130093386A1
Filed 01/23/2012
|
Current Assignee
Fu Da Tong Technology Co. Ltd.
|
Original Assignee
Chi-Che Chan, Ming-Chiu Tsai
|
WIRELESS ENERGY TRANSFER FOR PACKAGING | ||
Patent #
US 20130099587A1
Filed 10/18/2012
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
MULTI-RESONATOR WIRELESS ENERGY TRANSFER FOR SENSORS | ||
Patent #
US 20120248887A1
Filed 10/28/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
MULTI-RESONATOR WIRELESS ENERGY TRANSFER FOR LIGHTING | ||
Patent #
US 20120248981A1
Filed 10/28/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER WITH RESONATOR ARRAYS FOR MEDICAL APPLICATIONS | ||
Patent #
US 20120248888A1
Filed 11/07/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
MULTI-RESONATOR WIRELESS ENERGY TRANSFER TO MOBILE DEVICES | ||
Patent #
US 20120248886A1
Filed 10/28/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Multi-resonator wireless energy transfer for exterior lighting | ||
Patent #
US 8,441,154 B2
Filed 10/28/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
TRANSCUTANEOUS POWER TRANSMISSION UTILIZING NON-PLANAR RESONATORS | ||
Patent #
US 20130127253A1
Filed 11/21/2011
|
Current Assignee
TC1 LLC
|
Original Assignee
Joseph Stark, Edward Burke
|
Magnetic induction signal repeater | ||
Patent #
US 8,457,547 B2
Filed 04/28/2009
|
Current Assignee
Cochlear Limited
|
Original Assignee
Cochlear Limited
|
Wireless energy transfer using conducting surfaces to shape field and improve K | ||
Patent #
US 8,461,722 B2
Filed 12/29/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Wireless energy transfer systems | ||
Patent #
US 8,461,719 B2
Filed 09/25/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Wireless energy transfer using conducting surfaces to shape fields and reduce loss | ||
Patent #
US 8,461,720 B2
Filed 12/28/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Method and apparatus for providing wireless power to a load device | ||
Patent #
US 8,461,817 B2
Filed 09/10/2008
|
Current Assignee
Powercast Corporation
|
Original Assignee
Powercast Corporation
|
Wireless energy transfer using object positioning for low loss | ||
Patent #
US 8,461,721 B2
Filed 12/29/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Tunable wireless energy transfer for outdoor lighting applications | ||
Patent #
US 8,466,583 B2
Filed 11/07/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
SYSTEM AND METHOD FOR LOW LOSS WIRELESS POWER TRANSMISSION | ||
Patent #
US 20130154383A1
Filed 09/12/2012
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
WIRELESS ENERGY TRANSFER SYSTEMS | ||
Patent #
US 20130154389A1
Filed 02/21/2013
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER MODELING TOOL | ||
Patent #
US 20130159956A1
Filed 11/05/2012
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Wireless energy transfer over distance using field shaping to improve the coupling factor | ||
Patent #
US 8,471,410 B2
Filed 12/30/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Wireless energy transfer with high-Q resonators using field shaping to improve K | ||
Patent #
US 8,476,788 B2
Filed 12/29/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Increasing the Q factor of a resonator | ||
Patent #
US 8,482,157 B2
Filed 08/11/2008
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
Wireless energy transfer using variable size resonators and system monitoring | ||
Patent #
US 8,482,158 B2
Filed 12/28/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER SYSTEMS | ||
Patent #
US 20130175875A1
Filed 02/21/2013
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
POWER SUPPLYING MODULE FOR CONTACTLESS POWER SUPPLYING DEVICE, METHOD FOR USING POWER SUPPLYING MODULE OF CONTACTLESS POWER SUPPLYING DEVICE, AND METHOD FOR MANUFACTURING POWER SUPPLYING MODULE OF CONTACTLESS POWER SUPPLYING DEVICE | ||
Patent #
US 20130175877A1
Filed 01/11/2012
|
Current Assignee
Panasonic Intellectual Property Management Co. Ltd.
|
Original Assignee
Panasonic Corporation
|
WIRELESS ENERGY TRANSFER FOR PROMOTIONAL ITEMS | ||
Patent #
US 20130175874A1
Filed 01/09/2013
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Wireless energy transfer resonator kit | ||
Patent #
US 8,487,480 B1
Filed 12/16/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Wireless energy transfer converters | ||
Patent #
US 8,497,601 B2
Filed 04/26/2010
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER RESONATOR KIT | ||
Patent #
US 20130200716A1
Filed 12/16/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Qiang Li, David A. Schatz, Katherine Hall, Konrad J. Kulikowski, Marin Soljacic, Eric R. Giler, Morris P. Kesler, Andre B. Kurs, Andrew J. Campanella, Aristeidis Karalis, Ron Fiorello
|
WIRELESS ENERGY TRANSFER WITH REDUCED FIELDS | ||
Patent #
US 20130200721A1
Filed 01/28/2013
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
MECHANICALLY REMOVABLE WIRELESS POWER VEHICLE SEAT ASSEMBLY | ||
Patent #
US 20130221744A1
Filed 03/15/2013
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Wireless energy transfer with feedback control for lighting applications | ||
Patent #
US 8,552,592 B2
Filed 02/02/2010
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER USING VARIABLE SIZE RESONATORS AND SYSTEM MONITORING | ||
Patent #
US 20130278074A1
Filed 06/21/2013
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER USING VARIABLE SIZE RESONATORS AND SYSTEM MONITORING | ||
Patent #
US 20130278075A1
Filed 06/21/2013
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER USING VARIABLE SIZE RESONATORS AND SYSTEM MONITORING | ||
Patent #
US 20130278073A1
Filed 06/21/2013
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Wireless energy transfer using object positioning for improved k | ||
Patent #
US 8,569,914 B2
Filed 12/29/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
LOW AC RESISTANCE CONDUCTOR DESIGNS | ||
Patent #
US 20130300353A1
Filed 03/29/2013
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Wireless energy transfer using high Q resonators for lighting applications | ||
Patent #
US 8,587,153 B2
Filed 12/14/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Wireless energy transfer using repeater resonators | ||
Patent #
US 8,587,155 B2
Filed 03/10/2010
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER CONVERTERS | ||
Patent #
US 20130307349A1
Filed 07/19/2013
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Resonator arrays for wireless energy transfer | ||
Patent #
US 8,598,743 B2
Filed 05/28/2010
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER FOR IMPLANTABLE DEVICES | ||
Patent #
US 20130320773A1
Filed 08/07/2013
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER CONVERTERS | ||
Patent #
US 20130334892A1
Filed 07/19/2013
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER FOR RECHARGEABLE BATTERIES | ||
Patent #
US 20140002012A1
Filed 06/27/2012
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
BUILDING AND CONSTRUCTION METHOD FOR THE SAME | ||
Patent #
US 20140008996A1
Filed 03/30/2012
|
Current Assignee
Sekisui Chemical Company Limited
|
Original Assignee
Kenzo Matsumoto, Koichiro Iwasa, Masataka Kawakubo
|
Wireless energy transfer systems | ||
Patent #
US 8,629,578 B2
Filed 02/21/2013
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Tunable wireless energy transfer systems | ||
Patent #
US 8,643,326 B2
Filed 01/06/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS POWER TRANSFER SYSTEM COIL ARRANGEMENTS AND METHOD OF OPERATION | ||
Patent #
US 20140070764A1
Filed 03/08/2013
|
Current Assignee
Witricity Corporation
|
Original Assignee
Qualcomm Inc.
|
WIRELESS POWER TRANSFER | ||
Patent #
US 20140091756A1
Filed 10/02/2013
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Wireless energy transfer systems | ||
Patent #
US 8,618,696 B2
Filed 02/21/2013
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
THERMOELECTRIC UNITS | ||
Patent #
US 3,780,425 A
Filed 01/25/1971
|
Current Assignee
United Kingdom Atomic Energy Authority
|
Original Assignee
United Kingdom Atomic Energy Authority
|
LARGE SODIUM VALVE ACTUATOR | ||
Patent #
US 3,871,176 A
Filed 03/08/1973
|
Current Assignee
Glen Elwin Schukei
|
Original Assignee
Combustion Engineering Incorporated
|
ENERGY TRANSLATING DEVICE | ||
Patent #
US 3,517,350 A
Filed 07/07/1969
|
Current Assignee
William D. Beaver
|
Original Assignee
William D. Beaver
|
MICROWAVE POWER RECEIVING ANTENNA | ||
Patent #
US 3,535,543 A
Filed 05/01/1969
|
Current Assignee
Carroll C. Dailey
|
Original Assignee
Carroll C. Dailey
|
POWER FEEDING DEVICE, POWER RECEIVING DEVICE, AND WIRELESS POWER TRANSMISSION DEVICE | ||
Patent #
US 20140252869A1
Filed 03/04/2014
|
Current Assignee
TDK Corporation
|
Original Assignee
TDK Corporation
|
WIRELESS POWER REPEATER | ||
Patent #
US 20140292100A1
Filed 08/10/2012
|
Current Assignee
LG Innotek Company Limited
|
Original Assignee
LG Innotek Company Limited
|
WIRELESS CHARGER FOR ELECTRONIC DEVICE | ||
Patent #
US 20140375258A1
Filed 06/17/2014
|
Current Assignee
Samsung Electronics Co. Ltd.
|
Original Assignee
Samsung Electronics Co. Ltd.
|
POWER TRANSMISSION APPARATUS, POWER TRANSMISSION DEVICE AND POWER RECEPTION DEVICE FOR POWER TRANSMISSION APPARATUS | ||
Patent #
US 20150015082A1
Filed 07/11/2014
|
Current Assignee
Toshiba Tec Corporation
|
Original Assignee
Toshiba Tec Corporation
|
21 Claims
-
1. A power transmitting apparatus for wireless power transfer to a receiver, the apparatus comprising:
-
a housing having a form factor that corresponds to a container comprising lateral surfaces, a bottom surface, and an opening opposite the bottom surface; a first coil comprising a first plurality of non-planar loops of electrically conductive material, wherein the first plurality of loops conforms to a first pair of opposite lateral surfaces and to the bottom surface; and a second coil comprising a second plurality of non-planar loops of electrically conductive material, wherein the second plurality of loops conforms to a second pair of opposite lateral surfaces and to the bottom surface. - View Dependent Claims (2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21)
-
1 Specification
This application claims priority to U.S. Provisional Application No. 61/935,224, filed on Feb. 3, 2014, the entire contents of which are incorporated herein by reference.
This disclosure relates to wireless power transfer, including wireless power transfer to, and charging of, batteries and battery systems.
Energy can be transferred from a power source to receiving device using a variety of known techniques such as radiative (far-field) techniques. For example, radiative techniques using low-directionality antennas can transfer a small portion of the supplied radiated power, namely, that portion in the direction of, and overlapping with, the receiving device used for pick up. In this example, most of the energy is radiated away in all the other directions than the direction of the receiving device, and typically the transferred energy is insufficient to power or charge the receiving device. In another example of radiative techniques, directional antennas are used to confine and preferentially direct the radiated energy towards the receiving device. In this case, an uninterruptible line-of-sight and potentially complicated tracking and steering mechanisms are used.
Another approach is to use non-radiative (near-field) techniques. For example, techniques known as traditional induction schemes do not (intentionally) radiate power, but uses an oscillating current passing through a primary coil, to generate an oscillating magnetic near-field that induces currents in a near-by receiving or secondary coil. Traditional induction schemes can transfer modest to large amounts of power over very short distances. In these schemes, the offset tolerance offset tolerances between the power source and the receiving device are very small. Electric transformers and proximity chargers are examples using the traditional induction schemes.
In general, in a first aspect, the disclosure features a power transmitting apparatus for wireless power transfer to a receiver, the apparatus including a housing having a form factor that corresponds to a container having lateral surfaces, a bottom surface, and an opening opposite the bottom surface, and a coil that conforms to a shape of the housing, where the coil is formed by a continuous path of electrically conductive material and includes a first plurality of non-planar loops that conform to multiple lateral surfaces and the bottom surface, and a second plurality of non-planar loops that conform to multiple lateral surfaces and the bottom surface.
Embodiments of the apparatus can include any one or more of the following features.
The first and second pluralities of loops can be positioned so that during operation of the power transmitting apparatus, a magnetic field dipole extends from the first plurality of loops to the second plurality of loops in a direction substantially perpendicular to at least one lateral surface of the housing. By way of example, a direction is “substantially perpendicular” to a surface if the direction forms an angle with a normal to the surface that is less than 15°.
Each lateral surface of the housing can include a first edge width measured at a position where the lateral surface contacts the bottom surface, and a second edge width measured at a position opposite to the position where the lateral surface contacts the bottom surface, and the second edge width can be larger than the first edge width. The second edge width can be larger than the first edge width by a factor of at least 1.1 (e.g., by a factor of at least 1.4, by a factor of at least 1.6, by a factor of up to 2.0).
The first plurality of loops and the second plurality of loops can be wound in a common helical direction about an axis that extends through a center of the first plurality of loops and through a center of the second plurality of loops. The first plurality of loops and the second plurality of loops can be wound in an opposite helical direction about an axis that extends through a center of the first plurality of loops and through a center of the second plurality of loops.
During operation, the apparatus can be configured to generate an oscillating magnetic field at a frequency of between 10 kHz and 100 MHz (e.g., a frequency of about 6.78 MHz) to transfer power to a receiver. The apparatus can be configured to generate an oscillating magnetic field that includes frequency components at two or more frequencies between 10 kHz and 100 MHz (e.g., a frequency of about 6.78 MHz and a frequency of about 13.56 MHz) to transfer power to a receiver.
Spacings between adjacent loops can vary in the first plurality of loops and in the second plurality of loops. Each of the lateral surfaces can include a lower edge that is adjacent to the bottom surface and an upper edge opposite the lower edge, and spacings between adjacent loops in the first and second pluralities of loops can be larger adjacent to the upper edge than adjacent to the lower edge.
The housing can include a planar bottom surface and four lateral surfaces, each of the lateral surfaces being inclined at an angle of between 90° and 180° relative to the bottom surface. The housing can include a bottom surface and curved lateral surfaces that are joined to the bottom surface to form a housing with a continuously curved shape. Each lateral surface can be planar and can have a trapezoidal shape, and each lateral surface can include a lower edge that contacts the bottom surface and an upper edge wider than the lower edge and positioned opposite the lower edge. The first plurality of loops can overlap portions of a first, a second, and a third lateral surface, where the first and second lateral surfaces are positioned on opposite sides of the bottom surface. The second plurality of loops can overlap portions of the second, the third, and a fourth lateral surface, where the fourth lateral surface is positioned on an opposite side of the bottom surface from the first lateral surface. The first and second pluralities of loops can each overlap a portion of the bottom surface.
The coil can be positioned outside a volume enclosed by the lateral surfaces and bottom surface of the housing. The coil can be positioned within a volume enclosed by the lateral surfaces and bottom surface of the housing. The coil can be positioned within the lateral surfaces and bottom surface of the housing. The coil can be positioned on or within an insert that is dimensioned to fit within a volume enclosed by the lateral surfaces and bottom surface of the housing. The container can correspond to a box or a bowl.
Embodiments of the apparatus can also include any of the other aspects and/or features disclosed herein, including aspects and features disclosed in different embodiments, in any combination as appropriate.
In another aspect, the disclosure features a power transmitting apparatus for wireless power transfer to a receiver, the apparatus including a housing having a form factor that corresponds to a container having lateral surfaces, a bottom surface, and an opening opposite the bottom surface, a first coil formed by a continuous path of electrically conductive material and having a plurality of non-planar loops that conform to a first pair of opposite lateral surfaces and to the bottom surface, and a second coil formed by a continuous path of electrically conductive material and having a plurality of non-planar loops that conform to a second pair of opposite lateral surfaces and to the bottom surface.
Embodiments of the apparatus can include any one or more of the following features.
Each lateral surface of the housing can include a first edge width measured at a position where the lateral surface contacts the bottom surface, and a second edge width measured at an opening opposite to the position where the lateral surface contacts the bottom surface, and where the second edge width is larger than the first edge width.
The first and second coils can be positioned so that during operation of the power transmitting apparatus, the first coil generates a magnetic field having a dipole moment that extends in a first direction, and the second coil generates a magnetic field having a dipole moment that extends in a second direction substantially perpendicular to the first direction. By way of example, one direction is “substantially perpendicular” to another direction if an included angle between the two directions is less than 15°.
The first and second coils can be positioned outside a volume enclosed by the lateral surfaces and bottom surface. The first and second coils can be positioned inside a volume enclosed by the lateral surfaces and bottom surface. The first and second coils can be positioned on or within a sleeve that is dimensioned to conform to a shape of the housing.
The first coil can be positioned on or within a first sleeve that is dimensioned to conform to a shape of the housing, and the second coil can be positioned on or within a second sleeve that is dimensioned to conform to a shape of the housing or to a shape of the first sleeve.
The housing can include first supporting layer. The first supporting layer can include magnetic material. The magnetic material can include a ferrite material. The housing can include a second layer featuring a shielding material. The shielding material can include copper.
The apparatus can include a third coil having a plurality of non-planar loops that conform to each of the lateral surfaces. During operation of the power transmitting apparatus, the third coil can generate a magnetic field having a dipole moment that extends in a third direction substantially perpendicular to the first and second directions.
The first, second, and third coils can be printed on one or more circuit boards. The first, second, and third coils can each be positioned on or within sleeves. The sleeves can be stacked to form a shell external to or internal to the housing.
One of the first, second, and third coils can be positioned external to the housing, another one of the first, second, and third coils can be positioned internal to the housing, and another one of the first, second, and third coils can be positioned within walls of the housing formed by the lateral surfaces and bottom surface.
The first and second directions can be substantially parallel to a plane defined by the bottom surface, and the third direction can be substantially perpendicular to the bottom surface.
The apparatus can include a control unit connected to each of the first, second, and third coils, where during operation, the control unit can be configured to apply a first oscillating electrical potential to the first coil, and apply a second oscillating electrical potential to the second coil, where the second oscillating electrical potential is out of phase with respect to the first oscillating electrical potential. The first and second oscillating electrical potentials can be out of phase by about 90°. The control unit can be configured to apply a third oscillating electrical potential to a third coil, the third coil comprising a plurality of non-planar loops that conform to each of the lateral surfaces, and vary a phase difference between and first and third oscillating electrical potentials between 0° and 90°.
The apparatus can include a first decoupling unit connected to the first coil, a second decoupling unit connected to the second coil, and a third decoupling unit connected to the third coil. Each decoupling unit can be connected in series to a corresponding coil. Each decoupling unit can include one or more decoupling elements. At least one of the one or more decoupling units can include inductors. At least one of the one or more decoupling units can include inductors connected in parallel to capacitors. The capacitors can include capacitors having a variable capacitance.
The first decoupling unit can include a first decoupling element configured to reduce magnetic coupling between the first coil and the second coil, and a second decoupling element configured to reduce magnetic coupling between the first coil and the third coil. The second decoupling unit can include a third decoupling element configured to reduce magnetic coupling between the second coil and the first coil, and a fourth decoupling element configured to reduce magnetic coupling between the second coil and the third coil. The third decoupling unit can include a fifth decoupling element configured to reduce magnetic coupling between the third coil and the first coil, and a sixth decoupling element configured to reduce magnetic coupling between the third coil and the second coil. Each of the first, second, third, fourth, fifth, and sixth decoupling elements can include an inductor, and the control unit can be configured to adjust positions of the first, second, third, fourth, fifth, and sixth decoupling elements to reduce magnetic coupling between the first, second, and third coils. Each of the first, second, third, fourth, fifth, and sixth decoupling elements can include an inductor connected in parallel to a capacitor having a variable capacitance, and the control unit can be configured to adjust capacitances of each of the capacitors in the first, second, third, fourth, fifth, and sixth decoupling elements to reduce magnetic coupling between the first, second, and third coils.
At least some of the inductors can be printed on substrates that are oriented parallel to one another. At least some of the inductors can include coils wound around a common magnetic material. The container can correspond to a box or a bowl.
Embodiments of the apparatus can also include any of the other aspects and/or features disclosed herein, including aspects and features disclosed in different embodiments, in any combination as appropriate.
Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the subject matter herein, suitable methods and materials are described below. All publications, patent applications, patents, and other references mentioned herein are incorporated by reference in their entirety. In case of conflict, the present specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting.
The details of one or more embodiments are set forth in the accompanying drawings and the description below. Other features and advantages will be apparent from the description, drawings, and claims.
Like reference symbols in the various drawings indicate like elements.
The methods and systems described herein can be implemented in many ways. Some useful embodiments are described below. However, the scope of the present disclosure is not limited to the detailed embodiments described herein.
A power transmitting apparatus can be configured to transmit power to a power receiving apparatus. For example, the power receiving apparatus can include one or more wirelessly chargeable batteries. One or more receiver resonators can be integrated into the one or more batteries, thereby allowing the battery to be wirelessly rechargeable. As such, a user can conveniently charge the one or more batteries without physically connecting wires to the batteries. The user can not need to often replace the batteries, thereby reducing maintenance needs of an electronic device.
The power transmitting apparatus can include one or more source resonator coils and/or one or more source resonators, which can be activated by a controller. The controller can activate the one or more source coils and/or resonators in a way to generate time-varying magnetic fields in a 3D space in which the power receiving apparatus can be positioned. In some cases, the one or more receiver resonators of the power receiving apparatus can be positioned in a random orientation. The disclosed techniques can be used to activate the one or more source resonators to effectively transmit power to the randomly oriented receiver resonators. This can allow a user to randomly position the power receiving apparatus in or near the power transmitting apparatus without worrying about the orientations of its receiver resonators. In some other cases, the one or more source coils and/or resonators can be activated to transmit power to receiver resonators with a selected orientation. In some embodiments, the power transmitting apparatus and the power receiving apparatus can communicate to optimize the power transfer depending on a condition of the power receiving apparatus. For example, when one or more batteries of the power receiving apparatus is charged above a threshold, the power transmitting apparatus can reduce or stop the power transmission based on the communication.
As used herein, a “coil” is formed from a continuous path of electrically conductive material, and can include one or more loops of the conductive material. In some embodiments, a coil can include a first plurality of loops and one or more additional pluralities of loops. The first plurality of loops and the additional pluralities of loops (e.g., a second plurality of loops) are connected by (e.g., formed from) electrically conductive material. The first plurality of loops can be coplanar with, or non-coplanar with, another plurality of loops forming a portion of the coil.
Source Resonator
In some embodiments, the characteristics of a resonator inductive coil can be an important factor in attaining efficient transfer of wireless energy.
The resonator inductive coil shown in
The resonator inductive coil shown in
The resonator coils shown in
In some embodiments, apparatus 301 can include more than one resonator coil. For example, apparatus 301 can include two or more resonator coils connected in series and/or in parallel with one another to form a 3-dimensional figure-8 shaped resonator coil similar to the 2-dimensional figure-8 shaped resonator coil shown in
In
The shape of the resonator coil can be selected so that the strength and direction of the resulting magnetic field is approximately uniform within the space enclosed by the resonator coil. As shown in
In
In some embodiments, wireless power transmitting apparatus 202 can be shaped to achieve efficient power transfer. For example, the apparatus can be shaped to be larger on one end as shown in
In some embodiments, the “active volume” is a region of space relative to the container volume in which the coupling k between a resonator of the apparatus and a resonator of a device (i.e. a wirelessly rechargeable battery) is maintained within a desirable range. In certain embodiments, the “active volume” is a region of space relative to the container volume in which the transferred power between the apparatus and a device is within a range such that the apparatus will efficiently charge or power devices (i.e. a wirelessly rechargeable battery) but will not harm the devices due to power dissipation. For example, for a container of approximately 8 inches by 10 inches by 5 inches, the corresponding approximate active volume can be 7 inches by 9 inches by 4 inches.
In some embodiments, the overall dimensions of the active volume can be less than the interior volume of the container. For example, in certain embodiments, the active volume can correspond to a region of space interior to the volume enclosed by the container, and spaced from the walls of the container by less than 0.5 inches, less than 1 inch, less than 2 inches, or greater than 2 inches from the sides of the container.
In some embodiments, the active volume can be greater than the volume enclosed by the container. In general, the shape of the active volume can be similar to the shape of the container, or can be of a different shape. The shape of the active volume can depend on the magnitude and direction of the magnetic fields generated by the shaped resonator coil or coils. For example, in some embodiments, a scale factor s greater than 1 has been found to offer significant improvement in the overall uniformity of the magnetic field within the container volume. Uniformity of magnetic field strength in the active volume can be measured as a ratio of the maximum of the magnetic field strength to the minimum of the magnetic field strength. In some embodiments, a more uniform magnetic field can be desirable because it can result in more uniform charging rates and more uniform requirements for wireless capture devices operating in the charging volume. In certain embodiments, as the scale factor s was increased to greater than 1.25, greater than 1.5, or greater than 1.75, the uniformity of magnetic field was increased.
In certain embodiments, the scale factor s can be adjusted to increase field uniformity, increase transfer efficiency within a specified volume, reduce heating of extraneous objects, minimize control algorithm complexity, and/or reduce component count in the transmitter and/or receivers. In some embodiments, the scale factor s can be selected to balance a trade-off between two or more of the foregoing performance goals.
In some embodiments, the power transmitting apparatus can include more than one coil and/or resonator and these coils/resonators can be substantially overlapping.
For example, for a power transmitting apparatus shaped like an open box or container, overlap between two or more resonator coils can occur on any side of the container, on the inside and/or outside of the container, on adjacent sides of a container, and/or on the edges of the container.
As an example, two similarly shaped resonator coils 902, 904 are overlapped in
In certain embodiments, for an apparatus in the form of a container with inside and outside walls, a resonator coil can be located close to (e.g., interior or exterior to) or between the inside and outside walls.
Returning to
In some embodiments, overlapping resonator coils such as those shown in
In certain embodiments, lumped capacitor elements can be distributed along the length of a resonator coil trace. Such configurations can be used to reduce the impact of self-resonance in a resonator coil on the overall resonator design. For example, at every turn of a resonator coil, a capacitor can be placed across a break or gap in a coil trace. In some embodiments, a capacitance can be formed by a break and/or gap in a coil trace.
Power Sources and Source Electronics
Each resonator or resonator coil 1228, 1230, 1232 can also have an associated impedance matching network 1222, 1224, 1226. An impedance matching network for each resonator or for combinations of resonators and/or coils can be used to improve power transfer efficiency between the power transmitting apparatus and the device that is receiving power that is transmitted wirelessly. In
In general, a wireless power transmitting apparatus can include an amplifier of class A, B, C, D, DE, E, and/or F. In certain embodiments, more than one type of amplifier can be used to drive a resonator coil.
In some embodiments, a first resonator oriented to generate a magnetic field with a dipole moment along the x-axis can be driven with a signal at constant phase while a second resonator oriented to generate a magnetic field with a dipole moment along the y-axis can be driven with a signal at a constant phase that is 90 degrees out of phase with the driving signal of the first resonator. Further, in certain embodiments, a third resonator oriented to generate a magnetic field with a dipole moment along the z-axis can have a variable phase so that it coincides minimally with the phases of the signals driving the first and second resonators.
In certain embodiments, a wireless power transmitting apparatus that includes one or more resonator coils can be scaled in any dimension (i.e., along the x-, y-, and/or z-coordinate directions). To compensate for a difference in coupling due to a change in a dimension of the apparatus, a resonator coil having a dipole moment that aligns with the changed dimension can be driven with a larger or smaller current to improve magnetic field uniformity for the scaled active volume. For example, for an apparatus that has been scaled to be larger in the y-direction, the current used to drive the one or more resonators that generate the magnetic field with a dipole moment along the y-axis can be increased.
In some embodiments, overlapping resonators of the power transmitting apparatus can be wirelessly coupled to each other. For example, in
V˜k√{square root over (L1L2)}.
To decouple the inductive elements 1408 and 1410, additional inductors 1416 and 1418 are connected in series to inductive elements 1408 and 14010, respectively, and placed in close proximity to one another. The voltage induced by the coupling of inductors 1416 and 1418 can reduce the overall voltage induced in resonator 1404 by the field generated by resonator 1402 (and vice versa). Because the incidental coupling between inductors 1408 and 1410 is typically relatively low, the inductances of the “decoupling” inductors 1416 and 1418 can be relatively small. Between resonators 1402 and 1406, inductors 1414 and 1424 can be used to decouple inductors 1408 and 1412. Between resonators 1404 and 1406, inductors 1420 and 1422 can be used to decouple inductors 1410 and 1412. The decoupling inductive elements, such as inductors 1416 and 1414 shown in
In certain embodiments, decoupling inductors 1416 and 1418 can be moved relative to one another to achieve a desired coupling and/or to generate a desired overall induced voltage in the corresponding resonators.
Source Mechanical Components
In embodiments, resonator coils for a wireless power transmitting apparatus can be printed on a rigid substrate, a flexible substrate, and/or PCB material. The coils can be printed onto the substrate or otherwise affixed by tape or glue. In some embodiments, resonator coils can be manufactured by forming the sides of the apparatus separately and then soldering them together.
In some embodiments, each resonator coil can be printed on a separate layer of substrate, as shown in
In some embodiments, the shape of the face of any of the surfaces of a wireless power transmitting apparatus can be a square, a rectangle, trapezoid, a circle, an oval, a triangle, a diamond or any other shape. Resonator coil design can vary based on the shape used for the apparatus. In some embodiments, curved edges and/or corners for the resonator coils can be chosen to create a more uniform magnetic field. In certain embodiments, any of the sides or faces of a container can be scaled by a scale factor as described previously in this disclosure.
In some embodiments, magnetic material can be used on all, some, or none of the sides of the apparatus to shape the resulting magnetic field or to decrease losses in magnetic field strength that can occur in a lossy environment. A lossy environment can include metallic surfaces and/or objects. In some embodiments, other materials such as an air gaps, plastics, copper, etc. can be used between the outer surface of the apparatus and the resonators to decrease losses and/or to shape magnetic fields generated by the resonators.
In some embodiments, the electronics of a wireless power transmitting apparatus can be cooled through passive or active methods such as thermal interface materials, air gaps, cooling fans, and/or heat sinks. In certain embodiments, structures formed of materials such as conductors and/or ferrites can be used to shield the resonators and/or coils of the transmitting apparatus from the electronic components of the source power and control circuitry.
Wireless Power Transfer in Battery-Operated Systems
The methods and systems disclosed herein can be used to wirelessly transfer power to a battery, a system of batteries, and/or a charging unit (referred to collectively as a “power receiving apparatus”), either alone or while installed in a battery-operated device. In some embodiments, the battery can provide power to the electronic device while the electronic device is being used.
In certain embodiments, the device can be moved during use and while the power receiving apparatus is providing power to the device. As such, the device can be conveniently used and charged at the same time without requiring that the device be physically connected to a power source. Moreover, power can be delivered to the device (e.g., to the batteries of the device) when the device is in a variety of orientations with respect to the source resonator; that is, the device does not have to be precisely positioned with respect to the source resonator, or installed on a charging unit, to deliver power to its power receiving apparatus.
The operating frequencies of power transfer can be in the range of 10 kHz to 100 MHz. For example, the operating frequency can be 13.56 MHz or 6.78 MHz. In some embodiments, power can be transmitted at multiple operating frequencies. For example, the multiple operating frequencies can be 6.78 MHz and 13.56 MHz. In this example, one frequency is a harmonic frequency (e.g, a second harmonic) of the other frequency.
In this disclosure, “wireless energy transfer” from one resonator to another resonator refers to transferring energy to do useful work (e.g., mechanical work) such as powering electronic devices, vehicles, lighting a light bulb or charging batteries. Similarly, “wireless power transfer” from one resonator to another resonator refers to transferring power to do useful work (e.g., mechanical work) such as powering electronic devices, vehicles, lighting a light bulb or charging batteries. Both wireless energy transfer and wireless power transfer refer to the transfer (or equivalently, the transmission) of energy to provide operating power that would otherwise be provided through a connection to a power source, such as a connection to a main voltage source. Accordingly, with the above understanding, the expressions “wireless energy transfer” and “wireless power transfer” are used interchangeably in this disclosure. It is also understood that, “wireless power transfer” and “wireless energy transfer” can be accompanied by the transfer of information; that is, information can be transferred via an electromagnetic signal along with the energy or power to do useful work.
Power Receiving Apparatus
Battery 1900 includes a power receiving sub-structure 1902 connected to a battery cell 1904. The power receiving sub-structure 1902 includes a coil 1912 formed by a plurality of loops of conductive material and a magnetic material 1914 disposed in a core region within coil 1912. In this example, the magnetic material 1914 is a hollow rectangular shaped tubular member enclosing control electronics 1920, as shown in
In certain embodiments, a resonant frequency of the receiver resonator is determined by the inductance and capacitance of the coil 1912. Alternatively, the receiver resonator can include a capacitor which can be arranged in control electronics 1920. The resonant frequency of the receiver resonator can be controlled by a capacitance value of the capacitor.
In certain embodiments, housing 1930 is dimensioned to engage with a battery compartment of a battery-operated device. By engaging with a battery compartment, battery 1900 can be used to deliver power to the battery-operated device without modifying the device. That is, instead of installing conventional batteries to power the device, battery 1900 can be installed simply and quickly.
In some embodiments, a length 1904 of a battery cell 1904 can be a fraction (e.g., ¾ or less, ⅔ or less, ½ or less, ⅓ or less, ¼ or less) than the length 1962 of the standard AA battery cell 1960. For a given diameter, the larger the length 1905 of battery cell 1904, the larger the capacity of battery cell 1904 to store energy. In some embodiments, the larger the length 1905, the greater the extent to which the length of coil 1912 is reduced due to space constraints. The reduced length of coil 1912 can reduce a coupling coefficient of energy transfer between the battery cell 1904 and a source resonator. As such, the length 1905 of the battery cell 1904 can be selected for a particular application depending on several factors such as down-time and use-time of the battery cell. As used herein, down-time is the period of time when a battery cell 1904 receives power from a source, and use-time is the period of time when the battery cell 1904 is unable to receive power from the source because battery 1900 is delivering power to the device.
While the foregoing embodiments have the form factor of a conventional AAA battery, the power receiving apparatuses disclosed herein can have form factors that correspond to any of a variety of different conventional batteries. For example, the batteries can have a form factor that is substantially similar to the form factor of a conventional AAA, AA, C, D, 9 V, LiPo cell, or C123 battery, e.g., within 3% (e.g., within 5%, within 10%) of the volume of such a conventional battery. Battery cell 1904 can have a length 1905 that is a fraction of a length of a conventional battery.
In some embodiments, a battery cell 1904 can be a rechargeable battery cell such as lead-acid, valve regulated lead-acid, gel, absorbed glass mat, nickel-cadmium (NiCd), nickel-zinc (NiZn), nickel metal hydride (NiMH), lithium-ion (Li-ion), lithium poly or molten sand based rechargeable battery cell. In certain embodiments, battery cell 1904 can include solid state materials such as Ag4RbI5, LiI/Al2O3 mixtures, clay and β-alumina group of compounds (NaAl11O17), or glassy and polymeric materials that can be readily made in thin film form. In certain embodiments, battery cell 1904 can include fuel cells, capacitors, super capacitors, piezoelectric elements, or springs.
In certain embodiments, battery cell 1904 can be made from a commercially available battery cell. For example, the battery cell 1904 can be made from one or more battery cells with a ⅘ AA battery type with 1100 mA-hr capacity. The battery cell 1904 can be made from one or more battery cells with a ⅔ AA battery type with 700 mA-hr capacity. The battery cell 1904 can be made from one or more battery cells with a AAA battery type with 700 mA-hr capacity. The battery cell 1904 can be made from one or more battery cells with a ⅔ AAA battery type with 400 mA-hr capacity. The battery cell 1904 can be made from one or more battery cells with a AAAA battery type with 300 mA-hr capacity. The battery cell 1904 can be made from one or more battery cells with a ½ AAA battery type with 250 mA-hr capacity. The battery cell 1904 can be made from one or more battery cells with a ⅓ AAA battery type with 180 mA-hr capacity. The battery cell 1904 can be made from one or more battery cells with a ¼ AAA battery type with 85 mA-hr capacity. The battery cell 1904 can be made from one or more battery cells with a ⅓ AA battery type or a ½ AAAA battery type.
In some embodiments, a battery 1900 can include multiple battery cells 1904 which can correspond to one or more different types of battery cells. This can be advantageous when one of the battery cells 1904 has a defect because the battery 1900 can still store power through the other battery cells 1904 which function properly.
In certain embodiments, a power receiving apparatus does not include a battery cell 1904 but directly provides power to an electronic device.
A battery 1900 (such as battery 1906) can include a battery cell 1904 which has a metallic outer surface or contains metal. This can induce a loss of the energy received by the battery 1900. Thus, in some embodiments, it can be desirable to shield the metal of the battery cell 1904 from an adjacent coil 1912. In certain embodiments, a magnetic material 1914 can be used as shield between the coil 1912 and the battery cell 1904. For example, in
In certain embodiments, a magnetic material 1914 can be arranged to improve the coupling coefficient of energy transfer between a source resonator and a coil 1912. In certain embodiments, a magnetic material 1914 can be positioned to reduce the coupling between a coil 1912 and an electronic device connected to a battery cell 1904. For example, the magnetic material 1914 can be positioned between a metallic portion of the electronic device and the coil 1912 to shield the effect of loss in the metallic portion. In certain embodiments, the thickness of the magnetic material 1914 can be in a range of 0.5-1 mm. For example, the thickness can be 0.52±0.05 mm. In some examples, the thickness can be 0.5 mm or more, 0.55 mm or more, 0.6 mm or more, 0.65 mm or more, 1 mm or less, 0.95 mm or less, 0.9 mm or less. The thickness can be at least 1 times (e.g., at least 1.5 times, at least 2 times) the skin depth of fields (e.g., electric fields, magnetic fields) that can penetrate the battery cell 1904. In some embodiments, the magnetic material 1914 can be separated from the coil 1912 with a gap thickness of at least 0.1 mm (e.g., at least 0.5 mm, at least 1 mm, at least 1.5 mm) or less than 3 mm (e.g., less than 2 mm, less than 1 mm, less than 0.5 mm). The gap thickness can be selected based the skin depth of fields that can penetrate the battery cell 1904, to improve the shielding effect.
In general, a wide variety of arrangements of multiple wirelessly chargeable batteries can be implemented. In particular, specific designs of the can be implemented batteries and specific arrangements of batteries can be used based on factors such as coupling between adjacent batteries and the field distribution generated by one or more source resonators. In some embodiments, a battery 1906 and a battery 1908 can be positioned in a side-by-side aligned arrangement, as shown in
Resonators can generally be oriented along different directions with respect to an axis of a battery cell.
Positioning batteries 1906 and 1908 adjacent to one another and with resonators oriented in orthogonal directions can reduce coupling between coils 1912 of the batteries due to their orthogonal arrangement. Moreover, for a given magnetic field direction provided by a source resonator, either or both of the batteries 1906 and 1908 can be charged and provide power to an electronic device. For example, when the source resonator generates a magnetic field along direction 2110, the battery 1908 can be predominantly charged. When the magnetic field is generated along direction 2112, the battery 1906 can be predominantly charged. When the magnetic field points in a direction between directions 2110 and 2112, both batteries 1906 and 1908 can be charged. In this approach, the electronic device can receive power from the source resonator in a wide range of orientations of the electronic device with respective to the source resonator.
In some embodiments, the intermediate element 2210 can function as a rigid locking element which fixes the connection of the magnetic material 1914 and the battery cell 1904. For example, the intermediate element 2210 can be made from a shock absorbing material that reinforces the battery 1900 so that the battery can withstand force applied along its coaxial direction.
In some embodiments, a battery 1900 can have a diameter of a specific standard battery (e.g., AA battery) while including a battery cell with a size of another standard battery (e.g., AAA battery). As an example,
In this embodiment, the battery 1900 includes a buffer 2310 (e.g., a spring, a conical spring contact, a cushion) for absorbing compressive force applied to the battery 1900 along its coaxial direction. Compression of buffer 2310 can help to absorb the force that is typically applied to the battery when it is introduced into a battery compartment of a device, making battery 1900 more damage-resistant. In
In some embodiments, battery 1900 can include a magnetic material 1914 with several magnetic elements spaced apart from each other, as shown in