Tunable wireless power architectures
First Claim
1. A wireless energy source, comprising:
- a source resonator;
a power supply;
an amplifier connected to the power supply and to the source resonator and comprising a plurality of switching elements; and
a controller connected to the amplifier,wherein during operation of the source;
the power supply drives the source resonator through the amplifier with an oscillating voltage signal;
the controller is configured to adjust a duty cycle of the switching elements so that zero voltage switching is substantially maintained; and
the controller is configured to adjust an output power level of the oscillating voltage signal driving the source resonator in response to a change in a power demand by a load receiving power wirelessly from the source resonator by adjusting a bus voltage of the amplifier.
1 Assignment
0 Petitions

Accused Products

Abstract
Described herein are improved configurations for a wireless power transfer. The parameters of components of the wireless energy transfer system are adjusted to control the power delivered to the load at the device. The power output of the source amplifier is controlled to maintain a substantially 50% duty cycle at the rectifier of the device.
688 Citations
Primary coil circuit for wireless power transfer, ground assembly using the same, and manufacturing method therefor | ||
Patent #
US 10,411,515 B2
Filed 03/16/2017
|
Current Assignee
SungKyunKwan University Research Business Foundation
|
Original Assignee
Hyundai Motor Company
|
TUNING AND GAIN CONTROL IN ELECTRO-MAGNETIC POWER SYSTEMS | ||
Patent #
US 20110018361A1
Filed 10/01/2010
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
WIRELESS ENERGY TRANSFER WITH HIGH-Q CAPACITIVELY LOADED CONDUCTING LOOPS | ||
Patent #
US 20110043046A1
Filed 12/23/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
Tunable embedded inductor devices | ||
Patent #
US 7,884,697 B2
Filed 02/26/2008
|
Current Assignee
Industrial Technology Research Institute
|
Original Assignee
Industrial Technology Research Institute
|
High power wireless resonant energy transfer system | ||
Patent #
US 7,880,337 B2
Filed 10/25/2007
|
Current Assignee
Leslie Farkas
|
Original Assignee
Laszlo Farkas
|
WIRELESS DELIVERY OF POWER TO A FIXED-GEOMETRY POWER PART | ||
Patent #
US 20110049998A1
Filed 11/04/2010
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
Amplification relay device of electromagnetic wave and a radio electric power conversion apparatus using the above device | ||
Patent #
US 7,885,050 B2
Filed 07/29/2005
|
Current Assignee
Andong National University Industry Academic Cooperation Foundation, JC Protek Company Limited
|
Original Assignee
JC Protek Company Limited
|
RESONATORS FOR WIRELESS POWER TRANSFER | ||
Patent #
US 20110012431A1
Filed 09/10/2010
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
WIRELESS ENERGY TRANSFER | ||
Patent #
US 20110074347A1
Filed 11/18/2010
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
WIRELESS DESKTOP IT ENVIRONMENT | ||
Patent #
US 20110049996A1
Filed 08/25/2010
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
VEHICLE CHARGER SAFETY SYSTEM AND METHOD | ||
Patent #
US 20110074346A1
Filed 10/06/2010
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
NONCONTACT ELECTRIC POWER FEEDING APPARATUS, NONCONTACT ELECTRIC POWER RECEIVING APPARATUS, NONCONTACT ELECTRIC POWER FEEDING METHOD, NONCONTACT ELECTRIC POWER RECEIVING METHOD, AND NONCONTACT ELECTRIC POWER FEEDING SYSTEM | ||
Patent #
US 20110049995A1
Filed 07/30/2010
|
Current Assignee
Sony Corporation
|
Original Assignee
Sony Corporation
|
WIRELESS ENERGY TRANSFER | ||
Patent #
US 20110074218A1
Filed 11/18/2010
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
Soldier system wireless power and data transmission | ||
Patent #
US 20110031928A1
Filed 10/13/2010
|
Current Assignee
Cynetic Designs Ltd.
|
Original Assignee
Cynetic Designs Ltd.
|
WIRELESS ENERGY TRANSFER WITH HIGH-Q RESONATORS USING FIELD SHAPING TO IMPROVE K | ||
Patent #
US 20110043049A1
Filed 12/29/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER USING OBJECT POSITIONING FOR LOW LOSS | ||
Patent #
US 20110043048A1
Filed 12/29/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
PACKAGING AND DETAILS OF A WIRELESS POWER DEVICE | ||
Patent #
US 20110025131A1
Filed 10/01/2010
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
IMPLANTABLE PULSE GENERATOR FOR PROVIDING FUNCTIONAL AND/OR THERAPEUTIC STIMULATION OF MUSCLES AND/OR NERVES AND/OR CENTRAL NERVOUS SYSTEM TISSUE | ||
Patent #
US 20110004269A1
Filed 06/28/2010
|
Current Assignee
Medtronic Urinary Solutions Inc.
|
Original Assignee
Medtronic Urinary Solutions Inc.
|
WIRELESS ENERGY TRANSFER USING FIELD SHAPING TO REDUCE LOSS | ||
Patent #
US 20110043047A1
Filed 12/28/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Contactless battery charging apparel | ||
Patent #
US 7,863,859 B2
Filed 06/28/2006
|
Current Assignee
Cynetic Designs Ltd.
|
Original Assignee
Cynetic Designs Ltd.
|
WIRELESS ENERGY TRANSFER RESONATOR THERMAL MANAGEMENT | ||
Patent #
US 20110121920A1
Filed 02/07/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER | ||
Patent #
US 20110089895A1
Filed 11/18/2010
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
SELECTIVE WIRELESS POWER TRANSFER | ||
Patent #
US 20110115431A1
Filed 08/04/2010
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
WIRELESS ENERGY TRANSFER USING REPEATER RESONATORS | ||
Patent #
US 20110095618A1
Filed 04/13/2010
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
MULTIPLE USE WIRELESS POWER SYSTEMS | ||
Patent #
US 20110115303A1
Filed 11/18/2010
|
Current Assignee
Access Business Group International LLC
|
Original Assignee
Access Business Group International LLC
|
Noncontact power transmission system and power transmitting device | ||
Patent #
US 7,923,870 B2
Filed 03/13/2008
|
Current Assignee
Seiko Epson Corporation
|
Original Assignee
Seiko Epson Corporation
|
Wireless charger system for battery pack solution and controlling method thereof | ||
Patent #
US 7,948,209 B2
Filed 09/13/2007
|
Current Assignee
Intel Corporation
|
Original Assignee
Hanrim Postech Co. Ltd.
|
Inductive power source and charging system | ||
Patent #
US 7,952,322 B2
Filed 01/30/2007
|
Current Assignee
Mojo Mobility Inc.
|
Original Assignee
Mojo Mobility Inc.
|
System, an inductive power device, an energizable load and a method for enabling a wireless power transfer | ||
Patent #
US 7,932,798 B2
Filed 03/09/2006
|
Current Assignee
Koninklijke Philips N.V.
|
Original Assignee
Koninklijke Philips N.V.
|
Foreign Object Detection in Inductive Coupled Devices | ||
Patent #
US 20110128015A1
Filed 10/29/2010
|
Current Assignee
Robert Bosch GmbH
|
Original Assignee
Robert Bosch GmbH
|
Installation | ||
Patent #
US 7,969,045 B2
Filed 05/10/2007
|
Current Assignee
Sew-Eurodrive GmbH Company KG
|
Original Assignee
Sew-Eurodrive GmbH Company KG
|
Intra-abdominal medical method and associated device | ||
Patent #
US 7,963,941 B2
Filed 03/22/2006
|
Current Assignee
WILK Patent LLC
|
Original Assignee
Peter J. Wilk
|
ADAPTIVE WIRELESS POWER TRANSFER APPARATUS AND METHOD THEREOF | ||
Patent #
US 20110140544A1
Filed 02/18/2011
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
SHORT RANGE EFFICIENT WIRELESS POWER TRANSFER | ||
Patent #
US 20110148219A1
Filed 02/18/2011
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
Power receiving device and power transfer system | ||
Patent #
US 7,919,886 B2
Filed 08/29/2008
|
Current Assignee
Sony Corporation
|
Original Assignee
Sony Corporation
|
POWER SUPPLY SYSTEM AND METHOD OF CONTROLLING POWER SUPPLY SYSTEM | ||
Patent #
US 20110221278A1
Filed 05/20/2011
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
METHOD AND APPARATUS OF LOAD DETECTION FOR A PLANAR WIRELESS POWER SYSTEM | ||
Patent #
US 20110169339A1
Filed 03/18/2011
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
FLAT, ASYMMETRIC, AND E-FIELD CONFINED WIRELESS POWER TRANSFER APPARATUS AND METHOD THEREOF | ||
Patent #
US 20110198939A1
Filed 03/04/2011
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
WIRELESS ENERGY TRANSFER | ||
Patent #
US 20110193419A1
Filed 02/28/2011
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
WIRELESSLY POWERED SPEAKER | ||
Patent #
US 20110181122A1
Filed 04/01/2011
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
Wirelessly-chargeable stretch-resistant light-emitting or heat-emitting structure | ||
Patent #
US 20110215086A1
Filed 02/23/2011
|
Current Assignee
WindStream Technology Co. Ltd.
|
Original Assignee
Winharbor Technology Co. Ltd.
|
System to automatically recharge vehicles with batteries | ||
Patent #
US 7,999,506 B1
Filed 04/09/2008
|
Current Assignee
SeventhDigit Corporation
|
Original Assignee
SeventhDigit Corporation
|
ADAPTIVE MATCHING, TUNING, AND POWER TRANSFER OF WIRELESS POWER | ||
Patent #
US 20110227528A1
Filed 05/13/2011
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
Energy transferring system and method thereof | ||
Patent #
US 7,994,880 B2
Filed 06/19/2008
|
Current Assignee
Darfon Electronics Corporation
|
Original Assignee
Darfon Electronics Corporation
|
TUNABLE WIRELESS ENERGY TRANSFER SYSTEMS | ||
Patent #
US 20110193416A1
Filed 01/06/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS POWER TRANSMISSION FOR PORTABLE WIRELESS POWER CHARGING | ||
Patent #
US 20110227530A1
Filed 05/26/2011
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
Wireless non-radiative energy transfer | ||
Patent #
US 8,022,576 B2
Filed 03/31/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
NONCONTACT ELECTRIC POWER RECEIVING DEVICE, NONCONTACT ELECTRIC POWER TRANSMITTING DEVICE, NONCONTACT ELECTRIC POWER FEEDING SYSTEM, AND ELECTRICALLY POWERED VEHICLE | ||
Patent #
US 20110162895A1
Filed 03/18/2011
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
Transmitters and receivers for wireless energy transfer | ||
Patent #
US 20110266878A9
Filed 09/16/2008
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Nigel Power LLC
|
WIRELESS POWER TRANSMISSION SYSTEM | ||
Patent #
US 20110248573A1
Filed 04/06/2011
|
Current Assignee
Panasonic Corporation
|
Original Assignee
Panasonic Corporation
|
WIRELESS POWER TRANSMISSION IN ELECTRIC VEHICLES | ||
Patent #
US 20110254377A1
Filed 04/07/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Qualcomm Inc.
|
METHODS AND SYSTEMS FOR WIRELESS POWER TRANSMISSION | ||
Patent #
US 20110241618A1
Filed 06/17/2011
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
System including wearable power receiver and wearable power-output device | ||
Patent #
US 20110278943A1
Filed 05/11/2010
|
Current Assignee
Searete LLC
|
Original Assignee
Searete LLC
|
WIRELESS POWER ANTENNA ALIGNMENT ADJUSTMENT SYSTEM FOR VEHICLES | ||
Patent #
US 20110254503A1
Filed 04/07/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Qualcomm Inc.
|
Wireless energy transfer using planar capacitively loaded conducting loop resonators | ||
Patent #
US 8,035,255 B2
Filed 11/06/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
OPTIMIZATION OF WIRELESS POWER DEVICES | ||
Patent #
US 20100244576A1
Filed 02/25/2010
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
PHASED ARRAY WIRELESS RESONANT POWER DELIVERY SYSTEM | ||
Patent #
US 20100033021A1
Filed 09/30/2008
|
Current Assignee
Avago Technologies General IP PTE Limited
|
Original Assignee
Broadcom Corporation
|
WIRELESS ENERGY TRANSFER USING VARIABLE SIZE RESONATORS AND SYSTEM MONITORING | ||
Patent #
US 20100164296A1
Filed 12/28/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER WITH FEEDBACK CONTROL FOR LIGHTING APPLICATIONS | ||
Patent #
US 20100201203A1
Filed 02/02/2010
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER FOR REFRIGERATOR APPLICATION | ||
Patent #
US 20100181843A1
Filed 03/11/2010
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS POWER FOR CHARGEABLE AND CHARGING DEVICES | ||
Patent #
US 20100225272A1
Filed 01/28/2010
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
REDUCED JAMMING BETWEEN RECEIVERS AND WIRELESS POWER TRANSMITTERS | ||
Patent #
US 20100151808A1
Filed 11/05/2009
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
WIRELESS HIGH POWER TRANSFER UNDER REGULATORY CONSTRAINTS | ||
Patent #
US 20100117596A1
Filed 07/06/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Qualcomm Inc.
|
Self-Charging Electric Vehicles and Aircraft, and Wireless Energy Distribution System | ||
Patent #
US 20100231163A1
Filed 09/26/2008
|
Current Assignee
Paradigm Shift Solutions
|
Original Assignee
Governing Dynamics LLC
|
WIRELESS ENERGY TRANSFER | ||
Patent #
US 20100289449A1
Filed 12/18/2008
|
Current Assignee
Nokia Corporation
|
Original Assignee
Nokia Technologies Oy
|
WIRELESS POWER TRANSFER APPARATUS AND METHOD THEREOF | ||
Patent #
US 20100187913A1
Filed 04/06/2010
|
Current Assignee
Intel Corporation
|
Original Assignee
Intel Corporation
|
EFFICIENCY INDICATOR FOR INCREASING EFFICIENCY OF WIRELESS POWER TRANSFER | ||
Patent #
US 20100201513A1
Filed 10/16/2009
|
Current Assignee
Avago Technologies International Sales Pte Limited
|
Original Assignee
Broadcom Corporation
|
WIRELESS TRANSFER OF INFORMATION USING MAGNETO-ELECTRIC DEVICES | ||
Patent #
US 20100015918A1
Filed 07/17/2009
|
Current Assignee
Ferro Solutions Inc.
|
Original Assignee
Ferro Solutions Inc.
|
METHOD AND APPARATUS FOR SUPPLYING ENERGY TO A MEDICAL DEVICE | ||
Patent #
US 20100234922A1
Filed 10/10/2008
|
Current Assignee
Kirk Promotion Ltd.
|
Original Assignee
Teslux Holding SA
|
WIRELESS POWER TRANSFER SYSTEM AND A LOAD APPARATUS IN THE SAME WIRELESS POWER TRANSFER SYSTEM | ||
Patent #
US 20100164295A1
Filed 11/16/2009
|
Current Assignee
Maxell Ltd.
|
Original Assignee
Hitachi Consumer Electronics Company Limited
|
Security for wireless transfer of electrical power | ||
Patent #
US 20100276995A1
Filed 04/29/2009
|
Current Assignee
Alcatel-Lucent USA Inc.
|
Original Assignee
Alcatel-Lucent USA Inc.
|
WIRELESS POWER TRANSFER FOR FURNISHINGS AND BUILDING ELEMENTS | ||
Patent #
US 20100201202A1
Filed 10/02/2009
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
WIRELESSLY POWERED SPEAKER | ||
Patent #
US 20100081379A1
Filed 09/25/2009
|
Current Assignee
Intel Corporation
|
Original Assignee
Intel Corporation
|
ELECTRICAL POWERED VEHICLE AND POWER FEEDING DEVICE FOR VEHICLE | ||
Patent #
US 20100225271A1
Filed 09/25/2008
|
Current Assignee
Ibaraki Toyota Jidosha Kabushiki Kaisha
|
Original Assignee
Ibaraki Toyota Jidosha Kabushiki Kaisha
|
APPLICATIONS OF WIRELESS ENERGY TRANSFER USING COUPLED ANTENNAS | ||
Patent #
US 20100117456A1
Filed 01/15/2010
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
WIRELESS POWER AND DATA TRANSFER FOR ELECTRONIC DEVICES | ||
Patent #
US 20100194335A1
Filed 11/06/2009
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
EFFICIENT NEAR-FIELD WIRELESS ENERGY TRANSFER USING ADIABATIC SYSTEM VARIATIONS | ||
Patent #
US 20100148589A1
Filed 10/01/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
INDUCTIVELY RECHARGEABLE EXTERNAL ENERGY SOURCE, CHARGER, SYSTEM AND METHOD FOR A TRANSCUTANEOUS INDUCTIVE CHARGER FOR AN IMPLANTABLE MEDICAL DEVICE | ||
Patent #
US 20100076524A1
Filed 10/28/2009
|
Current Assignee
Medtronic Incorporated
|
Original Assignee
Medtronic Incorporated
|
SYSTEM FOR ELECTRICAL POWER SUPPLY AND FOR TRANSMITTING DATA WITHOUT ELECTRICAL CONTACT | ||
Patent #
US 20100104031A1
Filed 03/10/2008
|
Current Assignee
Delachaux SA
|
Original Assignee
Delachaux SA
|
RESONANCE-TYPE NON-CONTACT CHARGING APPARATUS | ||
Patent #
US 20100156346A1
Filed 12/23/2009
|
Current Assignee
Toyota Jidoshi Kabushiki Kaisha
|
Original Assignee
Ibaraki Toyota Jidosha Kabushiki Kaisha, Kabushiki Kaisha Toyota Jidoshokki
|
INCREASING EFFICIENCY OF WIRELESS POWER TRANSFER | ||
Patent #
US 20100201313A1
Filed 10/16/2009
|
Current Assignee
Avago Technologies International Sales Pte Limited
|
Original Assignee
Broadcom Corporation
|
BIDIRECTIONAL WIRELESS POWER TRANSMISSION | ||
Patent #
US 20100148723A1
Filed 09/01/2009
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
Narrow spectrum light source | ||
Patent #
US 7,835,417 B2
Filed 07/15/2008
|
Current Assignee
OctroliX B.V.
|
Original Assignee
OctroliX B.V.
|
WIRELESS POWER TRANSFER IN PUBLIC PLACES | ||
Patent #
US 20100201201A1
Filed 10/02/2009
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
NONCONTACT ELECTRIC POWER RECEIVING DEVICE, NONCONTACT ELECTRIC POWER TRANSMITTING DEVICE, NONCONTACT ELECTRIC POWER FEEDING SYSTEM, AND ELECTRICALLY POWERED VEHICLE | ||
Patent #
US 20100065352A1
Filed 08/27/2009
|
Current Assignee
Ibaraki Toyota Jidosha Kabushiki Kaisha
|
Original Assignee
Ibaraki Toyota Jidosha Kabushiki Kaisha
|
WIRELESS POWER TRANSFER FOR CHARGEABLE DEVICES | ||
Patent #
US 20100225270A1
Filed 10/22/2009
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
PACKAGING AND DETAILS OF A WIRELESS POWER DEVICE | ||
Patent #
US 20100327661A1
Filed 09/10/2010
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
WIRELESS ENERGY TRANSFER USING COUPLED RESONATORS | ||
Patent #
US 20100117455A1
Filed 01/15/2010
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
RETROFITTING WIRELESS POWER AND NEAR-FIELD COMMUNICATION IN ELECTRONIC DEVICES | ||
Patent #
US 20100194334A1
Filed 11/02/2009
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
WIRELESS ENERGY TRANSFER SYSTEMS | ||
Patent #
US 20100141042A1
Filed 09/25/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER OVER DISTANCES TO A MOVING DEVICE | ||
Patent #
US 20100187911A1
Filed 12/30/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
WIRELESS POWER TRANSFER WITH LIGHTING | ||
Patent #
US 20100194207A1
Filed 02/04/2010
|
Current Assignee
David S. Graham
|
Original Assignee
David S. Graham
|
WIRELESS POWER TRANSFER FOR PORTABLE ENCLOSURES | ||
Patent #
US 20100201312A1
Filed 10/02/2009
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
Coupling system | ||
Patent #
US 7,825,544 B2
Filed 11/29/2006
|
Current Assignee
Koninklijke Philips N.V.
|
Original Assignee
Koninklijke Philips N.V.
|
RESONATORS AND THEIR COUPLING CHARACTERISTICS FOR WIRELESS POWER TRANSFER VIA MAGNETIC COUPLING | ||
Patent #
US 20100327660A1
Filed 08/26/2010
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
ADAPTIVE MATCHING AND TUNING OF HF WIRELESS POWER TRANSMIT ANTENNA | ||
Patent #
US 20100117454A1
Filed 07/17/2009
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
WIRELESS POWER DISTRIBUTION SYSTEM AND METHOD FOR POWER TOOLS | ||
Patent #
US 20100181964A1
Filed 01/22/2010
|
Current Assignee
Techtronic Power Tools Technology Limited
|
Original Assignee
Techtronic Power Tools Technology Limited
|
SYSTEMS AND METHODS FOR ELECTRIC VEHICLE CHARGING AND POWER MANAGEMENT | ||
Patent #
US 20100017249A1
Filed 07/13/2009
|
Current Assignee
Charge Fusion Technologies LLC
|
Original Assignee
Charge Fusion Technologies LLC
|
Resonator for wireless power transmission | ||
Patent #
US 20100156570A1
Filed 12/17/2009
|
Current Assignee
Samsung Electronics Co. Ltd.
|
Original Assignee
Samsung Electronics Co. Ltd.
|
WIRELESS ENERGY TRANSFER OVER A DISTANCE WITH DEVICES AT VARIABLE DISTANCES | ||
Patent #
US 20100207458A1
Filed 12/16/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
Method and Apparatus of Load Detection for a Planar Wireless Power System | ||
Patent #
US 20100066349A1
Filed 09/12/2008
|
Current Assignee
University of Florida Research Foundation Incorporated
|
Original Assignee
University of Florida Research Foundation Incorporated
|
Multilayer structures for magnetic shielding | ||
Patent #
US 7,795,708 B2
Filed 06/02/2006
|
Current Assignee
Honeywell International Inc.
|
Original Assignee
Honeywell International Inc.
|
CONCURRENT WIRELESS POWER TRANSMISSION AND NEAR-FIELD COMMUNICATION | ||
Patent #
US 20100190436A1
Filed 08/25/2009
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
WIRELESS ENERGY TRANSFER SYSTEMS | ||
Patent #
US 20100109445A1
Filed 11/06/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Short Range Efficient Wireless Power Transfer | ||
Patent #
US 20100038970A1
Filed 04/21/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Nigel Power LLC
|
Wireless energy transfer | ||
Patent #
US 7,825,543 B2
Filed 03/26/2008
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
APPARATUS FOR DRIVING ARTIFICIAL RETINA USING MEDIUM-RANGE WIRELESS POWER TRANSMISSION TECHNIQUE | ||
Patent #
US 20100094381A1
Filed 06/04/2009
|
Current Assignee
Electronics and Telecommunications Research Institute
|
Original Assignee
Electronics and Telecommunications Research Institute
|
RECEIVE ANTENNA ARRANGEMENT FOR WIRELESS POWER | ||
Patent #
US 20100210233A1
Filed 09/04/2009
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
RESONATOR ARRAYS FOR WIRELESS ENERGY TRANSFER | ||
Patent #
US 20100237709A1
Filed 05/28/2010
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Wirelessly Powered Medical Devices And Instruments | ||
Patent #
US 20100179384A1
Filed 08/21/2009
|
Current Assignee
KARL Storz Development Corp.
|
Original Assignee
KARL Storz Development Corp.
|
MULTI POWER SOURCED ELECTRIC VEHICLE | ||
Patent #
US 20100109604A1
Filed 05/09/2008
|
Current Assignee
Auckland UniServices Limited
|
Original Assignee
Auckland UniServices Limited
|
WIRELESS ENERGY TRANSFER WITH FREQUENCY HOPPING | ||
Patent #
US 20100171368A1
Filed 12/31/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS POWER INFRASTRUCTURE | ||
Patent #
US 20100256831A1
Filed 04/03/2009
|
Current Assignee
International Business Machines Corporation
|
Original Assignee
International Business Machines Corporation
|
Apparatus and system for transmitting power wirelessly | ||
Patent #
US 7,843,288 B2
Filed 04/30/2008
|
Current Assignee
Samsung Electronics Co. Ltd., Postech Academy-Industry Foundation
|
Original Assignee
Samsung Electronics Co. Ltd., Postech Academy-Industry Foundation
|
WIRELESS ENERGY TRANSFER BETWEEN A SOURCE AND A VEHICLE | ||
Patent #
US 20100277121A1
Filed 04/29/2010
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER WITH HIGH-Q TO MORE THAN ONE DEVICE | ||
Patent #
US 20100127575A1
Filed 12/16/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
ADAPTIVE WIRELESS POWER TRANSFER APPARATUS AND METHOD THEREOF | ||
Patent #
US 20100045114A1
Filed 08/20/2009
|
Current Assignee
Intel Corporation
|
Original Assignee
Intel Corporation
|
WIRELESS POWER TRANSFER SYSTEM | ||
Patent #
US 20100201310A1
Filed 04/10/2009
|
Current Assignee
Avago Technologies General IP PTE Limited
|
Original Assignee
Broadcom Corporation
|
Apparatus for wireless power transmission using high Q low frequency near magnetic field resonator | ||
Patent #
US 20100123530A1
Filed 11/17/2009
|
Current Assignee
Samsung Electronics Co. Ltd.
|
Original Assignee
Samsung Electronics Co. Ltd.
|
ANTENNA SHARING FOR WIRELESSLY POWERED DEVICES | ||
Patent #
US 20100222010A1
Filed 01/28/2010
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
MAGNETIC INDUCTIVE CHARGING WITH LOW FAR FIELDS | ||
Patent #
US 20100244767A1
Filed 03/27/2009
|
Current Assignee
Microsoft Technology Licensing LLC
|
Original Assignee
Microsoft Corporation
|
MAXIMIZING POWER YIELD FROM WIRELESS POWER MAGNETIC RESONATORS | ||
Patent #
US 20100171370A1
Filed 03/18/2010
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
WIRELESS POWER APPARATUS AND WIRELESS POWER-RECEIVING METHOD | ||
Patent #
US 20100244583A1
Filed 03/31/2010
|
Current Assignee
Fujitsu Limited
|
Original Assignee
Fujitsu Limited
|
SYSTEM AND METHOD FOR CHARGING A PLUG-IN ELECTRIC VEHICLE | ||
Patent #
US 20100156355A1
Filed 12/19/2008
|
Current Assignee
GM Global Technology Operations LLC
|
Original Assignee
GM Global Technology Operations Incorporated
|
POWER TRANSMITTING APPARATUS | ||
Patent #
US 20100244839A1
Filed 03/15/2010
|
Current Assignee
Fujitsu Limited
|
Original Assignee
Fujitsu Limited
|
PASSIVE RECEIVERS FOR WIRELESS POWER TRANSMISSION | ||
Patent #
US 20100190435A1
Filed 08/24/2009
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
SPREAD SPECTRUM WIRELESS RESONANT POWER DELIVERY | ||
Patent #
US 20100034238A1
Filed 09/30/2008
|
Current Assignee
Avago Technologies General IP PTE Limited
|
Original Assignee
Broadcom Corporation
|
NON-CONTACT POWER TRANSMISSION DEVICE | ||
Patent #
US 20100052431A1
Filed 09/01/2009
|
Current Assignee
Sony Corporation
|
Original Assignee
Sony Corporation
|
NON-CONTACT POWER TRANSMISSION APPARATUS AND METHOD FOR DESIGNING NON-CONTACT POWER TRANSMISSION APPARATUS | ||
Patent #
US 20100115474A1
Filed 11/03/2009
|
Current Assignee
Toyota Industries Corporation
|
Original Assignee
Kabushiki Kaisha Toyota Jidoshokki
|
TRANSMITTERS AND RECEIVERS FOR WIRELESS ENERGY TRANSFER | ||
Patent #
US 20100237708A1
Filed 03/26/2010
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
Noncontact Electric Power Transmission System | ||
Patent #
US 20100219696A1
Filed 02/19/2010
|
Current Assignee
Murata Manufacturing Co Limited
|
Original Assignee
TOKO Incorporated
|
PARASITIC DEVICES FOR WIRELESS POWER TRANSFER | ||
Patent #
US 20100277120A1
Filed 04/08/2010
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
WIRELESS ENERGY TRANSFER WITH HIGH-Q SUB-WAVELENGTH RESONATORS | ||
Patent #
US 20100123355A1
Filed 12/16/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
WIRELESS ENERGY TRANSFER WITH HIGH-Q AT HIGH EFFICIENCY | ||
Patent #
US 20100127574A1
Filed 12/16/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
WIRELESS POWER TRANSMISSION SCHEDULING | ||
Patent #
US 20100253281A1
Filed 03/02/2010
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
Power Transfer Apparatus | ||
Patent #
US 20100244582A1
Filed 03/30/2010
|
Current Assignee
Fujitsu Limited
|
Original Assignee
Fujitsu Limited
|
WIRELESS POWERING AND CHARGING STATION | ||
Patent #
US 20100277005A1
Filed 07/16/2010
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
NONCONTACT POWER RECEIVING APPARATUS AND VEHICLE INCLUDING THE SAME | ||
Patent #
US 20100295506A1
Filed 09/19/2008
|
Current Assignee
Ibaraki Toyota Jidosha Kabushiki Kaisha
|
Original Assignee
Ibaraki Toyota Jidosha Kabushiki Kaisha
|
TRANSMITTERS FOR WIRELESS POWER TRANSMISSION | ||
Patent #
US 20100184371A1
Filed 09/16/2009
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
TRACKING RECEIVER DEVICES WITH WIRELESS POWER SYSTEMS, APPARATUSES, AND METHODS | ||
Patent #
US 20100248622A1
Filed 10/02/2009
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
GLAZING | ||
Patent #
US 20100060077A1
Filed 11/07/2007
|
Current Assignee
Pilkington Automotive Deutschland GmbH
|
Original Assignee
Pilkington Automotive Deutschland GmbH
|
WIRELESS ENERGY TRANSFER WITH HIGH-Q DEVICES AT VARIABLE DISTANCES | ||
Patent #
US 20100123354A1
Filed 12/16/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
IMPEDANCE CHANGE DETECTION IN WIRELESS POWER TRANSMISSION | ||
Patent #
US 20100217553A1
Filed 12/17/2009
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
INTEGRATED WIRELESS RESONANT POWER CHARGING AND COMMUNICATION CHANNEL | ||
Patent #
US 20100036773A1
Filed 09/30/2008
|
Current Assignee
Avago Technologies General IP PTE Limited
|
Original Assignee
Broadcom Corporation
|
FLAT, ASYMMETRIC, AND E-FIELD CONFINED WIRELESS POWER TRANSFER APPARATUS AND METHOD THEREOF | ||
Patent #
US 20100052811A1
Filed 08/20/2009
|
Current Assignee
Intel Corporation
|
Original Assignee
Intel Corporation
|
WIRELESS NON-RADIATIVE ENERGY TRANSFER | ||
Patent #
US 20100102639A1
Filed 09/03/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
WIRELESS ENERGY TRANSFER ACROSS VARIABLE DISTANCES | ||
Patent #
US 20100102641A1
Filed 12/30/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
WIRELESS ENERGY TRANSFER WITH HIGH-Q SIMILAR RESONANT FREQUENCY RESONATORS | ||
Patent #
US 20100096934A1
Filed 12/23/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
WIRELESS ENERGY TRANSFER TO A MOVING DEVICE BETWEEN HIGH-Q RESONATORS | ||
Patent #
US 20100102640A1
Filed 12/30/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
WIRELESS POWER TRANSMISSION FOR ELECTRONIC DEVICES | ||
Patent #
US 20100109443A1
Filed 07/27/2009
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
WIRELESS ENERGY TRANSFER OVER A DISTANCE AT HIGH EFFICIENCY | ||
Patent #
US 20100127573A1
Filed 12/16/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
WIRELESS POWER TRANSMISSION FOR PORTABLE WIRELESS POWER CHARGING | ||
Patent #
US 20100127660A1
Filed 08/18/2009
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
WIRELESS ENERGY TRANSFER WITH HIGH-Q FROM MORE THAN ONE SOURCE | ||
Patent #
US 20100123353A1
Filed 12/16/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
Power supply system and method of controlling power supply system | ||
Patent #
US 20100123452A1
Filed 10/13/2009
|
Current Assignee
Ibaraki Toyota Jidosha Kabushiki Kaisha
|
Original Assignee
Ibaraki Toyota Jidosha Kabushiki Kaisha
|
WIRELESS ENERGY TRANSFER ACROSS VARIABLE DISTANCES WITH HIGH-Q CAPACITIVELY-LOADED CONDUCTING-WIRE LOOPS | ||
Patent #
US 20100133919A1
Filed 12/30/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
Magnetic Induction Devices And Methods For Producing Them | ||
Patent #
US 20100188183A1
Filed 06/12/2008
|
Current Assignee
Advanced Magnetic Solutions Limited
|
Original Assignee
Advanced Magnetic Solutions Limited
|
Wireless non-radiative energy transfer | ||
Patent #
US 7,741,734 B2
Filed 07/05/2006
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
WIRELESS ENERGY TRANSFER OVER VARIABLE DISTANCES BETWEEN RESONATORS OF SUBSTANTIALLY SIMILAR RESONANT FREQUENCIES | ||
Patent #
US 20100133918A1
Filed 12/30/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
ADAPTIVE POWER CONTROL FOR WIRELESS CHARGING | ||
Patent #
US 20100181961A1
Filed 11/10/2009
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
WIRELESS ENERGY TRANSFER ACROSS A DISTANCE TO A MOVING DEVICE | ||
Patent #
US 20100133920A1
Filed 12/30/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
WIRELESS ENERGY TRANSFER USING MAGNETIC MATERIALS TO SHAPE FIELD AND REDUCE LOSS | ||
Patent #
US 20100164298A1
Filed 12/28/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
TEMPERATURE COMPENSATION IN A WIRELESS TRANSFER SYSTEM | ||
Patent #
US 20100181845A1
Filed 03/30/2010
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER USING CONDUCTING SURFACES TO SHAPE FIELDS AND REDUCE LOSS | ||
Patent #
US 20100164297A1
Filed 12/28/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
HIGH EFFICIENCY AND POWER TRANSFER IN WIRELESS POWER MAGNETIC RESONATORS | ||
Patent #
US 20100181844A1
Filed 03/18/2010
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
WIRELESS POWER TRANSFER FOR VEHICLES | ||
Patent #
US 20100201189A1
Filed 10/02/2009
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
WIRELESS POWER FOR CHARGING DEVICES | ||
Patent #
US 20100194206A1
Filed 11/13/2009
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
WIRELESS POWER CHARGING TIMING AND CHARGING CONTROL | ||
Patent #
US 20100213895A1
Filed 10/30/2009
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
BIOLOGICAL EFFECTS OF MAGNETIC POWER TRANSFER | ||
Patent #
US 20100201205A1
Filed 04/23/2010
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
INDUCED POWER TRANSMISSION CIRCUIT | ||
Patent #
US 20100213770A1
Filed 09/15/2008
|
Current Assignee
Hideo Kikuchi
|
Original Assignee
Hideo Kikuchi
|
NON-CONTACT POWER TRANSMISSION APPARATUS | ||
Patent #
US 20100201316A1
Filed 02/08/2010
|
Current Assignee
Toyota Industries Corporation
|
Original Assignee
Kabushiki Kaisha Toyota Jidoshokki
|
NON-CONTACT POWER TRANSMISSION APPARATUS | ||
Patent #
US 20100201204A1
Filed 02/08/2010
|
Current Assignee
Toyota Industries Corporation
|
Original Assignee
Kabushiki Kaisha Toyota Jidoshokki
|
INCREASING THE Q FACTOR OF A RESONATOR | ||
Patent #
US 20100237707A1
Filed 02/26/2010
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
ELECTRIC POWER SUPPLYING APPARATUS AND ELECTRIC POWER TRANSMITTING SYSTEM USING THE SAME | ||
Patent #
US 20100219695A1
Filed 02/18/2010
|
Current Assignee
Sony Corporation
|
Original Assignee
Sony Corporation
|
COIL UNIT, AND POWER TRANSMISSION DEVICE AND POWER RECEPTION DEVICE USING THE COIL UNIT | ||
Patent #
US 20100244579A1
Filed 03/19/2010
|
Current Assignee
Samsung Electronics Co. Ltd.
|
Original Assignee
Seiko Epson Corporation
|
WIRELESS ELECTRIC POWER SUPPLY METHOD AND WIRELESS ELECTRIC POWER SUPPLY APPARATUS | ||
Patent #
US 20100244581A1
Filed 03/29/2010
|
Current Assignee
Fujitsu Limited
|
Original Assignee
Fujitsu Limited
|
WIRELESS ENERGY TRANSFER RESONATOR ENCLOSURES | ||
Patent #
US 20100231340A1
Filed 03/10/2010
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS POWER SYSTEM AND PROXIMITY EFFECTS | ||
Patent #
US 20100237706A1
Filed 02/19/2010
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
WIRELESS ENERGY TRANSFER IN LOSSY ENVIRONMENTS | ||
Patent #
US 20100219694A1
Filed 02/13/2010
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
POWER TRANSMMISSION APPARATUS, POWER TRANSMISSION/RECEPTION APPARATUS, AND METHOD OF TRANSMITTING POWER | ||
Patent #
US 20100244578A1
Filed 03/16/2010
|
Current Assignee
Fujitsu Limited
|
Original Assignee
Fujitsu Limited
|
WIRELESS POWER BRIDGE | ||
Patent #
US 20100225175A1
Filed 05/21/2010
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
WIRELESS POWER SUPPLY APPARATUS | ||
Patent #
US 20100244580A1
Filed 03/24/2010
|
Current Assignee
Fujitsu Limited
|
Original Assignee
Fujitsu Limited
|
WIRELESS POWER RANGE INCREASE USING PARASITIC RESONATORS | ||
Patent #
US 20100231053A1
Filed 05/26/2010
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
WIRELESS POWER SUPPLY SYSTEM AND WIRELESS POWER SUPPLY METHOD | ||
Patent #
US 20100244577A1
Filed 03/11/2010
|
Current Assignee
Fujitsu Limited
|
Original Assignee
Fujitsu Limited
|
Method and Apparatus for Automatic Charging of an Electrically Powered Vehicle | ||
Patent #
US 20100235006A1
Filed 04/22/2009
|
Current Assignee
Wendell Brown
|
Original Assignee
Wendell Brown
|
WIRELESS ENERGY TRANSFER CONVERTERS | ||
Patent #
US 20100264747A1
Filed 04/26/2010
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
POWER TRANSMISSION DEVICE, POWER TRANSMISSION METHOD, POWER RECEPTION DEVICE, POWER RECEPTION METHOD, AND POWER TRANSMISSION SYSTEM | ||
Patent #
US 20100259109A1
Filed 04/06/2010
|
Current Assignee
Sony Corporation
|
Original Assignee
Sony Corporation
|
WIRELESS POWER TRANSMITTING SYSTEM, POWER RECEIVING STATION, POWER TRANSMITTING STATION, AND RECORDING MEDIUM | ||
Patent #
US 20100264746A1
Filed 03/30/2010
|
Current Assignee
Fujitsu Limited
|
Original Assignee
Fujitsu Limited
|
LONG RANGE LOW FREQUENCY RESONATOR | ||
Patent #
US 20100253152A1
Filed 03/04/2010
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
WIRELESS ENERGY TRANSFER USING REPEATER RESONATORS | ||
Patent #
US 20100259108A1
Filed 03/10/2010
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Method and Apparatus for Providing a Wireless Multiple-Frequency MR Coil | ||
Patent #
US 20100256481A1
Filed 09/29/2008
|
Current Assignee
University of Florida Research Foundation Incorporated
|
Original Assignee
University of Florida Research Foundation Incorporated
|
RESONATORS FOR WIRELESS POWER APPLICATIONS | ||
Patent #
US 20100264745A1
Filed 03/18/2010
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
RESONATOR OPTIMIZATIONS FOR WIRELESS ENERGY TRANSFER | ||
Patent #
US 20100259110A1
Filed 04/09/2010
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
PLANAR COIL AND CONTACTLESS ELECTRIC POWER TRANSMISSION DEVICE USING THE SAME | ||
Patent #
US 20100277004A1
Filed 12/24/2008
|
Current Assignee
Panasonic Corporation
|
Original Assignee
Panasonic Corporation
|
MOBILE TERMINALS AND BATTERY PACKS FOR MOBILE TERMINALS | ||
Patent #
US 20100295505A1
Filed 05/24/2010
|
Current Assignee
GE Hybrid Technologies LLC
|
Original Assignee
Hanrim Postech Co. Ltd.
|
Power transmission network | ||
Patent #
US 7,844,306 B2
Filed 05/22/2006
|
Current Assignee
Powercast Corporation
|
Original Assignee
Powercast Corporation
|
ADAPTIVE IMPEDANCE TUNING IN WIRELESS POWER TRANSMISSION | ||
Patent #
US 20100277003A1
Filed 02/25/2010
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
SYSTEMS AND METHODS RELATING TO MULTI-DIMENSIONAL WIRELESS CHARGING | ||
Patent #
US 20100289341A1
Filed 09/25/2009
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
FLOOR COVERING AND INDUCTIVE POWER SYSTEM | ||
Patent #
US 20100314946A1
Filed 10/23/2007
|
Current Assignee
Koninklijke Philips N.V.
|
Original Assignee
Koninklijke Philips N.V.
|
INDUCTIVE POWER SYSTEM AND METHOD OF OPERATION | ||
Patent #
US 20100328044A1
Filed 10/16/2007
|
Current Assignee
Koninklijke Philips N.V.
|
Original Assignee
Koninklijke Philips N.V.
|
INTEGRATED RESONATOR-SHIELD STRUCTURES | ||
Patent #
US 20100308939A1
Filed 08/20/2010
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Inductively powered secondary assembly | ||
Patent #
US 7,474,058 B2
Filed 11/10/2006
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
INDUCTIVE POWER SUPPLY, REMOTE DEVICE POWERED BY INDUCTIVE POWER SUPPLY AND METHOD FOR OPERATING SAME | ||
Patent #
US 20090010028A1
Filed 09/25/2008
|
Current Assignee
Access Business Group International LLC
|
Original Assignee
Access Business Group International LLC
|
Wireless Energy Transfer Using Coupled Antennas | ||
Patent #
US 20090015075A1
Filed 07/09/2007
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Nigel Power LLC
|
Wireless Power System and Proximity Effects | ||
Patent #
US 20090045772A1
Filed 06/10/2008
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Nigel Power LLC
|
Transmitter head and system for contactless energy transmission | ||
Patent #
US 7,492,247 B2
Filed 02/20/2004
|
Current Assignee
Sew-Eurodrive GmbH Company KG
|
Original Assignee
Sew-Eurodrive GmbH Company KG
|
INCREASING THE Q FACTOR OF A RESONATOR | ||
Patent #
US 20090051224A1
Filed 08/11/2008
|
Current Assignee
Nigel Power LLC
|
Original Assignee
Nigel Power LLC
|
INDUCTIVE POWER TRANSFER SYSTEM FOR PALATAL IMPLANT | ||
Patent #
US 20090038623A1
Filed 08/15/2008
|
Current Assignee
Pavad Medical Inc.
|
Original Assignee
Pavad Medical Inc.
|
Deployable Antennas for Wireless Power | ||
Patent #
US 20090033564A1
Filed 08/02/2007
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Nigel Power LLC
|
CONTACT-LESS POWER SUPPLY, CONTACT-LESS CHARGER SYSTEMS AND METHOD FOR CHARGING RECHARGEABLE BATTERY CELL | ||
Patent #
US 20090033280A1
Filed 01/23/2007
|
Current Assignee
LS Cable And System Limited
|
Original Assignee
LS Cable Limited
|
POWER TRANSMISSION CONTROL DEVICE, POWER TRANSMITTING DEVICE, POWER-TRANSMITTING-SIDE DEVICE, AND NON-CONTACT POWER TRANSMISSION SYSTEM | ||
Patent #
US 20090079387A1
Filed 09/25/2008
|
Current Assignee
Sony Ericsson Mobile Communications Japan Incorporated, Seiko Epson Corporation
|
Original Assignee
Sony Ericsson Mobile Communications Japan Incorporated, Seiko Epson Corporation
|
LONG RANGE LOW FREQUENCY RESONATOR AND MATERIALS | ||
Patent #
US 20090058189A1
Filed 08/11/2008
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Nigel Power LLC
|
CONTACTLESS POWER SUPPLY | ||
Patent #
US 20090067198A1
Filed 08/28/2008
|
Current Assignee
Powercast Corporation
|
Original Assignee
Michael Thomas Mcelhinny, David Jeffrey Graham, Jesse Frederick Goellner, Alexander Brailovsky
|
High Efficiency and Power Transfer in Wireless Power Magnetic Resonators | ||
Patent #
US 20090072629A1
Filed 09/16/2008
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Nigel Power LLC
|
VERSATILE APPARATUS AND METHOD FOR ELECTRONIC DEVICES | ||
Patent #
US 20090072782A1
Filed 03/05/2007
|
Current Assignee
Pure Energy Solutions Inc.
|
Original Assignee
Pure Energy Solutions Inc.
|
Antennas for Wireless Power applications | ||
Patent #
US 20090072628A1
Filed 09/14/2008
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Nigel Power LLC
|
Systems and Methods for Wireless Power | ||
Patent #
US 20090058361A1
Filed 06/02/2008
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Maximizing Power Yield from Wireless Power Magnetic Resonators | ||
Patent #
US 20090072627A1
Filed 09/14/2008
|
Current Assignee
Nigel Power LLC
|
Original Assignee
Nigel Power LLC
|
Transmitters and receivers for wireless energy transfer | ||
Patent #
US 20090079268A1
Filed 09/16/2008
|
Current Assignee
Nigel Power LLC
|
Original Assignee
Nigel Power LLC
|
WIRELESS ENERGY TRANSFER | ||
Patent #
US 20090108679A1
Filed 10/30/2007
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
ATI Technologies ULC
|
Power supply system | ||
Patent #
US 7,514,818 B2
Filed 10/24/2006
|
Current Assignee
Panasonic Electric Works Company Limited
|
Original Assignee
Matsushita Electric Industrial Company Limited
|
System and method for selective transfer of radio frequency power | ||
Patent #
US 7,521,890 B2
Filed 12/27/2005
|
Current Assignee
Power Science Inc.
|
Original Assignee
Power Science Inc.
|
SYSTEM AND METHOD FOR INDUCTIVE CHARGING OF PORTABLE DEVICES | ||
Patent #
US 20090096413A1
Filed 05/07/2008
|
Current Assignee
Mojo Mobility Inc.
|
Original Assignee
Mojo Mobility Inc.
|
Power adapter for a remote device | ||
Patent #
US 7,518,267 B2
Filed 10/20/2003
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
SYSTEM, DEVICES, AND METHOD FOR ENERGIZING PASSIVE WIRELESS DATA COMMUNICATION DEVICES | ||
Patent #
US 20090108997A1
Filed 10/31/2007
|
Current Assignee
Intermec IP Corporation
|
Original Assignee
Intermec IP Corporation
|
APPARATUS AND METHOD FOR WIRELESS ENERGY AND/OR DATA TRANSMISSION BETWEEN A SOURCE DEVICE AND AT LEAST ONE TARGET DEVICE | ||
Patent #
US 20090085408A1
Filed 08/29/2008
|
Current Assignee
Maquet GmbH Company KG
|
Original Assignee
Maquet GmbH Company KG
|
PRINTED CIRCUIT BOARD COIL | ||
Patent #
US 20090085706A1
Filed 09/24/2008
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Biological Effects of Magnetic Power Transfer | ||
Patent #
US 20090102292A1
Filed 09/18/2008
|
Current Assignee
Witricity Corporation
|
Original Assignee
Nigel Power LLC
|
Contact-less power transfer | ||
Patent #
US 7,525,283 B2
Filed 02/28/2005
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Wireless Power Range Increase Using Parasitic Antennas | ||
Patent #
US 20090134712A1
Filed 11/26/2008
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Nigel Power LLC
|
SYSTEMS AND METHODS FOR WIRELESS PROCESSING AND ADAPTER-BASED COMMUNICATION WITH A MEDICAL DEVICE | ||
Patent #
US 20090115628A1
Filed 10/23/2007
|
Current Assignee
Medapps Incorporated
|
Original Assignee
Medapps Incorporated
|
Wireless Power Bridge | ||
Patent #
US 20090127937A1
Filed 02/29/2008
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Nigel Power LLC
|
NON-CONTACT WIRELESS COMMUNICATION APPARATUS, METHOD OF ADJUSTING RESONANCE FREQUENCY OF NON-CONTACT WIRELESS COMMUNICATION ANTENNA, AND MOBILE TERMINAL APPARATUS | ||
Patent #
US 20090146892A1
Filed 11/14/2008
|
Current Assignee
Sony Corporation
|
Original Assignee
Sony Ericsson Mobile Communications Japan Incorporated
|
ENERGY TRANSFERRING SYSTEM AND METHOD THEREOF | ||
Patent #
US 20090153273A1
Filed 06/19/2008
|
Current Assignee
Darfon Electronics Corporation
|
Original Assignee
Darfon Electronics Corporation
|
Projector, and mobile device and computer device having the same | ||
Patent #
US 20090161078A1
Filed 12/21/2007
|
Current Assignee
OCULON OPTOELECTRONICS INC.
|
Original Assignee
OCULON OPTOELECTRONICS INC.
|
Antenna arrangement for inductive power transmission and use of the antenna arrangement | ||
Patent #
US 7,545,337 B2
Filed 11/13/2006
|
Current Assignee
Vacuumschmelze GmbH Company KG
|
Original Assignee
Vacuumschmelze GmbH Company KG
|
WIRELESS ENERGY TRANSFER | ||
Patent #
US 20090160261A1
Filed 12/19/2007
|
Current Assignee
Nokia Corporation
|
Original Assignee
Nokia Corporation
|
Controlling inductive power transfer systems | ||
Patent #
US 7,554,316 B2
Filed 05/11/2005
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Wireless powering and charging station | ||
Patent #
US 20090179502A1
Filed 01/14/2009
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Nigel Power LLC
|
Wireless Power Transfer using Magneto Mechanical Systems | ||
Patent #
US 20090167449A1
Filed 10/13/2008
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Nigel Power LLC
|
VEHICLE POWER SUPPLY APPARATUS AND VEHICLE WINDOW MEMBER | ||
Patent #
US 20090189458A1
Filed 01/21/2009
|
Current Assignee
Nippon Soken Inc., Ibaraki Toyota Jidosha Kabushiki Kaisha
|
Original Assignee
Ibaraki Toyota Jidosha Kabushiki Kaisha
|
OVEN WITH WIRELESS TEMPERATURE SENSOR FOR USE IN MONITORING FOOD TEMPERATURE | ||
Patent #
US 20090188396A1
Filed 08/05/2008
|
Current Assignee
Premark FEG LLC
|
Original Assignee
Premark FEG LLC
|
INDUCTIVE POWER SUPPLY WITH DUTY CYCLE CONTROL | ||
Patent #
US 20090174263A1
Filed 01/07/2009
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
WIRELESS NON-RADIATIVE ENERGY TRANSFER | ||
Patent #
US 20090195333A1
Filed 03/31/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
WIRELESS NON-RADIATIVE ENERGY TRANSFER | ||
Patent #
US 20090195332A1
Filed 03/31/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
Wireless desktop IT environment | ||
Patent #
US 20090212636A1
Filed 01/11/2009
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Nigel Power LLC
|
Antennas and Their Coupling Characteristics for Wireless Power Transfer via Magnetic Coupling | ||
Patent #
US 20090213028A1
Filed 02/26/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Nigel Power LLC
|
APPARATUS, A SYSTEM AND A METHOD FOR ENABLING ELECTROMAGNETIC ENERGY TRANSFER | ||
Patent #
US 20090237194A1
Filed 09/11/2007
|
Current Assignee
Koninklijke Philips N.V.
|
Original Assignee
Koninklijke Philips N.V.
|
WIRELESS ENERGY TRANSFER | ||
Patent #
US 20090224856A1
Filed 05/08/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
Packaging and Details of a Wireless Power device | ||
Patent #
US 20090224609A1
Filed 03/09/2009
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Nigel Power LLC
|
Contactless Battery Charging Apparel | ||
Patent #
US 20090218884A1
Filed 06/28/2006
|
Current Assignee
Cynetic Designs Ltd.
|
Original Assignee
Cynetic Designs Ltd.
|
CHARGING APPARATUS | ||
Patent #
US 20090224723A1
Filed 03/06/2009
|
Current Assignee
Canon Kabushiki Kaisha
|
Original Assignee
Canon Kabushiki Kaisha
|
Ferrite Antennas for Wireless Power Transfer | ||
Patent #
US 20090224608A1
Filed 02/23/2009
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Nigel Power LLC
|
INDUCTIVE POWER SUPPLY SYSTEM WITH MULTIPLE COIL PRIMARY | ||
Patent #
US 20090230777A1
Filed 03/12/2009
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Power Transmitting Apparatus, Power Transmission Method, Program, and Power Transmission System | ||
Patent #
US 20090271048A1
Filed 04/27/2009
|
Current Assignee
Sony Corporation
|
Original Assignee
Sony Corporation
|
POWER TRANSMITTING APPARATUS, POWER RECEIVING APPARATUS, POWER TRANSMISSION METHOD, PROGRAM, AND POWER TRANSMISSION SYSTEM | ||
Patent #
US 20090271047A1
Filed 04/23/2009
|
Current Assignee
Sony Corporation
|
Original Assignee
Sony Corporation
|
Tuning and Gain Control in Electro-Magnetic power systems | ||
Patent #
US 20090243394A1
Filed 03/28/2008
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Nigel Power LLC
|
Power Exchange Device, Power Exchange Method, Program, and Power Exchange System | ||
Patent #
US 20090251008A1
Filed 04/01/2009
|
Current Assignee
Sony Corporation
|
Original Assignee
Sony Corporation
|
Non-Contact Charger Available Of Wireless Data and Power Transmission, Charging Battery-Pack and Mobile Device Using Non-Contact Charger | ||
Patent #
US 20090261778A1
Filed 10/25/2006
|
Current Assignee
GE Hybrid Technologies LLC
|
Original Assignee
Hanrim Postech Co. Ltd.
|
WIRELESS NON-RADIATIVE ENERGY TRANSFER | ||
Patent #
US 20090267709A1
Filed 03/31/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
WIRELESS NON-RADIATIVE ENERGY TRANSFER | ||
Patent #
US 20090267710A1
Filed 03/31/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
Low frequency transcutaneous energy transfer to implanted medical device | ||
Patent #
US 7,599,743 B2
Filed 06/24/2004
|
Current Assignee
Ethicon Endo-Surgery Inc.
|
Original Assignee
Ethicon Endo-Surgery Inc.
|
Packaging and Details of a Wireless Power device | ||
Patent #
US 20090243397A1
Filed 03/04/2009
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Nigel Power LLC
|
Wireless Power Charging System | ||
Patent #
US 20090267558A1
Filed 06/26/2008
|
Current Assignee
GE Hybrid Technologies LLC
|
Original Assignee
Spacon Co. Ltd.
|
WIRELESS CHARGING MODULE AND ELECTRONIC APPARATUS | ||
Patent #
US 20090289595A1
Filed 10/09/2008
|
Current Assignee
Darfon Electronics Corporation
|
Original Assignee
Darfon Electronics Corporation
|
Inductively powered apparatus | ||
Patent #
US 7,615,936 B2
Filed 04/27/2007
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Power Transmission Device, Power Transmission Method, Program, Power Receiving Device and Power Transfer System | ||
Patent #
US 20090281678A1
Filed 05/06/2009
|
Current Assignee
Sony Corporation
|
Original Assignee
Sony Corporation
|
REVERSE LINK SIGNALING VIA RECEIVE ANTENNA IMPEDANCE MODULATION | ||
Patent #
US 20090286476A1
Filed 10/10/2008
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
SIGNALING CHARGING IN WIRELESS POWER ENVIRONMENT | ||
Patent #
US 20090286475A1
Filed 10/10/2008
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
TIME REMAINING TO CHARGE AN IMPLANTABLE MEDICAL DEVICE, CHARGER INDICATOR, SYSTEM AND METHOD THEREFORE | ||
Patent #
US 20090273318A1
Filed 04/30/2008
|
Current Assignee
Medtronic Incorporated
|
Original Assignee
Medtronic Incorporated
|
METHOD AND APPARATUS FOR AN ENLARGED WIRELESS CHARGING AREA | ||
Patent #
US 20090284218A1
Filed 10/10/2008
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
WIRELESS POWER TRANSFER FOR APPLIANCES AND EQUIPMENTS | ||
Patent #
US 20090284245A1
Filed 11/07/2008
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
TRANSMIT POWER CONTROL FOR A WIRELESS CHARGING SYSTEM | ||
Patent #
US 20090284369A1
Filed 10/10/2008
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
METHOD AND APPARATUS FOR ADAPTIVE TUNING OF WIRELESS POWER TRANSFER | ||
Patent #
US 20090284220A1
Filed 11/06/2008
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
WIRELESS ENERGY TRANSFER, INCLUDING INTERFERENCE ENHANCEMENT | ||
Patent #
US 20090284083A1
Filed 05/14/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
RECEIVE ANTENNA FOR WIRELESS POWER TRANSFER | ||
Patent #
US 20090284227A1
Filed 10/10/2008
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
Wireless Delivery of power to a Fixed-Geometry power part | ||
Patent #
US 20090273242A1
Filed 05/05/2008
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Nigel Power LLC
|
REPEATERS FOR ENHANCEMENT OF WIRELESS POWER TRANSFER | ||
Patent #
US 20090286470A1
Filed 11/06/2008
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
METHOD AND APPARATUS WITH NEGATIVE RESISTANCE IN WIRELESS POWER TRANSFERS | ||
Patent #
US 20090284082A1
Filed 11/06/2008
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
Wireless power receiving device | ||
Patent #
US 20090308933A1
Filed 11/13/2007
|
Current Assignee
Semiconductor Energy Laboratory Co. Ltd.
|
Original Assignee
Semiconductor Energy Laboratory Co. Ltd.
|
Adaptive inductive power supply | ||
Patent #
US 7,639,514 B2
Filed 03/12/2007
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
CONTROLLING INDUCTIVE POWER TRANSFER SYSTEMS | ||
Patent #
US 20090322158A1
Filed 09/09/2009
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Wireless delivery of power to a mobile powered device | ||
Patent #
US 20090299918A1
Filed 05/28/2008
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Nigel Power LLC
|
POWER TRANSMISSION CONTROL DEVICE, POWER TRANSMISSION DEVICE, POWER RECEIVING CONTROL DEVICE, POWER RECEIVING DEVICE, AND ELECTRONIC APPARATUS | ||
Patent #
US 20090322280A1
Filed 06/23/2009
|
Current Assignee
Samsung Electronics Co. Ltd.
|
Original Assignee
Seiko Epson Corporation
|
Downhole Coils | ||
Patent #
US 20080012569A1
Filed 09/25/2007
|
Current Assignee
Schlumberger Technology Corporation
|
Original Assignee
Schlumberger Technology Corporation
|
Method and apparatus for delivering energy to an electrical or electronic device via a wireless link | ||
Patent #
US 20080014897A1
Filed 01/17/2007
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
WIRELESS ELECTROMAGNETIC PARASITIC POWER TRANSFER | ||
Patent #
US 20080036588A1
Filed 06/25/2007
|
Current Assignee
Securaplane Technologies Inc.
|
Original Assignee
Securaplane Technologies Inc.
|
MRI COMPATIBLE IMPLANTED ELECTRONIC MEDICAL DEVICE WITH POWER AND DATA COMMUNICATION CAPABILITY | ||
Patent #
US 20080051854A1
Filed 08/24/2007
|
Current Assignee
Kenergy Inc.
|
Original Assignee
Kenergy Inc.
|
ELECTRICAL WIRE AND METHOD OF FABRICATING THE ELECTRICAL WIRE | ||
Patent #
US 20080047727A1
Filed 10/31/2007
|
Current Assignee
Newire Incorporated
|
Original Assignee
Newire Incorporated
|
Flexible Circuit for Downhole Antenna | ||
Patent #
US 20080030415A1
Filed 08/02/2006
|
Current Assignee
Schlumberger Technology Corporation
|
Original Assignee
Schlumberger Technology Corporation
|
Method and apparatus for wireless power transmission | ||
Patent #
US 20080067874A1
Filed 09/14/2007
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
Biothermal power source for implantable devices | ||
Patent #
US 7,340,304 B2
Filed 09/13/2004
|
Current Assignee
Biomed Solutions LLC
|
Original Assignee
Biomed Solutions LLC
|
Inductive power adapter | ||
Patent #
US 7,378,817 B2
Filed 12/12/2003
|
Current Assignee
Microsoft Technology Licensing LLC
|
Original Assignee
Microsoft Corporation
|
Inductive battery charger | ||
Patent #
US 7,375,493 B2
Filed 12/12/2003
|
Current Assignee
Microsoft Technology Licensing LLC
|
Original Assignee
Microsoft Corporation
|
Inductively charged battery pack | ||
Patent #
US 7,375,492 B2
Filed 12/12/2003
|
Current Assignee
Microsoft Technology Licensing LLC
|
Original Assignee
Microsoft Corporation
|
Device for multicentric brain modulation, repair and interface | ||
Patent #
US 20080154331A1
Filed 12/21/2006
|
Current Assignee
University of Pittsburgh of The Commonwealth System of Higher Education
|
Original Assignee
E-Soc, University of Pittsburgh of The Commonwealth System of Higher Education
|
Portable electromagnetic navigation system | ||
Patent #
US 20080132909A1
Filed 12/01/2006
|
Current Assignee
Medtronic Navigation Incorporated
|
Original Assignee
Medtronic Navigation Incorporated
|
Inductively coupled ballast circuit | ||
Patent #
US 7,385,357 B2
Filed 11/28/2006
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
System and method for powering a load | ||
Patent #
US 7,382,636 B2
Filed 10/14/2005
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
METHOD AND SYSTEM FOR POWER SAVING IN WIRELESS COMMUNICATIONS | ||
Patent #
US 20080176521A1
Filed 01/15/2008
|
Current Assignee
Samsung Electronics Co. Ltd.
|
Original Assignee
Samsung Electronics Co. Ltd.
|
Power transmission control device, power reception control device, non-contact power transmission system, power transmission device, power reception device, and electronic instrument | ||
Patent #
US 20080197802A1
Filed 02/15/2008
|
Current Assignee
Sony Ericsson Mobile Communications Japan Incorporated, Seiko Epson Corporation
|
Original Assignee
Sony Ericsson Mobile Communications Japan Incorporated, Seiko Epson Corporation
|
INDUCTIVELY COUPLED BALLAST CIRCUIT | ||
Patent #
US 20080191638A1
Filed 02/25/2008
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Transmission Of Power Supply For Robot Applications Between A First Member And A Second Member Arranged Rotatable Relative To One Another | ||
Patent #
US 20080197710A1
Filed 11/30/2005
|
Current Assignee
ABB Research Ltd.
|
Original Assignee
ABB Research Ltd.
|
WIRELESS POWER APPARATUS AND METHODS | ||
Patent #
US 20080211320A1
Filed 01/22/2008
|
Current Assignee
Witricity Corporation
|
Original Assignee
Nigel Power LLC
|
SYSTEM FOR INDUCTIVE POWER TRANSFER | ||
Patent #
US 20080238364A1
Filed 04/02/2007
|
Current Assignee
Visteon Global Technologies Incorporated
|
Original Assignee
Visteon Global Technologies Incorporated
|
Amplification Relay Device of Electromagnetic Wave and a Radio Electric Power Conversion Apparatus Using the Above Device | ||
Patent #
US 20080266748A1
Filed 07/29/2005
|
Current Assignee
Andong National University Industry Academic Cooperation Foundation, JC Protek Company Limited
|
Original Assignee
Andong National University Industry Academic Cooperation Foundation, JC Protek Company Limited
|
No point of contact charging system | ||
Patent #
US 7,443,135 B2
Filed 04/11/2005
|
Current Assignee
GE Hybrid Technologies LLC
|
Original Assignee
Hanrim Postech Co. Ltd.
|
High power wireless resonant energy transfer system | ||
Patent #
US 20080265684A1
Filed 10/25/2007
|
Current Assignee
Leslie Farkas
|
Original Assignee
Laszlo Farkas
|
Kiosk systems and methods | ||
Patent #
US 20080255901A1
Filed 03/26/2008
|
Current Assignee
Ryko Manufacturing Co.
|
Original Assignee
Ryko Manufacturing Co.
|
Monocular display device | ||
Patent #
US 20080291277A1
Filed 01/08/2008
|
Current Assignee
Kopin Corporation
|
Original Assignee
Kopin Corporation
|
WIRELESS ENERGY TRANSFER | ||
Patent #
US 20080278264A1
Filed 03/26/2008
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
Directional Display Apparatus | ||
Patent #
US 20080273242A1
Filed 05/28/2008
|
Current Assignee
AU Optronics Corporation
|
Original Assignee
Jonathan Harrold, Graham J. Woodgate
|
Tunable Dielectric Resonator Circuit | ||
Patent #
US 20080272860A1
Filed 05/01/2007
|
Current Assignee
Cobham Defense Electronic Systems Corporation
|
Original Assignee
MA Com
|
THERAPY SYSTEM | ||
Patent #
US 20080300657A1
Filed 11/20/2007
|
Current Assignee
ReShape LifeSciences Inc.
|
Original Assignee
ReShape LifeSciences Inc.
|
Resonator structure and method of producing it | ||
Patent #
US 7,466,213 B2
Filed 09/27/2004
|
Current Assignee
Qorvo Inc.
|
Original Assignee
NXP B.V.
|
Wireless battery charging | ||
Patent #
US 7,471,062 B2
Filed 06/12/2002
|
Current Assignee
Koninklijke Philips N.V.
|
Original Assignee
Koninklijke Philips N.V.
|
Portable inductive power station | ||
Patent #
US 7,462,951 B1
Filed 08/11/2004
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Power generation for implantable devices | ||
Patent #
US 20080300660A1
Filed 06/02/2008
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Power transmission system, apparatus and method with communication | ||
Patent #
US 20070010295A1
Filed 07/06/2006
|
Current Assignee
Powercast Llc
|
Original Assignee
Firefly Power Technologies LLC
|
Passive dynamic antenna tuning circuit for a radio frequency identification reader | ||
Patent #
US 20070013483A1
Filed 06/29/2006
|
Current Assignee
Allflex USA Incorporated
|
Original Assignee
Allflex USA Incorporated
|
Implantable device for vital signs monitoring | ||
Patent #
US 20070016089A1
Filed 07/15/2005
|
Current Assignee
Angel Medical Systems Inc., Hi-Tronics Designs Inc.
|
Original Assignee
Angel Medical Systems Inc., Hi-Tronics Designs Inc.
|
Wireless power transmission systems and methods | ||
Patent #
US 20070021140A1
Filed 07/22/2005
|
Current Assignee
Emerson Process Management Power Water Solutions Incorporated
|
Original Assignee
Emerson Process Management Power Water Solutions Incorporated
|
Battery Chargers and Methods for Extended Battery Life | ||
Patent #
US 20070024246A1
Filed 07/27/2006
|
Current Assignee
David Flaugher
|
Original Assignee
David Flaugher
|
Inductively coupled ballast circuit | ||
Patent #
US 7,180,248 B2
Filed 10/22/2004
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Inductive power transfer units having flux shields | ||
Patent #
US 20070064406A1
Filed 09/08/2004
|
Current Assignee
Amway Corporation
|
Original Assignee
Amway Corporation
|
Spatially decoupled twin secondary coils for optimizing transcutaneous energy transfer (TET) power transfer characteristics | ||
Patent #
US 7,191,007 B2
Filed 06/24/2004
|
Current Assignee
Ethicon Endo-Surgery Inc.
|
Original Assignee
Ethicon Endo-Surgery Inc.
|
Resonator system | ||
Patent #
US 7,193,418 B2
Filed 06/13/2005
|
Current Assignee
Bruker Switzerland AG
|
Original Assignee
Bruker Biospin AG
|
CHARGING APPARATUS AND CHARGING SYSTEM | ||
Patent #
US 20070069687A1
Filed 08/09/2006
|
Current Assignee
Sony Corporation
|
Original Assignee
Sony Ericsson Mobile Communications Japan Incorporated
|
HIGH PERFORMANCE INTERCONNECT DEVICES & STRUCTURES | ||
Patent #
US 20070105429A1
Filed 11/06/2006
|
Current Assignee
Georgia Tech Research Corporation
|
Original Assignee
Georgia Tech Research Corporation
|
Radio-frequency (RF) power portal | ||
Patent #
US 20070117596A1
Filed 11/17/2006
|
Current Assignee
Powercast Corporation
|
Original Assignee
Powercast Llc
|
Adaptive inductive power supply | ||
Patent #
US 7,212,414 B2
Filed 10/20/2003
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
RADIO TAG AND SYSTEM | ||
Patent #
US 20070096875A1
Filed 05/22/2006
|
Current Assignee
Visible Assets Incorporated
|
Original Assignee
Visible Assets Incorporated
|
System and method for contact free transfer of power | ||
Patent #
US 20070145830A1
Filed 12/27/2005
|
Current Assignee
Power Science Inc.
|
Original Assignee
MOBILEWISE INC.
|
Antenna Arrangement For Inductive Power Transmission And Use Of The Antenna Arrangement | ||
Patent #
US 20070126650A1
Filed 11/13/2006
|
Current Assignee
Vacuumschmelze GmbH Company KG
|
Original Assignee
Vacuumschmelze GmbH Company KG
|
Power supply system | ||
Patent #
US 7,233,137 B2
Filed 09/23/2004
|
Current Assignee
Sharp Electronics Corporation
|
Original Assignee
Sharp Electronics Corporation
|
ADAPTIVE INDUCTIVE POWER SUPPLY | ||
Patent #
US 20070171681A1
Filed 03/12/2007
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Method for monitoring end of life for battery | ||
Patent #
US 7,251,527 B2
Filed 07/31/2003
|
Current Assignee
Cardiac Pacemakers Incorporated
|
Original Assignee
Cardiac Pacemakers Incorporated
|
Primary units, methods and systems for contact-less power transfer | ||
Patent #
US 7,239,110 B2
Filed 12/01/2004
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Splashpower Limited
|
Portable contact-less power transfer devices and rechargeable batteries | ||
Patent #
US 7,248,017 B2
Filed 11/22/2005
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
SPASHPOWER LIMITED
|
Electric machine signal selecting element | ||
Patent #
US 20070164839A1
Filed 06/13/2005
|
Current Assignee
Panasonic Corporation
|
Original Assignee
Matsushita Electric Industrial Company Limited
|
Multi-receiver communication system with distributed aperture antenna | ||
Patent #
US 20070176840A1
Filed 02/06/2003
|
Current Assignee
Hamilton Sundstrand Corporation
|
Original Assignee
Hamilton Sundstrand Corporation
|
INDUCTIVE POWER SOURCE AND CHARGING SYSTEM | ||
Patent #
US 20070182367A1
Filed 01/30/2007
|
Current Assignee
Mojo Mobility Inc.
|
Original Assignee
Mojo Mobility Inc.
|
Method and system for powering an electronic device via a wireless link | ||
Patent #
US 20070178945A1
Filed 04/21/2006
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
Systems and methods of medical monitoring according to patient state | ||
Patent #
US 20070208263A1
Filed 02/27/2007
|
Current Assignee
Angel Medical Systems Inc.
|
Original Assignee
Angel Medical Systems Inc.
|
Wireless non-radiative energy transfer | ||
Patent #
US 20070222542A1
Filed 07/05/2006
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
Wireless battery charger via carrier frequency signal | ||
Patent #
US 7,288,918 B2
Filed 03/02/2004
|
Current Assignee
Michael Vincent Distefano
|
Original Assignee
Michael Vincent Distefano
|
Device and Method of Non-Contact Energy Transmission | ||
Patent #
US 20070267918A1
Filed 04/29/2005
|
Current Assignee
Geir Gyland
|
Original Assignee
Geir Gyland
|
HOLSTER FOR CHARGING PECTORALLY IMPLANTED MEDICAL DEVICES | ||
Patent #
US 20070257636A1
Filed 04/27/2007
|
Current Assignee
Medtronic Incorporated
|
Original Assignee
Medtronic Incorporated
|
Tool for an Industrial Robot | ||
Patent #
US 20070276538A1
Filed 04/06/2004
|
Current Assignee
ABB Research Ltd.
|
Original Assignee
ABB Research Ltd.
|
Adaptive pulse width modulated resonant Class-D converter | ||
Patent #
US 5,986,895 A
Filed 06/05/1998
|
Current Assignee
Astec International Limited
|
Original Assignee
Astec International Limited
|
Coaxial cable | ||
Patent #
US 5,959,245 A
Filed 05/29/1997
|
Current Assignee
CommScope Inc.
|
Original Assignee
CommScope Inc.
|
Structure of signal transmission line | ||
Patent #
US 6,683,256 B2
Filed 03/27/2002
|
Current Assignee
Ta-San Kao
|
Original Assignee
Ta-San Kao
|
Tunable ferroelectric resonator arrangement | ||
Patent #
US 7,069,064 B2
Filed 02/20/2004
|
Current Assignee
Telefonaktiebolaget LM Ericsson
|
Original Assignee
Telefonaktiebolaget LM Ericsson
|
Planar resonator for wireless power transfer | ||
Patent #
US 6,960,968 B2
Filed 06/26/2002
|
Current Assignee
Koninklijke Philips N.V.
|
Original Assignee
Koninklijke Philips N.V.
|
Transponders, Interrogators, systems and methods for elimination of interrogator synchronization requirement | ||
Patent #
US 5,541,604 A
Filed 09/03/1993
|
Current Assignee
Texas Instruments Inc.
|
Original Assignee
Texas Instruments Deutschland Gesellschaft Mit BeschrNkter Haftung
|
Operation in very close coupling of an electromagnetic transponder system | ||
Patent #
US 6,703,921 B1
Filed 04/05/2000
|
Current Assignee
Stmicroelectronics SA
|
Original Assignee
Stmicroelectronics SA
|
Systems and methods for automated resonant circuit tuning | ||
Patent #
US 20060001509A1
Filed 06/29/2005
|
Current Assignee
Stheno Corp.
|
Original Assignee
Phillip R. Gibbs
|
Thermal therapeutic method | ||
Patent #
US 20060010902A1
Filed 09/19/2005
|
Current Assignee
Dennis Sam Trinh, Albert Long Trinh, David Lam Trinh
|
Original Assignee
Dennis Sam Trinh, Albert Long Trinh, David Lam Trinh
|
Wireless and powerless sensor and interrogator | ||
Patent #
US 6,988,026 B2
Filed 11/04/2003
|
Current Assignee
American Vehicular Sciences LLC
|
Original Assignee
Automotive Technologies International Incorporated
|
Pulse frequency modulation for induction charge device | ||
Patent #
US 20060022636A1
Filed 07/30/2004
|
Current Assignee
KYE Systems Corporation
|
Original Assignee
KYE Systems Corporation
|
Method for authenticating a user to a service of a service provider | ||
Patent #
US 20060053296A1
Filed 05/23/2003
|
Current Assignee
Telefonaktiebolaget LM Ericsson
|
Original Assignee
Telefonaktiebolaget LM Ericsson
|
Contact-less power transfer | ||
Patent #
US 20060061323A1
Filed 10/28/2003
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Self-adjusting RF assembly | ||
Patent #
US 20060066443A1
Filed 09/13/2005
|
Current Assignee
Tagsys SA
|
Original Assignee
Tagsys SA
|
Method and apparatus for a wireless power supply | ||
Patent #
US 7,027,311 B2
Filed 10/15/2004
|
Current Assignee
Powercast Corporation
|
Original Assignee
Firefly Power Technologies LLC
|
Feedthrough filter capacitor assembly with internally grounded hermetic insulator | ||
Patent #
US 7,035,076 B1
Filed 08/15/2005
|
Current Assignee
Greatbatch Limited
|
Original Assignee
Greatbatch-Sierra Inc.
|
Ultrasonic rod waveguide-radiator | ||
Patent #
US 20060090956A1
Filed 11/04/2004
|
Current Assignee
Sergei L. Peshkovsky
|
Original Assignee
Advanced Ultrasound Solutions Inc.
|
Contact-less power transfer | ||
Patent #
US 7,042,196 B2
Filed 12/01/2004
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Splashpower Limited
|
Heating system and heater | ||
Patent #
US 20060132045A1
Filed 12/17/2004
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Philips IP Ventures B.V.
|
Method and apparatus for a wireless power supply | ||
Patent #
US 20060164866A1
Filed 02/17/2006
|
Current Assignee
Powercast Corporation
|
Original Assignee
Powercast Corporation
|
Device for brain stimulation using RF energy harvesting | ||
Patent #
US 20060184209A1
Filed 09/02/2005
|
Current Assignee
University of Pittsburgh of The Commonwealth System of Higher Education
|
Original Assignee
University of Pittsburgh of The Commonwealth System of Higher Education
|
Explantation of implantable medical device | ||
Patent #
US 20060184210A1
Filed 04/13/2006
|
Current Assignee
Medtronic Incorporated
|
Original Assignee
Medtronic Incorporated
|
Sensor apparatus management methods and apparatus | ||
Patent #
US 20060181242A1
Filed 03/01/2006
|
Current Assignee
KLA-Tencor Corporation
|
Original Assignee
KLA-Tencor Corporation
|
Energy harvesting circuit | ||
Patent #
US 7,084,605 B2
Filed 10/18/2004
|
Current Assignee
University of Pittsburgh of The Commonwealth System of Higher Education
|
Original Assignee
University Of Pittsburgh
|
Actuator system for use in control of a sheet or web forming process | ||
Patent #
US 20060185809A1
Filed 02/23/2005
|
Current Assignee
ABB Limited
|
Original Assignee
ABB
|
Battery charging assembly for use on a locomotive | ||
Patent #
US 20060214626A1
Filed 03/25/2005
|
Current Assignee
KIM HOTSTART MANUFACTURING COMPANY
|
Original Assignee
KIM HOTSTART MANUFACTURING COMPANY
|
Adapting portable electrical devices to receive power wirelessly | ||
Patent #
US 20060205381A1
Filed 12/16/2003
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Method, apparatus and system for power transmission | ||
Patent #
US 20060199620A1
Filed 02/16/2006
|
Current Assignee
Powercast Llc
|
Original Assignee
Firefly Power Technologies LLC
|
Inductive powering surface for powering portable devices | ||
Patent #
US 20060202665A1
Filed 05/13/2005
|
Current Assignee
Microsoft Technology Licensing LLC
|
Original Assignee
Microsoft Corporation
|
Inductively powered apparatus | ||
Patent #
US 7,126,450 B2
Filed 02/04/2003
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Electric vehicle having multiple-use APU system | ||
Patent #
US 20060219448A1
Filed 03/08/2006
|
Current Assignee
Aptiv Technologies Limited
|
Original Assignee
Delphi Technologies Inc.
|
Inductive coil assembly | ||
Patent #
US 7,116,200 B2
Filed 04/27/2005
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Inductively powered apparatus | ||
Patent #
US 7,118,240 B2
Filed 01/14/2005
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Short-range wireless power transmission and reception | ||
Patent #
US 20060238365A1
Filed 09/12/2005
|
Current Assignee
Elio Vecchione, Conor Keegan
|
Original Assignee
Elio Vecchione, Conor Keegan
|
Biothermal power source for implantable devices | ||
Patent #
US 7,127,293 B2
Filed 03/28/2005
|
Current Assignee
Biomed Solutions LLC
|
Original Assignee
Biomed Solutions LLC
|
Inductive coil assembly | ||
Patent #
US 7,132,918 B2
Filed 10/20/2003
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Power transmission network | ||
Patent #
US 20060270440A1
Filed 05/22/2006
|
Current Assignee
Powercast Corporation
|
Original Assignee
Firefly Power Technologies LLC
|
High Q factor sensor | ||
Patent #
US 7,147,604 B1
Filed 08/07/2002
|
Current Assignee
St. Jude Medical Luxembourg Holdings Ii S.A.R.L.
|
Original Assignee
CardioMEMS Incorporated
|
Powering devices using RF energy harvesting | ||
Patent #
US 20060281435A1
Filed 06/06/2006
|
Current Assignee
Powercast Corporation
|
Original Assignee
Firefly Power Technologies LLC
|
System, method and apparatus for contact-less battery charging with dynamic control | ||
Patent #
US 6,844,702 B2
Filed 05/16/2002
|
Current Assignee
Koninklijke Philips N.V.
|
Original Assignee
Koninklijke Philips N.V.
|
Method of rendering a mechanical heart valve non-thrombogenic with an electrical device | ||
Patent #
US 20050021134A1
Filed 06/30/2004
|
Current Assignee
JS Vascular Inc.
|
Original Assignee
JS Vascular Inc.
|
Magnetically coupled antenna range extender | ||
Patent #
US 6,839,035 B1
Filed 10/07/2003
|
Current Assignee
CTT Corporation Systems
|
Original Assignee
CTT Corporation Systems
|
Vehicle interface | ||
Patent #
US 20050007067A1
Filed 06/18/2004
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Multi-frequency piezoelectric energy harvester | ||
Patent #
US 6,858,970 B2
Filed 10/21/2002
|
Current Assignee
The Boeing Co.
|
Original Assignee
The Boeing Co.
|
Temperature regulated implant | ||
Patent #
US 20050033382A1
Filed 08/04/2004
|
Current Assignee
Cochlear Limited
|
Original Assignee
Peter Single
|
Energy transfer amplification for intrabody devices | ||
Patent #
US 20050027192A1
Filed 07/29/2003
|
Current Assignee
Biosense Webster Incorporated
|
Original Assignee
Biosense Webster Incorporated
|
Energy harvesting circuits and associated methods | ||
Patent #
US 6,856,291 B2
Filed 07/21/2003
|
Current Assignee
University Of Pittsburgh
|
Original Assignee
University of Pittsburgh of The Commonwealth System of Higher Education
|
Method and apparatus for efficient power/data transmission | ||
Patent #
US 20050085873A1
Filed 10/14/2004
|
Current Assignee
Alfred E. Mann Foundation For Scientific Research
|
Original Assignee
Alfred E. Mann Foundation For Scientific Research
|
Semiconductor photodetector | ||
Patent #
US 20050104064A1
Filed 03/03/2003
|
Current Assignee
The Provost Fellows and Scholars of the College of the Holy and Undivided Trinity of Queen Elizabeth near Dublin
|
Original Assignee
The Provost Fellows and Scholars of the College of the Holy and Undivided Trinity of Queen Elizabeth near Dublin
|
Inductively coupled ballast circuit | ||
Patent #
US 20050093475A1
Filed 10/22/2004
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Method and apparatus for a wireless power supply | ||
Patent #
US 20050104453A1
Filed 10/15/2004
|
Current Assignee
Powercast Corporation
|
Original Assignee
Firefly Power Technologies LLC
|
Method of manufacturing a lamp assembly | ||
Patent #
US 20050116650A1
Filed 10/29/2004
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Contact-less power transfer | ||
Patent #
US 20050140482A1
Filed 12/01/2004
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Lily Ka-Lai Cheng, James Westwood Hay, Pilgrim Giles William Beart
|
Contact-less power transfer | ||
Patent #
US 20050116683A1
Filed 05/13/2003
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Splashpower Limited
|
Contact-less power transfer | ||
Patent #
US 6,906,495 B2
Filed 12/20/2002
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Splashpower Limited
|
Opportunistic power supply charge system for portable unit | ||
Patent #
US 20050127866A1
Filed 12/11/2003
|
Current Assignee
Symbol Technologies LLC
|
Original Assignee
Symbol Technologies Inc.
|
Inductively powered apparatus | ||
Patent #
US 20050127849A1
Filed 01/14/2005
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Christopher Houghton, Stephen J. Mcphilliamy, David W. Baarman
|
Relaying apparatus and communication system | ||
Patent #
US 20050125093A1
Filed 09/21/2004
|
Current Assignee
Sony Corporation
|
Original Assignee
Sony Corporation
|
Inductively powered apparatus | ||
Patent #
US 20050122059A1
Filed 01/14/2005
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Christopher Houghton, Stephen J. Mcphilliamy, David W. Baarman
|
Inductively powered apparatus | ||
Patent #
US 20050122058A1
Filed 01/14/2005
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Christopher Houghton, Stephen J. Mcphilliamy, David W. Baarman
|
Inductively powered apparatus | ||
Patent #
US 20050127850A1
Filed 01/14/2005
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Christopher Houghton, Stephen J. Mcphilliamy, David W. Baarman
|
Contact-less power transfer | ||
Patent #
US 20050135122A1
Filed 12/01/2004
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Lily Ka-Lai Cheng, James Westwood Hay, Pilgrim Giles William Beart
|
Inductively powered lamp assembly | ||
Patent #
US 6,917,163 B2
Filed 02/18/2004
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Mach-Zehnder interferometer using photonic band gap crystals | ||
Patent #
US 6,917,431 B2
Filed 05/15/2002
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
Charging apparatus by non-contact dielectric feeding | ||
Patent #
US 20050156560A1
Filed 04/04/2003
|
Current Assignee
ALPS Electric Company Limited
|
Original Assignee
ALPS Electric Company Limited
|
Transferring power between devices in a personal area network | ||
Patent #
US 20050151511A1
Filed 01/14/2004
|
Current Assignee
Intel Corporation
|
Original Assignee
Intel Corporation
|
Magnetic field production system, and configuration for wire-free supply of a large number of sensors and/or actuators using a magnetic field production system | ||
Patent #
US 6,937,130 B2
Filed 09/16/2002
|
Current Assignee
ABB Research Ltd.
|
Original Assignee
ABB Research Ltd.
|
Method and apparatus of using magnetic material with residual magnetization in transient electromagnetic measurement | ||
Patent #
US 20050189945A1
Filed 01/18/2005
|
Current Assignee
Baker Hughes Incorporated
|
Original Assignee
Baker Hughes Incorporated
|
Wireless battery charger via carrier frequency signal | ||
Patent #
US 20050194926A1
Filed 03/02/2004
|
Current Assignee
Michael Vincent Di Stefano
|
Original Assignee
Michael Vincent Di Stefano
|
Non-contact pumping of light emitters via non-radiative energy transfer | ||
Patent #
US 20050253152A1
Filed 05/11/2004
|
Current Assignee
Los Alamos National Security LLC
|
Original Assignee
Los Alamos National Security LLC
|
Subcutaneously implantable power supply | ||
Patent #
US 6,961,619 B2
Filed 07/08/2002
|
Current Assignee
Don E. Casey
|
Original Assignee
Don E. Casey
|
Charging of devices by microwave power beaming | ||
Patent #
US 6,967,462 B1
Filed 06/05/2003
|
Current Assignee
NasaGlenn Research Center
|
Original Assignee
NasaGlenn Research Center
|
Transcutaneous energy transfer primary coil with a high aspect ferrite core | ||
Patent #
US 20050288742A1
Filed 06/24/2004
|
Current Assignee
Ethicon Endo-Surgery Inc.
|
Original Assignee
Ethicon Endo-Surgery Inc.
|
Medical implant having closed loop transcutaneous energy transfer (TET) power transfer regulation circuitry | ||
Patent #
US 20050288739A1
Filed 06/24/2004
|
Current Assignee
Ethicon Endo-Surgery Inc.
|
Original Assignee
Ethicon Incorporated
|
Low frequency transcutaneous energy transfer to implanted medical device | ||
Patent #
US 20050288741A1
Filed 06/24/2004
|
Current Assignee
Ethicon Endo-Surgery Inc.
|
Original Assignee
Ethicon Endo-Surgery Inc.
|
Inductive coil assembly | ||
Patent #
US 6,975,198 B2
Filed 04/27/2005
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Low frequency transcutaneous telemetry to implanted medical device | ||
Patent #
US 20050288740A1
Filed 06/24/2004
|
Current Assignee
Ethicon Endo-Surgery Inc.
|
Original Assignee
Ethicon Endo-Surgery Inc.
|
Planar resonator for wireless power transfer | ||
Patent #
US 20040000974A1
Filed 06/26/2002
|
Current Assignee
Koninklijke Philips N.V.
|
Original Assignee
Koninklijke Philips N.V.
|
Radio frequency identification system for a fluid treatment system | ||
Patent #
US 6,673,250 B2
Filed 06/18/2002
|
Current Assignee
Access Business Group International LLC
|
Original Assignee
Access Business Group International LLC
|
Low voltage electrified furniture unit | ||
Patent #
US 20040026998A1
Filed 06/12/2003
|
Current Assignee
Kimball International Incorporated
|
Original Assignee
Kimball International Incorporated
|
Coaxial cable and coaxial multicore cable | ||
Patent #
US 6,696,647 B2
Filed 05/23/2002
|
Current Assignee
Hitachi Cable Limited
|
Original Assignee
Hitachi Cable Limited
|
Oscillator module incorporating looped-stub resonator | ||
Patent #
US 20040100338A1
Filed 11/13/2003
|
Current Assignee
Microsemi Corporation
|
Original Assignee
Phasor Technologies Corporation
|
Inductively powered lamp assembly | ||
Patent #
US 6,731,071 B2
Filed 04/26/2002
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Antenna with near-field radiation control | ||
Patent #
US 20040113847A1
Filed 12/12/2002
|
Current Assignee
Blackberry Limited
|
Original Assignee
Blackberry Limited
|
System for a machine having a large number of proximity sensors, as well as a proximity sensor, and a primary winding for this purpose | ||
Patent #
US 6,749,119 B2
Filed 12/11/2001
|
Current Assignee
ABB Research Ltd.
|
Original Assignee
ABB Research Ltd.
|
Adaptive inductive power supply with communication | ||
Patent #
US 20040130915A1
Filed 10/20/2003
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Enhanced RF wireless adaptive power provisioning system for small devices | ||
Patent #
US 20040130425A1
Filed 08/12/2003
|
Current Assignee
MOBILEWISE INC.
|
Original Assignee
MOBILEWISE INC.
|
Adaptive inductive power supply | ||
Patent #
US 20040130916A1
Filed 10/20/2003
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Remote power recharge for electronic equipment | ||
Patent #
US 20040142733A1
Filed 12/29/2003
|
Current Assignee
Ronald J. Parise
|
Original Assignee
Ronald J. Parise
|
Adapter | ||
Patent #
US 20040150934A1
Filed 10/20/2003
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Transmission of information from an implanted medical device | ||
Patent #
US 6,772,011 B2
Filed 08/20/2002
|
Current Assignee
TC1 LLC
|
Original Assignee
Thoratec LLC
|
System and method for wireless electrical power transmission | ||
Patent #
US 6,798,716 B1
Filed 06/19/2003
|
Current Assignee
BC SYSTEMS INC.
|
Original Assignee
BC SYSTEMS INC.
|
System and method for inductive charging a wireless mouse | ||
Patent #
US 20040189246A1
Filed 12/16/2003
|
Current Assignee
SelfCHARGE Inc.
|
Original Assignee
SelfCHARGE Inc.
|
Starter assembly for a gas discharge lamp | ||
Patent #
US 6,806,649 B2
Filed 02/18/2003
|
Current Assignee
Access Business Group International LLC
|
Original Assignee
Access Business Group International LLC
|
Charging system for robot | ||
Patent #
US 20040201361A1
Filed 11/14/2003
|
Current Assignee
Samsung Electronics Co. Ltd.
|
Original Assignee
Samsung Electronics Co. Ltd.
|
Alignment independent and self aligning inductive power transfer system | ||
Patent #
US 6,803,744 B1
Filed 10/31/2000
|
Current Assignee
Anthony Sabo
|
Original Assignee
Anthony Sabo
|
Inductively powered lamp assembly | ||
Patent #
US 6,812,645 B2
Filed 06/05/2003
|
Current Assignee
Access Business Group International LLC
|
Original Assignee
Access Business Group International LLC
|
Communication system | ||
Patent #
US 20040233043A1
Filed 11/13/2003
|
Current Assignee
Hitachi America Limited
|
Original Assignee
Hitachi America Limited
|
Starter assembly for a gas discharge lamp | ||
Patent #
US 20040222751A1
Filed 05/20/2004
|
Current Assignee
Access Business Group International LLC
|
Original Assignee
Scott A. Mollema, Roy W. Kuennen, David W. Baarman
|
Inductive coil assembly | ||
Patent #
US 20040232845A1
Filed 10/20/2003
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Inductively coupled ballast circuit | ||
Patent #
US 6,825,620 B2
Filed 09/18/2002
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Wireless power transmission | ||
Patent #
US 20040227057A1
Filed 04/07/2004
|
Current Assignee
AILOCOM OY
|
Original Assignee
AILOCOM OY
|
Sensor apparatus management methods and apparatus | ||
Patent #
US 20040267501A1
Filed 07/10/2004
|
Current Assignee
KLA-Tencor Corporation
|
Original Assignee
KLA-Tencor Corporation
|
Method of manufacturing a lamp assembly | ||
Patent #
US 6,831,417 B2
Filed 06/05/2003
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Method and apparatus for supplying contactless power | ||
Patent #
US 6,515,878 B1
Filed 08/07/1998
|
Current Assignee
MEINS-SINSLEY PARTNERSHIP
|
Original Assignee
MEINS-SINSLEY PARTNERSHIP
|
Proximity sensor | ||
Patent #
US 20030038641A1
Filed 09/03/2002
|
Current Assignee
ABB Research Ltd.
|
Original Assignee
ABB Research Ltd.
|
Vehicle slide door power supply apparatus and method of supplying power to vehicle slide door | ||
Patent #
US 6,535,133 B2
Filed 11/15/2001
|
Current Assignee
Yazaki Corporation
|
Original Assignee
Yazaki Corporation
|
Resonant frequency tracking system and method for use in a radio frequency (RF) power supply | ||
Patent #
US 20030071034A1
Filed 11/25/2002
|
Current Assignee
Ambrell Corporation
|
Original Assignee
Daniel J. Lincoln, Gary A. Schwenck, Leslie L. Thompson
|
Magnetic field production system, and configuration for wire-free supply of a large number of sensors and/or actuators using a magnetic field production system | ||
Patent #
US 20030062794A1
Filed 09/16/2002
|
Current Assignee
ABB Research Ltd.
|
Original Assignee
ABB Research Ltd.
|
Configuration for producing electrical power from a magnetic field | ||
Patent #
US 20030062980A1
Filed 09/09/2002
|
Current Assignee
ABB Research Ltd.
|
Original Assignee
ABB Research Ltd.
|
RFID passive repeater system and apparatus | ||
Patent #
US 6,563,425 B2
Filed 08/08/2001
|
Current Assignee
Datalogic IP Tech S.r.l.
|
Original Assignee
Escort Memory Systems
|
Method and apparatus for communicating with medical device systems | ||
Patent #
US 6,561,975 B1
Filed 10/25/2000
|
Current Assignee
Medtronic Incorporated
|
Original Assignee
Medtronic Incorporated
|
High purity fine metal powders and methods to produce such powders | ||
Patent #
US 20030126948A1
Filed 12/10/2002
|
Current Assignee
PPG Industries Ohio Incorporated
|
Original Assignee
NanoProducts Corporation
|
Post-processed nanoscale powders and method for such post-processing | ||
Patent #
US 20030124050A1
Filed 03/29/2002
|
Current Assignee
PPG Industries Ohio Incorporated
|
Original Assignee
NANOPRODUCT CORPORATION
|
System for wirelessly supplying a large number of actuators of a machine with electrical power | ||
Patent #
US 6,597,076 B2
Filed 12/11/2001
|
Current Assignee
ABB Patent GmbH
|
Original Assignee
ABB Patent GmbH
|
System for the detection of cardiac events | ||
Patent #
US 6,609,023 B1
Filed 09/20/2002
|
Current Assignee
Angel Medical Systems Inc.
|
Original Assignee
Angel Medical Systems Inc.
|
Method and apparatus for charging sterilizable rechargeable batteries | ||
Patent #
US 20030160590A1
Filed 02/25/2003
|
Current Assignee
LIVATEC CORPORATION
|
Original Assignee
LIVATEC CORPORATION
|
Apparatus for energizing a remote station and related method | ||
Patent #
US 20030199778A1
Filed 06/11/2003
|
Current Assignee
University Of Pittsburgh
|
Original Assignee
Leonid Mats, Carl Taylor, Minhong Mi, Dmitry Gorodetsky, Lorenz Neureuter, Marlin Mickle, Chad Emahizer
|
Charge storage device | ||
Patent #
US 6,631,072 B1
Filed 08/24/2001
|
Current Assignee
Cap-Xx Ltd.
|
Original Assignee
Energy Storage Systems Inc.
|
Inductively powered apparatus | ||
Patent #
US 20030214255A1
Filed 02/04/2003
|
Current Assignee
Philips IP Ventures B.V.
|
Original Assignee
Access Business Group International LLC
|
Reader for a radio frequency identification system having automatic tuning capability | ||
Patent #
US 6,650,227 B1
Filed 12/08/1999
|
Current Assignee
Assa Abloy AB
|
Original Assignee
HID Corporation
|
Wireless power transmission system with increased output voltage | ||
Patent #
US 6,664,770 B1
Filed 10/10/2001
|
Current Assignee
IQ-MOBIL ELECTRONICS GMBH.
|
Original Assignee
IQ- MOBIL GMBH
|
Low-power, high-modulation-index amplifier for use in battery-powered device | ||
Patent #
US 20020032471A1
Filed 08/31/2001
|
Current Assignee
Boston Scientific Neuromodulation Corporation
|
Original Assignee
Advanced Bionics Corporation
|
System for wirelessly supplying a large number of actuators of a machine with electrical power | ||
Patent #
US 20020118004A1
Filed 12/11/2001
|
Current Assignee
ABB Patent GmbH
|
Original Assignee
ABB Patent GmbH
|
Water treatment system with an inductively coupled ballast | ||
Patent #
US 6,436,299 B1
Filed 06/12/2000
|
Current Assignee
Access Business Group International LLC
|
Original Assignee
Amway Corporation
|
System for a machine having a large number of proximity sensors, as well as a proximity sensor, and a primary winding for this purpose | ||
Patent #
US 20020105343A1
Filed 12/11/2001
|
Current Assignee
ABB Research Ltd.
|
Original Assignee
ABB Research Ltd.
|
Food intake restriction with wireless energy transfer | ||
Patent #
US 6,450,946 B1
Filed 02/11/2000
|
Current Assignee
Obtech Medical AG
|
Original Assignee
Obtech Medical AG
|
High quality-factor tunable resonator | ||
Patent #
US 6,452,465 B1
Filed 06/27/2000
|
Current Assignee
M-SQUARED FILTERS L.L.C.
|
Original Assignee
M-SQUARED FILTERS LLC
|
Inductive coupling system with capacitive parallel compensation of the mutual self-inductance between the primary and the secondary windings | ||
Patent #
US 20020130642A1
Filed 02/27/2002
|
Current Assignee
Koninklijke Philips N.V.
|
Original Assignee
Koninklijke Philips N.V.
|
Detection of the distance between an electromagnetic transponder and a terminal | ||
Patent #
US 6,473,028 B1
Filed 04/05/2000
|
Current Assignee
Stmicroelectronics SA
|
Original Assignee
Stmicroelectronics SA
|
Inductively powered lamp unit | ||
Patent #
US 6,459,218 B2
Filed 02/12/2001
|
Current Assignee
Auckland UniServices Limited
|
Original Assignee
Auckland UniServices Limited
|
Control of inductive power transfer pickups | ||
Patent #
US 6,483,202 B1
Filed 07/24/2000
|
Current Assignee
Auckland UniServices Limited
|
Original Assignee
Auckland UniServices Limited
|
Rechargeable power supply system and method of protection against abnormal charging | ||
Patent #
US 20020167294A1
Filed 03/20/2002
|
Current Assignee
Acer Inc.
|
Original Assignee
International Business Machines Corporation
|
Reader/writer having coil arrangements to restrain electromagnetic field intensity at a distance | ||
Patent #
US 6,176,433 B1
Filed 05/15/1998
|
Current Assignee
Hitachi Ltd.
|
Original Assignee
Hitachi America Limited
|
Contactless battery charger with wireless control link | ||
Patent #
US 6,184,651 B1
Filed 03/20/2000
|
Current Assignee
Google Technology Holdings LLC
|
Original Assignee
Motorola Inc.
|
Miniature milliwatt electric power generator | ||
Patent #
US 6,207,887 B1
Filed 07/07/1999
|
Current Assignee
HI-Z Technology Inc.
|
Original Assignee
HI-Z Technology Inc.
|
Electrosurgical generator | ||
Patent #
US 6,238,387 B1
Filed 11/16/1998
|
Current Assignee
Microline Surgical Inc.
|
Original Assignee
Team Medical LLC
|
Integrated tunable high efficiency power amplifier | ||
Patent #
US 6,232,841 B1
Filed 07/01/1999
|
Current Assignee
OL Security LLC
|
Original Assignee
Rockwell Science Center LLC
|
Rechargeable hybrid battery/supercapacitor system | ||
Patent #
US 6,252,762 B1
Filed 04/21/1999
|
Current Assignee
Rutgers University
|
Original Assignee
Telcordia Technologies Incorporated
|
Method for discriminating between used and unused gas generators for air bags during car scrapping process | ||
Patent #
US 6,012,659 A
Filed 09/12/1997
|
Current Assignee
Daicel Chemical Industries Limited, Toyota Jidosha Kabushiki Kaisha
|
Original Assignee
Daicel Chemical Industries Limited, Toyota Jidosha Kabushiki Kaisha
|
System and method for powering, controlling, and communicating with multiple inductively-powered devices | ||
Patent #
US 6,047,214 A
Filed 06/09/1998
|
Current Assignee
North Carolina State University
|
Original Assignee
North Carolina State University
|
Adaptive brain stimulation method and system | ||
Patent #
US 6,066,163 A
Filed 02/02/1996
|
Current Assignee
Michael Sasha John
|
Original Assignee
Michael Sasha John
|
Implantable medical device using audible sound communication to provide warnings | ||
Patent #
US 6,067,473 A
Filed 03/31/1999
|
Current Assignee
Medtronic Incorporated
|
Original Assignee
Medtronic Incorporated
|
Battery monitoring apparatus and method for programmers of cardiac stimulating devices | ||
Patent #
US 6,108,579 A
Filed 04/11/1997
|
Current Assignee
Pacesetter Incorporated
|
Original Assignee
Pacesetter Incorporated
|
Method and apparatus for wireless powering and recharging | ||
Patent #
US 6,127,799 A
Filed 05/14/1999
|
Current Assignee
Raytheon BBN Technlogies Corp.
|
Original Assignee
GTE Internetworking Incorporated
|
Ring antennas for resonant circuits | ||
Patent #
US 5,864,323 A
Filed 12/19/1996
|
Current Assignee
Texas Instruments Inc.
|
Original Assignee
Texas Instruments Inc.
|
Non-contact power distribution system | ||
Patent #
US 5,898,579 A
Filed 11/24/1997
|
Current Assignee
Auckland UniServices Limited, Daifuku Company Limited
|
Original Assignee
Auckland UniServices Limited, Daifuku Company Limited
|
Inductive battery charger | ||
Patent #
US 5,903,134 A
Filed 05/19/1998
|
Current Assignee
Tdk-Lambda Corporation
|
Original Assignee
Nippon Electric Industry Company Limited
|
Noncontact power transmitting apparatus | ||
Patent #
US 5,923,544 A
Filed 07/21/1997
|
Current Assignee
TDK Corporation
|
Original Assignee
TDK Corporation
|
Method and apparatus for controlling country specific frequency allocation | ||
Patent #
US 5,940,509 A
Filed 11/18/1997
|
Current Assignee
Avago Technologies General IP PTE Limited
|
Original Assignee
Intermec IP Corporation
|
Implantable cardioverter defibrillator having a smaller mass | ||
Patent #
US 5,957,956 A
Filed 11/03/1997
|
Current Assignee
Ela Medical S.A.
|
Original Assignee
Angeion Corporation
|
Carbon supercapacitor electrode materials | ||
Patent #
US 5,993,996 A
Filed 09/16/1997
|
Current Assignee
INORGANIC SPECIALISTS INC.
|
Original Assignee
INORGANIC SPECIALISTS INC.
|
Methods and systems for introducing electromagnetic radiation into photonic crystals | ||
Patent #
US 5,999,308 A
Filed 04/01/1998
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
H-field electromagnetic heating system for fusion bonding | ||
Patent #
US 5,710,413 A
Filed 03/29/1995
|
Current Assignee
3M Company
|
Original Assignee
3M Company
|
Nanostructure multilayer dielectric materials for capacitors and insulators | ||
Patent #
US 5,742,471 A
Filed 11/25/1996
|
Current Assignee
Lawrence Livermore National Security LLC
|
Original Assignee
Regents of the University of California
|
Connection system and connection method for an electric automotive vehicle | ||
Patent #
US 5,821,731 A
Filed 01/30/1997
|
Current Assignee
Sumitomo Wiring Systems Limited
|
Original Assignee
Sumitomo Wiring Systems Limited
|
Armature induction charging of moving electric vehicle batteries | ||
Patent #
US 5,821,728 A
Filed 07/22/1996
|
Current Assignee
Stanley A. Tollison
|
Original Assignee
Stanley A. Tollison
|
Method and apparatus for the suppression of far-field interference signals for implantable device data transmission systems | ||
Patent #
US 5,630,835 A
Filed 07/24/1995
|
Current Assignee
SIRROM CAPITAL CORPORATION
|
Original Assignee
CARDIAC CONTROL SYSTEMS INC.
|
Implantable stimulation device having means for optimizing current drain | ||
Patent #
US 5,697,956 A
Filed 06/02/1995
|
Current Assignee
Pacesetter Incorporated
|
Original Assignee
Pacesetter Incorporated
|
Transmitter-receiver for non-contact IC card system | ||
Patent #
US 5,703,573 A
Filed 01/11/1996
|
Current Assignee
Sony Chemicals Company Limited
|
Original Assignee
Sony Chemicals Company Limited
|
Inductive coupler for electric vehicle charger | ||
Patent #
US 5,703,461 A
Filed 06/27/1996
|
Current Assignee
KABUSHIKI KAIHSA TOYODA JIDOSHOKKI SEISAKUSHO
|
Original Assignee
Kabushiki Kaisha Toyoda Jidoshokki Seisakusho
|
Oscillator-shuttle-circuit (OSC) networks for conditioning energy in higher-order symmetry algebraic topological forms and RF phase conjugation | ||
Patent #
US 5,493,691 A
Filed 12/23/1993
|
Current Assignee
BARRETT HOLDING LLC
|
Original Assignee
Terence W. Barrett
|
Inductive power pick-up coils | ||
Patent #
US 5,528,113 A
Filed 10/21/1994
|
Current Assignee
Auckland UniServices Limited
|
Original Assignee
Auckland UniServices Limited
|
Pacemaker with improved shelf storage capacity | ||
Patent #
US 5,522,856 A
Filed 09/20/1994
|
Current Assignee
VITATRON MEDICAL B.V.
|
Original Assignee
VITATRON MEDICAL B.V.
|
Induction charging apparatus | ||
Patent #
US 5,550,452 A
Filed 07/22/1994
|
Current Assignee
Kyushu Hitachi Maxell Ltd., Nintendo Company Limited
|
Original Assignee
Kyushu Hitachi Maxell Ltd., Nintendo Company Limited
|
Thermoelectric method and apparatus for charging superconducting magnets | ||
Patent #
US 5,565,763 A
Filed 11/19/1993
|
Current Assignee
General Atomics Inc.
|
Original Assignee
Lockheed Martin Corporation
|
Cooled secondary coils of electric automobile charging transformer | ||
Patent #
US 5,408,209 A
Filed 11/02/1993
|
Current Assignee
GM Global Technology Operations LLC
|
Original Assignee
Hughes Aircraft Company
|
Wireless communications using near field coupling | ||
Patent #
US 5,437,057 A
Filed 12/03/1992
|
Current Assignee
Xerox Corporation
|
Original Assignee
Xerox Corporation
|
Power connection scheme | ||
Patent #
US 5,455,467 A
Filed 03/02/1994
|
Current Assignee
Apple Computer Incorporated
|
Original Assignee
Apple Computer Incorporated
|
High speed read/write AVI system | ||
Patent #
US 5,287,112 A
Filed 04/14/1993
|
Current Assignee
Texas Instruments Inc.
|
Original Assignee
Texas Instruments Inc.
|
Contactless battery charging system | ||
Patent #
US 5,341,083 A
Filed 10/20/1992
|
Current Assignee
Electric Power Research Institute
|
Original Assignee
Electric Power Research Institute Incorporated
|
System for charging a rechargeable battery of a portable unit in a rack | ||
Patent #
US 5,367,242 A
Filed 09/18/1992
|
Current Assignee
Ascom Tateco AB
|
Original Assignee
Ericsson Messaging Systems Incorporated
|
High speed read/write AVI system | ||
Patent #
US 5,374,930 A
Filed 11/12/1993
|
Current Assignee
Texas Instruments Inc.
|
Original Assignee
Texas Instruments Deutschland Gesellschaft Mit BeschrNkter Haftung
|
Separable inductive coupler | ||
Patent #
US 5,216,402 A
Filed 01/22/1992
|
Current Assignee
General Motors Corporation
|
Original Assignee
Hughes Aircraft Company
|
Non-contact data and power connector for computer based modules | ||
Patent #
US 5,229,652 A
Filed 04/20/1992
|
Current Assignee
Wayne E. Hough
|
Original Assignee
Wayne E. Hough
|
Dual feedback control for a high-efficiency class-d power amplifier circuit | ||
Patent #
US 5,118,997 A
Filed 08/16/1991
|
Current Assignee
General Electric Company
|
Original Assignee
General Electric Company
|
Christmas-tree, decorative, artistic and ornamental object illumination apparatus | ||
Patent #
US 5,034,658 A
Filed 01/12/1990
|
Current Assignee
Roland Hierig, Vladimir Ilberg
|
Original Assignee
Roland Hierig, Vladimir Ilberg
|
Magnetic induction mine arming, disarming and simulation system | ||
Patent #
US 5,027,709 A
Filed 11/13/1990
|
Current Assignee
Glenn B. Slagle
|
Original Assignee
Glenn B. Slagle
|
Device for transmission and evaluation of measurement signals for the tire pressure of motor vehicles | ||
Patent #
US 5,033,295 A
Filed 02/04/1989
|
Current Assignee
Robert Bosch GmbH
|
Original Assignee
Robert Bosch GmbH
|
Transponder arrangement | ||
Patent #
US 5,053,774 A
Filed 02/13/1991
|
Current Assignee
Texas Instruments Deutschland Gesellschaft Mit BeschrNkter Haftung
|
Original Assignee
Texas Instruments Deutschland Gesellschaft Mit BeschrNkter Haftung
|
Electric power transmitting device with inductive coupling | ||
Patent #
US 5,070,293 A
Filed 03/02/1990
|
Current Assignee
Nippon Soken Inc., Nippondenso Co. Ltd.
|
Original Assignee
Nippon Soken Inc., Nippondenso Co. Ltd.
|
Remote switch-sensing system | ||
Patent #
US 4,588,978 A
Filed 06/21/1984
|
Current Assignee
CONCHA CORPORATION A CA CORPORATION
|
Original Assignee
TRANSENSORY DEVICES INC.
|
Condition monitoring system (tire pressure) | ||
Patent #
US 4,450,431 A
Filed 05/26/1981
|
Current Assignee
Aisin Seiki Co. Ltd.
|
Original Assignee
Peter A Hochstein
|
Variable mutual transductance tuned antenna | ||
Patent #
US 4,280,129 A
Filed 09/10/1979
|
Current Assignee
WELLS FAMILY CORPORATION THE
|
Original Assignee
Donald H. Wells
|
Alarm device for informing reduction of pneumatic pressure of tire | ||
Patent #
US 4,180,795 A
Filed 12/12/1977
|
Current Assignee
Bridgestone Tire Company Limited, Mitaka Instrument Company Limited
|
Original Assignee
Bridgestone Tire Company Limited, Mitaka Instrument Company Limited
|
RF beam center location method and apparatus for power transmission system | ||
Patent #
US 4,088,999 A
Filed 05/21/1976
|
Current Assignee
Fletcher James C Administrator of The National Aeronautics and Space Administration With Respect To An Invention of, Richard M. Dickinson
|
Original Assignee
Fletcher James C Administrator of The National Aeronautics and Space Administration With Respect To An Invention of, Richard M. Dickinson
|
Thermoelectric voltage generator | ||
Patent #
US 4,095,998 A
Filed 09/30/1976
|
Current Assignee
The United States Of America As Represented By The Secretary Of The Army
|
Original Assignee
The United States Of America As Represented By The Secretary Of The Army
|
Wireless energy transfer, including interference enhancement | ||
Patent #
US 8,076,801 B2
Filed 05/14/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
Wireless Power Harvesting and Transmission with Heterogeneous Signals. | ||
Patent #
US 20120007441A1
Filed 08/29/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Wireless non-radiative energy transfer | ||
Patent #
US 8,076,800 B2
Filed 03/31/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
Inductive power transfer apparatus | ||
Patent #
US 20120025602A1
Filed 02/05/2010
|
Current Assignee
Auckland UniServices Limited
|
Original Assignee
Auckland UniServices Limited
|
APPARATUS FOR POWER WIRELESS TRANSFER BETWEEN TWO DEVICES AND SIMULTANEOUS DATA TRANSFER | ||
Patent #
US 20120001593A1
Filed 06/30/2011
|
Current Assignee
STMicroelectronics SRL
|
Original Assignee
STMicroelectronics SRL
|
Wireless energy transfer | ||
Patent #
US 8,097,983 B2
Filed 05/08/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
POWER GENERATOR AND POWER GENERATION SYSTEM | ||
Patent #
US 20120007435A1
Filed 06/28/2011
|
Current Assignee
Panasonic Intellectual Property Management Co. Ltd.
|
Original Assignee
Panasonic Corporation
|
INCREASING THE Q FACTOR OF A RESONATOR | ||
Patent #
US 20120001492A9
Filed 08/11/2008
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Nigel Power LLC
|
Systems and methods for wireless power | ||
Patent #
US 8,115,448 B2
Filed 06/02/2008
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Wireless non-radiative energy transfer | ||
Patent #
US 8,084,889 B2
Filed 03/31/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
WIRELESS ENERGY TRANSFER FOR IMPLANTABLE DEVICES | ||
Patent #
US 20120032522A1
Filed 06/06/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Wireless energy transfer for refrigerator application | ||
Patent #
US 8,106,539 B2
Filed 03/11/2010
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
FLUSH-MOUNTED LOW-PROFILE RESONANT HOLE ANTENNA | ||
Patent #
US 20120038525A1
Filed 09/10/2009
|
Current Assignee
Advanced Automotive Antennas S.L.
|
Original Assignee
Advanced Automotive Antennas S.L.
|
Inductive repeater coil for an implantable device | ||
Patent #
US 8,131,378 B2
Filed 10/28/2007
|
Current Assignee
Second Sight Enterprises Incorporated
|
Original Assignee
Second Sight Enterprises Incorporated
|
LOW RESISTANCE ELECTRICAL CONDUCTOR | ||
Patent #
US 20120062345A1
Filed 08/31/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER, INCLUDING INTERFERENCE ENHANCEMENT | ||
Patent #
US 20120068549A1
Filed 11/03/2011
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
WIRELESS TRANSMISSION OF SOLAR GENERATED POWER | ||
Patent #
US 20120086284A1
Filed 10/06/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
MODULAR UPGRADES FOR WIRELESSLY POWERED TELEVISIONS | ||
Patent #
US 20120086867A1
Filed 10/06/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS POWERED TELEVISION | ||
Patent #
US 20120091795A1
Filed 10/06/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS POWERED PROJECTOR | ||
Patent #
US 20120091796A1
Filed 10/06/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS POWER TRANSFER WITHIN A CIRCUIT BREAKER | ||
Patent #
US 20120091820A1
Filed 10/06/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESSLY POWERED LAPTOP AND DESKTOP ENVIRONMENT | ||
Patent #
US 20120091794A1
Filed 10/06/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
ENERGIZED TABLETOP | ||
Patent #
US 20120091797A1
Filed 10/06/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
POSITION INSENSITIVE WIRELESS CHARGING | ||
Patent #
US 20120091950A1
Filed 10/06/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER FOR ENERGIZING POWER TOOLS | ||
Patent #
US 20120091949A1
Filed 10/06/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
COMPUTER THAT WIRELESSLY POWERS ACCESSORIES | ||
Patent #
US 20120091819A1
Filed 10/06/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER FOR PHOTOVOLTAIC PANELS | ||
Patent #
US 20120098350A1
Filed 10/19/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER WITH MULTI RESONATOR ARRAYS FOR VEHICLE APPLICATIONS | ||
Patent #
US 20120112534A1
Filed 10/17/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER FOR VEHICLE APPLICATIONS | ||
Patent #
US 20120112538A1
Filed 11/03/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
SECURE WIRELESS ENERGY TRANSFER FOR VEHICLE APPLICATIONS | ||
Patent #
US 20120112531A1
Filed 11/03/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER FOR VEHICLES | ||
Patent #
US 20120112535A1
Filed 10/19/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER FOR VEHICLES | ||
Patent #
US 20120112536A1
Filed 10/19/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
TUNABLE WIRELESS ENERGY TRANSFER FOR IN-VEHICLE APPLICATIONS | ||
Patent #
US 20120112532A1
Filed 11/03/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER FOR VEHICLES | ||
Patent #
US 20120112691A1
Filed 10/18/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Power supply system and method of controlling power supply system | ||
Patent #
US 8,178,995 B2
Filed 10/13/2009
|
Current Assignee
Ibaraki Toyota Jidosha Kabushiki Kaisha
|
Original Assignee
Ibaraki Toyota Jidosha Kabushiki Kaisha
|
MULTI-RESONATOR WIRELESS ENERGY TRANSFER INSIDE VEHICLES | ||
Patent #
US 20120119569A1
Filed 10/17/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER FOR VEHICLES | ||
Patent #
US 20120119575A1
Filed 10/18/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
SAFETY SYSTEMS FOR WIRELESS ENERGY TRANSFER IN VEHICLE APPLICATIONS | ||
Patent #
US 20120119576A1
Filed 10/18/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER FOR VEHICLES | ||
Patent #
US 20120119698A1
Filed 10/17/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Inductively chargeable audio devices | ||
Patent #
US 8,193,769 B2
Filed 01/25/2010
|
Current Assignee
Powermat Technologies Ltd.
|
Original Assignee
Powermat Technologies Ltd.
|
WIRELESS ENERGY TRANSFER FOR MEDICAL APPLICATIONS | ||
Patent #
US 20120139355A1
Filed 04/20/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER WITH HIGH-Q RESONATORS USING FIELD SHAPING TO IMPROVE K | ||
Patent #
US 20120153735A1
Filed 12/29/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER USING CONDUCTING SURFACES TO SHAPE FIELD AND IMPROVE K | ||
Patent #
US 20120153734A1
Filed 12/29/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER USING OBJECT POSITIONING FOR IMPROVED K | ||
Patent #
US 20120153736A1
Filed 12/29/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER FOR COMPUTER PERIPHERAL APPLICATIONS | ||
Patent #
US 20120153732A1
Filed 11/05/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER SYSTEMS | ||
Patent #
US 20120153733A1
Filed 12/14/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER OVER DISTANCE USING FIELD SHAPING TO IMPROVE THE COUPLING FACTOR | ||
Patent #
US 20120153737A1
Filed 12/30/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER ACROSS VARIABLE DISTANCES USING FIELD SHAPING WITH MAGNETIC MATERIALS TO IMPROVE THE COUPLING FACTOR | ||
Patent #
US 20120153738A1
Filed 12/30/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER FOR SUPPLYING POWER AND HEAT TO A DEVICE | ||
Patent #
US 20120153893A1
Filed 12/31/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
IMPLANTABLE WIRELESS POWER SYSTEM | ||
Patent #
US 20120146575A1
Filed 03/02/2011
|
Current Assignee
Corvion Incorporated
|
Original Assignee
Everheart Systems LLC
|
WIRELESS POWER FEEDER AND WIRELESS POWER RECEIVER | ||
Patent #
US 20120161530A1
Filed 06/28/2011
|
Current Assignee
TDK Corporation
|
Original Assignee
TDK Corporation
|
Resonant, contactless radio frequency power coupling | ||
Patent #
US 8,212,414 B2
Filed 05/29/2009
|
Current Assignee
Lockheed Martin Corporation
|
Original Assignee
Lockheed Martin Corporation
|
INTEGRATED REPEATERS FOR CELL PHONE APPLICATIONS | ||
Patent #
US 20120184338A1
Filed 03/23/2012
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
SYSTEMS AND METHODS FOR WIRELESS POWER | ||
Patent #
US 20120206096A1
Filed 01/20/2012
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Non-contact wireless communication apparatus, method of adjusting resonance frequency of non-contact wireless communication antenna, and mobile terminal apparatus | ||
Patent #
US 8,260,200 B2
Filed 11/14/2008
|
Current Assignee
Sony Corporation
|
Original Assignee
Sony Ericsson Mobile Communications AB
|
FLEXIBLE RESONATOR ATTACHMENT | ||
Patent #
US 20120223573A1
Filed 01/30/2012
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
TUNABLE WIRELESS ENERGY TRANSFER FOR APPLIANCES | ||
Patent #
US 20120228952A1
Filed 11/08/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
TUNABLE WIRELESS ENERGY TRANSFER FOR FURNITURE APPLICATIONS | ||
Patent #
US 20120228953A1
Filed 11/08/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
TUNABLE WIRELESS ENERGY TRANSFER FOR CLOTHING APPLICATIONS | ||
Patent #
US 20120228954A1
Filed 11/08/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY DISTRIBUTION SYSTEM | ||
Patent #
US 20120235500A1
Filed 09/14/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER USING REPEATER RESONATORS | ||
Patent #
US 20120235505A1
Filed 02/08/2012
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
TUNABLE WIRELESS ENERGY TRANSFER FOR OUTDOOR LIGHTING APPLICATIONS | ||
Patent #
US 20120235567A1
Filed 11/07/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
TUNABLE WIRELESS ENERGY TRANSFER FOR LIGHTING APPLICATIONS | ||
Patent #
US 20120235566A1
Filed 11/07/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER WITH VARIABLE SIZE RESONATORS FOR IMPLANTED MEDICAL DEVICES | ||
Patent #
US 20120235633A1
Filed 10/21/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
MULTI-RESONATOR WIRELESS ENERGY TRANSFER FOR IMPLANTED MEDICAL DEVICES | ||
Patent #
US 20120235502A1
Filed 10/21/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
MULTI-RESONATOR WIRELESS ENERGY TRANSFER FOR MEDICAL APPLICATIONS | ||
Patent #
US 20120235501A1
Filed 10/21/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
TUNABLE WIRELESS ENERGY TRANSFER FOR SENSORS | ||
Patent #
US 20120235504A1
Filed 11/08/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
SECURE WIRELESS ENERGY TRANSFER IN MEDICAL APPLICATIONS | ||
Patent #
US 20120235503A1
Filed 11/07/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER WITH VARIABLE SIZE RESONATORS FOR MEDICAL APPLICATIONS | ||
Patent #
US 20120235634A1
Filed 10/21/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER WITH RESONATOR ARRAYS FOR MEDICAL APPLICATIONS | ||
Patent #
US 20120239117A1
Filed 10/21/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
MULTI-RESONATOR WIRELESS ENERGY TRANSFER FOR APPLIANCES | ||
Patent #
US 20120242159A1
Filed 10/28/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
MULTI-RESONATOR WIRELESS ENERGY TRANSFER FOR EXTERIOR LIGHTING | ||
Patent #
US 20120242225A1
Filed 10/28/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
TUNABLE WIRELESS ENERGY TRANSFER FOR MEDICAL APPLICATIONS | ||
Patent #
US 20120256494A1
Filed 11/07/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS POWER FEEDER AND WIRELESS POWER TRANSMISSION SYSTEM | ||
Patent #
US 20120262000A1
Filed 12/28/2010
|
Current Assignee
TDK Corporation
|
Original Assignee
TDK Corporation
|
WIRELESS POWER TRANSMITTER TUNING | ||
Patent #
US 20120267960A1
Filed 02/17/2012
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
Wireless energy transfer using field shaping to reduce loss | ||
Patent #
US 8,304,935 B2
Filed 12/28/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Low AC resistance conductor designs | ||
Patent #
US 20120280765A1
Filed 12/16/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Wireless energy transfer using magnetic materials to shape field and reduce loss | ||
Patent #
US 8,324,759 B2
Filed 12/28/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
RESONATOR OPTIMIZATIONS FOR WIRELESS ENERGY TRANSFER | ||
Patent #
US 20120313449A1
Filed 06/22/2012
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Compact resonators for wireless energy transfer in vehicle applications | ||
Patent #
US 20120313742A1
Filed 06/28/2012
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Load impedance decision device, wireless power transmission device, and wireless power transmission method | ||
Patent #
US 8,334,620 B2
Filed 11/04/2010
|
Current Assignee
Samsung Electronics Co. Ltd.
|
Original Assignee
Samsung Electronics Co. Ltd.
|
WIRELESS ENERGY TRANSFER FOR PERSON WORN PERIPHERALS | ||
Patent #
US 20130007949A1
Filed 07/09/2012
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS POWER COMPONENT SELECTION | ||
Patent #
US 20130020878A1
Filed 07/23/2012
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Efficient near-field wireless energy transfer using adiabatic system variations | ||
Patent #
US 8,362,651 B2
Filed 10/01/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
TUNABLE WIRELESS POWER ARCHITECTURES | ||
Patent #
US 20130033118A1
Filed 08/06/2012
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS POWER COMPONENT SELECTION | ||
Patent #
US 20130038402A1
Filed 08/20/2012
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
RESONATOR ENCLOSURE | ||
Patent #
US 20130057364A1
Filed 09/04/2012
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Wireless energy transfer over a distance at high efficiency | ||
Patent #
US 8,395,283 B2
Filed 12/16/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
Wireless non-radiative energy transfer | ||
Patent #
US 8,395,282 B2
Filed 03/31/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
RECONFIGURABLE CONTROL ARCHITECTURES AND ALGORITHMS FOR ELECTRIC VEHICLE WIRELESS ENERGY TRANSFER SYSTEMS | ||
Patent #
US 20130062966A1
Filed 09/12/2012
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS POWER TRANSMISSION APPARATUS | ||
Patent #
US 20120248884A1
Filed 05/06/2011
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
Wireless energy transfer for computer peripheral applications | ||
Patent #
US 8,400,017 B2
Filed 11/05/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Wireless energy transfer with high-Q similar resonant frequency resonators | ||
Patent #
US 8,400,022 B2
Filed 12/23/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
Wireless energy transfer with high-Q sub-wavelength resonators | ||
Patent #
US 8,400,021 B2
Filed 12/16/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
Wireless energy transfer with high-Q devices at variable distances | ||
Patent #
US 8,400,020 B2
Filed 12/16/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
Wireless energy transfer with high-Q at high efficiency | ||
Patent #
US 8,400,018 B2
Filed 12/16/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
Wireless energy transfer with high-Q from more than one source | ||
Patent #
US 8,400,019 B2
Filed 12/16/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
Wireless energy transfer with high-Q capacitively loaded conducting loops | ||
Patent #
US 8,400,023 B2
Filed 12/23/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
Wireless energy transfer across variable distances | ||
Patent #
US 8,400,024 B2
Filed 12/30/2009
|
Current Assignee
Massachusetts Institute of Technology
|
Original Assignee
Massachusetts Institute of Technology
|
FOREIGN OBJECT DETECTION IN WIRELESS ENERGY TRANSFER SYSTEMS | ||
Patent #
US 20130069441A1
Filed 09/10/2012
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
HIGH FREQUENCY PCB COILS | ||
Patent #
US 20130069753A1
Filed 09/17/2012
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Low AC resistance conductor designs | ||
Patent #
US 8,410,636 B2
Filed 12/16/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER FOR PACKAGING | ||
Patent #
US 20130099587A1
Filed 10/18/2012
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
MULTI-RESONATOR WIRELESS ENERGY TRANSFER FOR SENSORS | ||
Patent #
US 20120248887A1
Filed 10/28/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
MULTI-RESONATOR WIRELESS ENERGY TRANSFER FOR LIGHTING | ||
Patent #
US 20120248981A1
Filed 10/28/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER WITH RESONATOR ARRAYS FOR MEDICAL APPLICATIONS | ||
Patent #
US 20120248888A1
Filed 11/07/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
MULTI-RESONATOR WIRELESS ENERGY TRANSFER TO MOBILE DEVICES | ||
Patent #
US 20120248886A1
Filed 10/28/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Multi-resonator wireless energy transfer for exterior lighting | ||
Patent #
US 8,441,154 B2
Filed 10/28/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Magnetic induction signal repeater | ||
Patent #
US 8,457,547 B2
Filed 04/28/2009
|
Current Assignee
Cochlear Limited
|
Original Assignee
Cochlear Limited
|
Wireless energy transfer using conducting surfaces to shape field and improve K | ||
Patent #
US 8,461,722 B2
Filed 12/29/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Wireless energy transfer systems | ||
Patent #
US 8,461,719 B2
Filed 09/25/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Wireless energy transfer using conducting surfaces to shape fields and reduce loss | ||
Patent #
US 8,461,720 B2
Filed 12/28/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Method and apparatus for providing wireless power to a load device | ||
Patent #
US 8,461,817 B2
Filed 09/10/2008
|
Current Assignee
Powercast Corporation
|
Original Assignee
Powercast Corporation
|
Wireless energy transfer using object positioning for low loss | ||
Patent #
US 8,461,721 B2
Filed 12/29/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Tunable wireless energy transfer for outdoor lighting applications | ||
Patent #
US 8,466,583 B2
Filed 11/07/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
SYSTEM AND METHOD FOR LOW LOSS WIRELESS POWER TRANSMISSION | ||
Patent #
US 20130154383A1
Filed 09/12/2012
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
WIRELESS ENERGY TRANSFER SYSTEMS | ||
Patent #
US 20130154389A1
Filed 02/21/2013
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER MODELING TOOL | ||
Patent #
US 20130159956A1
Filed 11/05/2012
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Wireless energy transfer over distance using field shaping to improve the coupling factor | ||
Patent #
US 8,471,410 B2
Filed 12/30/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Wireless energy transfer with high-Q resonators using field shaping to improve K | ||
Patent #
US 8,476,788 B2
Filed 12/29/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Increasing the Q factor of a resonator | ||
Patent #
US 8,482,157 B2
Filed 08/11/2008
|
Current Assignee
Qualcomm Inc.
|
Original Assignee
Qualcomm Inc.
|
Wireless energy transfer using variable size resonators and system monitoring | ||
Patent #
US 8,482,158 B2
Filed 12/28/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER SYSTEMS | ||
Patent #
US 20130175875A1
Filed 02/21/2013
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER FOR PROMOTIONAL ITEMS | ||
Patent #
US 20130175874A1
Filed 01/09/2013
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Wireless energy transfer resonator kit | ||
Patent #
US 8,487,480 B1
Filed 12/16/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
ENERGY TRANSMISSION APPARATUS AND METHOD | ||
Patent #
US 20130187478A1
Filed 09/30/2011
|
Current Assignee
LG Innotek Company Limited
|
Original Assignee
LG Innotek Company Limited
|
Wireless energy transfer converters | ||
Patent #
US 8,497,601 B2
Filed 04/26/2010
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER RESONATOR KIT | ||
Patent #
US 20130200716A1
Filed 12/16/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Qiang Li, David A. Schatz, Katherine Hall, Konrad J. Kulikowski, Marin Soljacic, Eric R. Giler, Morris P. Kesler, Andre B. Kurs, Andrew J. Campanella, Aristeidis Karalis, Ron Fiorello
|
WIRELESS ENERGY TRANSFER WITH REDUCED FIELDS | ||
Patent #
US 20130200721A1
Filed 01/28/2013
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
MECHANICALLY REMOVABLE WIRELESS POWER VEHICLE SEAT ASSEMBLY | ||
Patent #
US 20130221744A1
Filed 03/15/2013
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Wireless energy transfer with feedback control for lighting applications | ||
Patent #
US 8,552,592 B2
Filed 02/02/2010
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER USING VARIABLE SIZE RESONATORS AND SYSTEM MONITORING | ||
Patent #
US 20130278074A1
Filed 06/21/2013
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER USING VARIABLE SIZE RESONATORS AND SYSTEM MONITORING | ||
Patent #
US 20130278075A1
Filed 06/21/2013
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER USING VARIABLE SIZE RESONATORS AND SYSTEM MONITORING | ||
Patent #
US 20130278073A1
Filed 06/21/2013
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Wireless energy transfer using object positioning for improved k | ||
Patent #
US 8,569,914 B2
Filed 12/29/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
LOW AC RESISTANCE CONDUCTOR DESIGNS | ||
Patent #
US 20130300353A1
Filed 03/29/2013
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
POWER TRANSFER SYSTEM | ||
Patent #
US 20130300210A1
Filed 07/18/2013
|
Current Assignee
Murata Manufacturing Co Limited
|
Original Assignee
Murata Manufacturing Co Limited
|
Wireless energy transfer using high Q resonators for lighting applications | ||
Patent #
US 8,587,153 B2
Filed 12/14/2009
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Wireless energy transfer using repeater resonators | ||
Patent #
US 8,587,155 B2
Filed 03/10/2010
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER CONVERTERS | ||
Patent #
US 20130307349A1
Filed 07/19/2013
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Resonator arrays for wireless energy transfer | ||
Patent #
US 8,598,743 B2
Filed 05/28/2010
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER FOR IMPLANTABLE DEVICES | ||
Patent #
US 20130320773A1
Filed 08/07/2013
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER CONVERTERS | ||
Patent #
US 20130334892A1
Filed 07/19/2013
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS ENERGY TRANSFER FOR RECHARGEABLE BATTERIES | ||
Patent #
US 20140002012A1
Filed 06/27/2012
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Wireless energy transfer systems | ||
Patent #
US 8,629,578 B2
Filed 02/21/2013
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
Tunable wireless energy transfer systems | ||
Patent #
US 8,643,326 B2
Filed 01/06/2011
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
WIRELESS POWER TRANSFER SYSTEM COIL ARRANGEMENTS AND METHOD OF OPERATION | ||
Patent #
US 20140070764A1
Filed 03/08/2013
|
Current Assignee
Witricity Corporation
|
Original Assignee
Qualcomm Inc.
|
Wireless energy transfer systems | ||
Patent #
US 8,618,696 B2
Filed 02/21/2013
|
Current Assignee
Witricity Corporation
|
Original Assignee
Witricity Corporation
|
THERMOELECTRIC UNITS | ||
Patent #
US 3,780,425 A
Filed 01/25/1971
|
Current Assignee
United Kingdom Atomic Energy Authority
|
Original Assignee
United Kingdom Atomic Energy Authority
|
LARGE SODIUM VALVE ACTUATOR | ||
Patent #
US 3,871,176 A
Filed 03/08/1973
|
Current Assignee
Glen Elwin Schukei
|
Original Assignee
Combustion Engineering Incorporated
|
ENERGY TRANSLATING DEVICE | ||
Patent #
US 3,517,350 A
Filed 07/07/1969
|
Current Assignee
William D. Beaver
|
Original Assignee
William D. Beaver
|
MICROWAVE POWER RECEIVING ANTENNA | ||
Patent #
US 3,535,543 A
Filed 05/01/1969
|
Current Assignee
Carroll C. Dailey
|
Original Assignee
Carroll C. Dailey
|
METHOD FOR THE CONTACTLESS CHARGING OF THE BATTERY OF AN ELECTRIC AUTOMOBILE | ||
Patent #
US 20140327397A1
Filed 12/04/2012
|
Current Assignee
Renault Sas
|
Original Assignee
Renault Sas
|
21 Claims
-
1. A wireless energy source, comprising:
-
a source resonator; a power supply; an amplifier connected to the power supply and to the source resonator and comprising a plurality of switching elements; and a controller connected to the amplifier, wherein during operation of the source; the power supply drives the source resonator through the amplifier with an oscillating voltage signal; the controller is configured to adjust a duty cycle of the switching elements so that zero voltage switching is substantially maintained; and the controller is configured to adjust an output power level of the oscillating voltage signal driving the source resonator in response to a change in a power demand by a load receiving power wirelessly from the source resonator by adjusting a bus voltage of the amplifier. - View Dependent Claims (2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 21)
-
-
19. A wireless energy source, comprising:
-
a source resonator; a power supply; an amplifier connected to the power supply; an adjustable impedance matching network connected to the amplifier and to the source resonator; and a controller connected to the amplifier and to the impedance matching network, wherein during operation of the source; the power supply drives the source resonator through the amplifier with an oscillating voltage signal; the controller is configured to adjust the impedance matching network to substantially maintain zero voltage switching in the amplifier; and the controller is configured to adjust an output power level of the oscillating voltage signal driving the source resonator by adjusting a bus voltage of the amplifier. - View Dependent Claims (20)
-
1 Specification
This application is a continuation of and claims priority to U.S. application Ser. No. 13/567,789 filed Aug. 6, 2012, which claims priority to U.S. provisional patent application 61/515,324 filed Aug. 4, 2011. The contents of the prior applications are incorporated herein by reference in their entirety.
Field
This disclosure relates to wireless energy transfer, methods, systems and apparati to accomplish such transfer, and applications.
Description of the Related Art
Energy or power may be transferred wirelessly using a variety of known radiative, or far-field, and non-radiative, or near-field, techniques as detailed, for example, in commonly owned U.S. patent application Ser. No. 12/613,686 published on May 6, 2010 as US 2010/010909445 and entitled “Wireless Energy Transfer Systems,” U.S. patent application Ser. No. 12/860,375 published on Dec. 9, 2010 as 2010/0308939 and entitled “Integrated Resonator-Shield Structures,” U.S. patent application Ser. No. 13/222,915 published on Mar. 15, 2012 as 2012/0062345 and entitled “Low Resistance Electrical Conductor,” U.S. patent application Ser. No. 13/283,811 published on Oct. 4, 2012 as US 2012/0248981 and entitled “Multi-Resonator Wireless Energy Transfer for Lighting,” the contents of which are incorporated by reference. Prior art wireless energy transfer systems have been limited by a variety of factors including concerns over user safety, low energy transfer efficiencies and restrictive physical proximity/alignment tolerances for the energy supply and sink components.
One particular challenge in wireless energy transfer is control and tuning of the resonator structures and the power source to deliver controlled power to a load. In a wireless energy transfer system the source and device may move or change position. As the relative positioning of the system elements change the characteristic of the wireless energy transfer changes. Coupling between the source and device may change reducing the efficiency of energy transfer for example. Changes in the wireless energy transfer characteristics may change the power delivered to the load or cause unwanted fluctuations in the power delivered to a load at the device. A need exists for methods and designs for tunable wireless energy transfer system with tunable components to maintain efficient and constant energy delivery to a load at a device despite changes in the positioning, coupling, orientation, and the like of the system components.
Various systems and processes, in various embodiments, provide wireless energy transfer using coupled resonators. In some embodiments, the wireless energy transfer system may require or benefit from a capability to verify and authenticate the source and the sink of the wireless energy. The features of such embodiments are general and may be applied to a wide range of resonators, regardless of the specific examples discussed herein.
In embodiments, a magnetic resonator may comprise some combination of inductors and capacitors. Additional circuit elements such as capacitors, inductors, resistors, switches, and the like, may be inserted between a magnetic resonator and a power source, and/or between a magnetic resonator and a power load. In this disclosure, the conducting coil that comprises the high-Q inductive loop of the resonator may be referred to as the inductor and/or the inductive load. The inductive load may also refer to the inductor when it is wirelessly coupled (through a mutual inductance) to other system or extraneous objects. In this disclosure, circuit elements other than the inductive load may be referred to as being part of an impedance matching network or IMN. It is to be understood that all, some, or none of the elements that are referred to as being part of an impedance matching network may be part of the magnetic resonator. Which elements are part of the resonator and which are separate from the resonator will depend on the specific magnetic resonator and wireless energy transfer system design.
Unless otherwise indicated, this disclosure uses the terms wireless energy transfer, wireless power transfer, wireless power transmission, and the like, interchangeably. Those skilled in the art will understand that a variety of system architectures may be supported by the wide range of wireless system designs and functionalities described in this application.
In the wireless energy transfer systems described herein, power may be exchanged wirelessly between at least two resonators. Resonators may supply, receive, hold, transfer, and distribute energy. Sources of wireless power may be referred to as sources or supplies and receivers of wireless power may be referred to as devices, receivers and power loads. A resonator may be a source, a device, or both, simultaneously or may vary from one function to another in a controlled manner. Resonators configured to hold or distribute energy that do not have wired connections to a power supply or power drain may be called repeaters.
The resonators of the wireless energy transfer systems of this invention are able to transfer power over distances that are large compared to the size of the resonators themselves. That is, if the resonator size is characterized by the radius of the smallest sphere that could enclose the resonator structure, the wireless energy transfer system of this invention can transfer power over distances greater than the characteristic size of a resonator. The system is able to exchange energy between resonators where the resonators have different characteristic sizes and where the inductive elements of the resonators have different sizes, different shapes, are comprised of different materials, and the like.
The wireless energy transfer systems of this invention may be described as having a coupling region, an energized area or volume, all by way of describing that energy may be transferred between resonant objects that are separated from each other, they may have variable distance from each other, and that may be moving relative to each other. In some embodiments, the area or volume over which energy can be transferred is referred to as the active field area or volume. In addition, the wireless energy transfer system may comprise more than two resonators that may each be coupled to a power source, a power load, both, or neither.
Wirelessly supplied energy may be used to power electric or electronic equipment, recharge batteries or charge energy storage units. Multiple devices may be charged or powered simultaneously or power delivery to multiple devices may be serialized such that one or more devices receive power for a period of time after which power delivery may be switched to other devices. In various embodiments, multiple devices may share power from one or more sources with one or more other devices either simultaneously, or in a time multiplexed manner, or in a frequency multiplexed manner, or in a spatially multiplexed manner, or in an orientation multiplexed manner, or in any combination of time and frequency and spatial and orientation multiplexing. Multiple devices may share power with each other, with at least one device being reconfigured continuously, intermittently, periodically, occasionally, or temporarily, to operate as a wireless power source. Those of ordinary skill in the art will understand that there are a variety of ways to power and/or charge devices applicable to the technologies and applications described herein.
This disclosure references certain individual circuit components and elements such as capacitors, inductors, resistors, diodes, transformers, switches and the like; combinations of these elements as networks, topologies, circuits, and the like; and objects that have inherent characteristics such as “self-resonant” objects with capacitance or inductance distributed (or partially distributed, as opposed to solely lumped) throughout the entire object. It would be understood by one of ordinary skill in the art that adjusting and controlling variable components within a circuit or network may adjust the performance of that circuit or network and that those adjustments may be described generally as tuning, adjusting, matching, correcting, and the like. Other methods to tune or adjust the operating point of the wireless power transfer system may be used alone, or in addition to adjusting tunable components such as inductors and capacitors, or banks of inductors and capacitors. Those skilled in the art will recognize that a particular topology discussed in this disclosure can be implemented in a variety of other ways.
Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. In case of conflict with publications, patent applications, patents, and other references mentioned or incorporated herein by reference, the present specification, including definitions, will control.
Any of the features described above may be used, alone or in combination, without departing from the scope of this disclosure. Other features, objects, and advantages of the systems and methods disclosed herein will be apparent from the following detailed description and figures.
As described above, this disclosure relates to wireless energy transfer using coupled electromagnetic resonators. However, such energy transfer is not restricted to electromagnetic resonators, and the wireless energy transfer systems described herein are more general and may be implemented using a wide variety of resonators and resonant objects.
As those skilled in the art will recognize, important considerations for resonator-based power transfer include resonator efficiency and resonator coupling. Extensive discussion of such issues, e.g., coupled mode theory (CMT), coupling coefficients and factors, quality factors (also referred to as Q-factors), and impedance matching is provided, for example, in U.S. patent application Ser. No. 12/789,611 published on Sep. 23, 2010 as US 20100237709 and entitled “RESONATOR ARRAYS FOR WIRELESS ENERGY TRANSFER,” and U.S. patent application Ser. No. 12/722,050 published on Jul. 22, 2010 as US 20100181843 and entitled “WIRELESS ENERGY TRANSFER FOR REFRIGERATOR APPLICATION” and incorporated herein by reference in its entirety as if fully set forth herein.
A resonator may be defined as a resonant structure that can store energy in at least two different forms, and where the stored energy oscillates between the two forms. The resonant structure will have a specific oscillation mode with a resonant (modal) frequency, f, and a resonant (modal) field. The angular resonant frequency, ω, may be defined as ω=2πf, the resonant period, T, may be defined as T=1/f=2π/ω, and the resonant wavelength, λ, may be defined as λ=c/f, where c is the speed of the associated field waves (light, for electromagnetic resonators). In the absence of loss mechanisms, coupling mechanisms or external energy supplying or draining mechanisms, the total amount of energy stored by the resonator, W, would stay fixed, but the form of the energy would oscillate between the two forms supported by the resonator, wherein one form would be maximum when the other is minimum and vice versa.
For example, a resonator may be constructed such that the two forms of stored energy are magnetic energy and electric energy. Further, the resonator may be constructed such that the electric energy stored by the electric field is primarily confined within the structure while the magnetic energy stored by the magnetic field is primarily in the region surrounding the resonator. In other words, the total electric and magnetic energies would be equal, but their localization would be different. Using such structures, energy exchange between at least two structures may be mediated by the resonant magnetic near-field of the at least two resonators. These types of resonators may be referred to as magnetic resonators.
An important parameter of resonators used in wireless power transmission systems is the Quality Factor, or Q-factor, or Q, of the resonator, which characterizes the energy decay and is inversely proportional to energy losses of the resonator. It may be defined as Q=ω*W/P, where P is the time-averaged power lost at steady state. That is, a resonator with a high-Q has relatively low intrinsic losses and can store energy for a relatively long time. Since the resonator loses energy at its intrinsic decay rate, 2Γ, its Q, also referred to as its intrinsic Q, is given by Q=co/2Γ. The quality factor also represents the number of oscillation periods, T, it takes for the energy in the resonator to decay by a factor of e−2π. Note that the quality factor or intrinsic quality factor or Q of the resonator is that due only to intrinsic loss mechanisms. The Q of a resonator connected to, or coupled to a power generator, g, or load, l, may be called the “loaded quality factor” or the “loaded Q”. The Q of a resonator in the presence of an extraneous object that is not intended to be part of the energy transfer system may be called the “perturbed quality factor” or the “perturbed Q”.
Resonators, coupled through any portion of their near-fields may interact and exchange energy. The efficiency of this energy transfer can be significantly enhanced if the resonators operate at substantially the same resonant frequency. By way of example, but not limitation, imagine a source resonator with Q, and a device resonator with Qd. High-Q wireless energy transfer systems may utilize resonators that are high-Q. The Q of each resonator may be high. The geometric mean of the resonator Q'"'"'s, √{square root over (QsQd)} may also or instead be high.
The coupling factor, k, is a number between 0≦|k|≦1, and it may be independent (or nearly independent) of the resonant frequencies of the source and device resonators, when those are placed at sub-wavelength distances. Rather the coupling factor k may be determined mostly by the relative geometry and the distance between the source and device resonators where the physical decay-law of the field mediating their coupling is taken into account. The coupling coefficient used in CMT, κ=k√{square root over (ωsωd)}/2, may be a strong function of the resonant frequencies, as well as other properties of the resonator structures. In applications for wireless energy transfer utilizing the near-fields of the resonators, it is desirable to have the size of the resonator be much smaller than the resonant wavelength, so that power lost by radiation is reduced. In some embodiments, high-Q resonators are sub-wavelength structures. In some electromagnetic embodiments, high-Q resonator structures are designed to have resonant frequencies higher than 100 kHz. In other embodiments, the resonant frequencies may be less than 1 GHz.
In exemplary embodiments, the power radiated into the far-field by these sub wavelength resonators may be further reduced by lowering the resonant frequency of the resonators and the operating frequency of the system. In other embodiments, the far field radiation may be reduced by arranging for the far fields of two or more resonators to interfere destructively in the far field.
In a wireless energy transfer system a resonator may be used as a wireless energy source, a wireless energy capture device, a repeater or a combination thereof. In embodiments a resonator may alternate between transferring energy, receiving energy or relaying energy. In a wireless energy transfer system one or more magnetic resonators may be coupled to an energy source and be energized to produce an oscillating magnetic near-field. Other resonators that are within the oscillating magnetic near-fields may capture these fields and convert the energy into electrical energy that may be used to power or charge a load thereby enabling wireless transfer of useful energy.
The so-called “useful” energy in a useful energy exchange is the energy or power that must be delivered to a device in order to power or charge it at an acceptable rate. The transfer efficiency that corresponds to a useful energy exchange may be system or application-dependent. For example, high power vehicle charging applications that transfer kilowatts of power may need to be at least 80% efficient in order to supply useful amounts of power resulting in a useful energy exchange sufficient to recharge a vehicle battery without significantly heating up various components of the transfer system. In some consumer electronics applications, a useful energy exchange may include any energy transfer efficiencies greater than 10%, or any other amount acceptable to keep rechargeable batteries “topped off” and running for long periods of time. In implanted medical device applications, a useful energy exchange may be any exchange that does not harm the patient but that extends the life of a battery or wakes up a sensor or monitor or stimulator. In such applications, 100 mW of power or less may be useful. In distributed sensing applications, power transfer of microwatts may be useful, and transfer efficiencies may be well below 1%.
A useful energy exchange for wireless energy transfer in a powering or recharging application may be efficient, highly efficient, or efficient enough, as long as the wasted energy levels, heat dissipation, and associated field strengths are within tolerable limits and are balanced appropriately with related factors such as cost, weight, size, and the like.
The resonators may be referred to as source resonators, device resonators, first resonators, second resonators, repeater resonators, and the like. Implementations may include three (3) or more resonators. For example, a single source resonator may transfer energy to multiple device resonators or multiple devices. Energy may be transferred from a first device to a second, and then from the second device to the third, and so forth. Multiple sources may transfer energy to a single device or to multiple devices connected to a single device resonator or to multiple devices connected to multiple device resonators. Resonators may serve alternately or simultaneously as sources, devices, and/or they may be used to relay power from a source in one location to a device in another location. Intermediate electromagnetic resonators may be used to extend the distance range of wireless energy transfer systems and/or to generate areas of concentrated magnetic near-fields. Multiple resonators may be daisy-chained together, exchanging energy over extended distances and with a wide range of sources and devices. For example, a source resonator may transfer power to a device resonator via several repeater resonators. Energy from a source may be transferred to a first repeater resonator, the first repeater resonator may transfer the power to a second repeater resonator and the second to a third and so on until the final repeater resonator transfers its energy to a device resonator. In this respect the range or distance of wireless energy transfer may be extended and/or tailored by adding repeater resonators. High power levels may be split between multiple sources, transferred to multiple devices and recombined at a distant location.
The resonators may be designed using coupled mode theory models, circuit models, electromagnetic field models, and the like. The resonators may be designed to have tunable characteristic sizes. The resonators may be designed to handle different power levels. In exemplary embodiments, high power resonators may require larger conductors and higher current or voltage rated components than lower power resonators.
A wireless energy transfer system may comprise a single source resonator 104 coupled to an energy source 102 and a single device resonator 106 coupled to an energy drain 110. In embodiments a wireless energy transfer system may comprise multiple source resonators coupled to one or more energy sources and may comprise multiple device resonators coupled to one or more energy drains.
In embodiments the energy may be transferred directly between a source resonator 104 and a device resonator 106. In other embodiments the energy may be transferred from one or more source resonators 104, 112 to one or more device resonators 106, 116 via any number of intermediate resonators which may be device resonators, source resonators, repeater resonators, and the like. Energy may be transferred via a network or arrangement of resonators 114 that may include subnetworks 118, 120 arranged in any combination of topologies such as token ring, mesh, ad hoc, and the like.
In embodiments the wireless energy transfer system may comprise a centralized sensing and control system 108. In embodiments parameters of the resonators, energy sources, energy drains, network topologies, operating parameters, etc. may be monitored and adjusted from a control processor to meet specific operating parameters of the system. A central control processor may adjust parameters of individual components of the system to optimize global energy transfer efficiency, to optimize the amount of power transferred, and the like. Other embodiments may be designed to have a substantially distributed sensing and control system. Sensing and control may be incorporated into each resonator or group of resonators, energy sources, energy drains, and the like and may be configured to adjust the parameters of the individual components in the group to maximize or minimize the power delivered, to maximize energy transfer efficiency in that group and the like.
In embodiments, components of the wireless energy transfer system may have wireless or wired data communication links to other components such as devices, sources, repeaters, power sources, resonators, and the like and may transmit or receive data that can be used to enable the distributed or centralized sensing and control. A wireless communication channel may be separate from the wireless energy transfer channel, or it may be the same. In one embodiment the resonators used for power exchange may also be used to exchange information. In some cases, information may be exchanged by modulating a component in a source or device circuit and sensing that change with port parameter or other monitoring equipment. Resonators may signal each other by tuning, changing, varying, dithering, and the like, the resonator parameters such as the impedance of the resonators which may affect the reflected impedance of other resonators in the system. The systems and methods described herein may enable the simultaneous transmission of power and communication signals between resonators in wireless power transmission systems, or it may enable the transmission of power and communication signals during different time periods or at different frequencies using the same magnetic fields that are used during the wireless energy transfer. In other embodiments wireless communication may be enabled with a separate wireless communication channel such as WiFi, Bluetooth, Infrared, NFC, and the like.
In embodiments, a wireless energy transfer system may include multiple resonators and overall system performance may be improved by control of various elements in the system. For example, devices with lower power requirements may tune their resonant frequency away from the resonant frequency of a high-power source that supplies power to devices with higher power requirements. For another example, devices needing less power may adjust their rectifier circuits so that they draw less power from the source. In these ways, low and high power devices may safely operate or charge from a single high power source. In addition, multiple devices in a charging zone may find the power available to them regulated according to any of a variety of consumption control algorithms such as First-Come-First-Serve, Best Effort, Guaranteed Power, etc. The power consumption algorithms may be hierarchical in nature, giving priority to certain users or types of devices, or it may support any number of users by equally sharing the power that is available in the source. Power may be shared by any of the multiplexing techniques described in this disclosure.
In embodiments electromagnetic resonators may be realized or implemented using a combination of shapes, structures, and configurations. Electromagnetic resonators may include an inductive element, a distributed inductance, or a combination of inductances with a total inductance, L, and a capacitive element, a distributed capacitance, or a combination of capacitances, with a total capacitance, C. A minimal circuit model of an electromagnetic resonator comprising capacitance, inductance and resistance, is shown in
For example, the inductor 202 may be realized by shaping a conductor to enclose a surface area, as shown in
There are a variety of ways to realize the capacitance required to achieve the desired resonant frequency for a resonator structure. Capacitor plates 204 may be formed and utilized as shown in
The inductive elements used in magnetic resonators may contain more than one loop and may spiral inward or outward or up or down or in some combination of directions. In general, the magnetic resonators may have a variety of shapes, sizes and number of turns and they may be composed of a variety of conducing materials. The conductor 210, for example, may be a wire, a Litz wire, a ribbon, a pipe, a trace formed from conducting ink, paint, gels, and the like or from single or multiple traces printed on a circuit board. An exemplary embodiment of a trace pattern on a substrate 208 forming inductive loops is depicted in
In embodiments the inductive elements may be formed using magnetic materials of any size, shape thickness, and the like, and of materials with a wide range of permeability and loss values. These magnetic materials may be solid blocks, they may enclose hollow volumes, they may be formed from many smaller pieces of magnetic material tiled and or stacked together, and they may be integrated with conducting sheets or enclosures made from highly conducting materials. Conductors may be wrapped around the magnetic materials to generate the magnetic field. These conductors may be wrapped around one or more than one axis of the structure. Multiple conductors may be wrapped around the magnetic materials and combined in parallel, or in series, or via a switch to form customized near-field patterns and/or to orient the dipole moment of the structure. Examples of resonators comprising magnetic material are depicted in
An electromagnetic resonator may have a characteristic, natural, or resonant frequency determined by its physical properties. This resonant frequency is the frequency at which the energy stored by the resonator oscillates between that stored by the electric field, WE, (WE=q2/2C, where q is the charge on the capacitor, C) and that stored by the magnetic field, WB, (WB=Li2/2, where i is the current through the inductor, L) of the resonator. The frequency at which this energy is exchanged may be called the characteristic frequency, the natural frequency, or the resonant frequency of the resonator, and is given by ω,
The resonant frequency of the resonator may be changed by tuning the inductance, L, and/or the capacitance, C, of the resonator. In one embodiment system parameters are dynamically adjustable or tunable to achieve as close as possible to optimal operating conditions. However, based on the discussion above, efficient enough energy exchange may be realized even if some system parameters are not variable or components are not capable of dynamic adjustment.
In embodiments a resonator may comprise an inductive element coupled to more than one capacitor arranged in a network of capacitors and circuit elements. In embodiments the coupled network of capacitors and circuit elements may be used to define more than one resonant frequency of the resonator. In embodiments a resonator may be resonant, or partially resonant, at more than one frequency.
In embodiments, a wireless power source may comprise of at least one resonator coil coupled to a power supply, which may be a switching amplifier, such as a class-D amplifier or a class-E amplifier or a combination thereof. In this case, the resonator coil is effectively a power load to the power supply. In embodiments, a wireless power device may comprise of at least one resonator coil coupled to a power load, which may be a switching rectifier, such as a class-D rectifier or a class-E rectifier or a combination thereof. In this case, the resonator coil is effectively a power supply for the power load, and the impedance of the load directly relates also to the work-drainage rate of the load from the resonator coil. The efficiency of power transmission between a power supply and a power load may be impacted by how closely matched the output impedance of the power source is to the input impedance of the load. Power may be delivered to the load at a maximum possible efficiency, when the input impedance of the load is equal to the complex conjugate of the internal impedance of the power supply. Designing the power supply or power load impedance to obtain a maximum power transmission efficiency is often called “impedance matching”, and may also referred to as optimizing the ratio of useful-to-lost powers in the system. Impedance matching may be performed by adding networks or sets of elements such as capacitors, inductors, transformers, switches, resistors, and the like, to form impedance matching networks between a power supply and a power load. In embodiments, mechanical adjustments and changes in element positioning may be used to achieve impedance matching. For varying loads, the impedance matching network may include variable components that are dynamically adjusted to ensure that the impedance at the power supply terminals looking towards the load and the characteristic impedance of the power supply remain substantially complex conjugates of each other, even in dynamic environments and operating scenarios.
In embodiments, impedance matching may be accomplished by tuning the duty cycle, and/or the phase, and/or the frequency of the driving signal of the power supply or by tuning a physical component within the power supply, such as a capacitor. Such a tuning mechanism may be advantageous because it may allow impedance matching between a power supply and a load without the use of a tunable impedance matching network, or with a simplified tunable impedance matching network, such as one that has fewer tunable components for example. In embodiments, tuning the duty cycle, and/or frequency, and/or phase of the driving signal to a power supply may yield a dynamic impedance matching system with an extended tuning range or precision, with higher power, voltage and/or current capabilities, with faster electronic control, with fewer external components, and the like.
In some wireless energy transfer systems the parameters of the resonator such as the inductance may be affected by environmental conditions such as surrounding objects, temperature, orientation, number and position of other resonators and the like. Changes in operating parameters of the resonators may change certain system parameters, such as the efficiency of transferred power in the wireless energy transfer. For example, high-conductivity materials located near a resonator may shift the resonant frequency of a resonator and detune it from other resonant objects. In some embodiments, a resonator feedback mechanism is employed that corrects its frequency by changing a reactive element (e.g., an inductive element or capacitive element). In order to achieve acceptable matching conditions, at least some of the system parameters may need to be dynamically adjustable or tunable. All the system parameters may be dynamically adjustable or tunable to achieve approximately the optimal operating conditions. However, efficient enough energy exchange may be realized even if all or some system parameters are not variable. In some examples, at least some of the devices may not be dynamically adjusted. In some examples, at least some of the sources may not be dynamically adjusted. In some examples, at least some of the intermediate resonators may not be dynamically adjusted. In some examples, none of the system parameters may be dynamically adjusted.
In some embodiments changes in parameters of components may be mitigated by selecting components with characteristics that change in a complimentary or opposite way or direction when subjected to differences in operating environment or operating point. In embodiments, a system may be designed with components, such as capacitors, that have an opposite dependence or parameter fluctuation due to temperature, power levels, frequency, and the like. In some embodiments, the component values as a function of temperature may be stored in a look-up table in a system microcontroller and the reading from a temperature sensor may be used in the system control feedback loop to adjust other parameters to compensate for the temperature induced component value changes.
In some embodiments the changes in parameter values of components may be compensated with active tuning circuits comprising tunable components. Circuits that monitor the operating environment and operating point of components and system may be integrated in the design. The monitoring circuits may provide the signals necessary to actively compensate for changes in parameters of components. For example, a temperature reading may be used to calculate expected changes in, or to indicate previously measured values of, capacitance of the system allowing compensation by switching in other capacitors or tuning capacitors to maintain the desired capacitance over a range of temperatures. In embodiments, the RF amplifier switching waveforms may be adjusted to compensate for component value or load changes in the system. In some embodiments the changes in parameters of components may be compensated with active cooling, heating, active environment conditioning, and the like.
The parameter measurement circuitry may measure or monitor certain power, voltage, and current, signals in the system, and processors or control circuits may adjust certain settings or operating parameters based on those measurements. In addition the magnitude and phase of voltage and current signals, and the magnitude of the power signals, throughout the system may be accessed to measure or monitor the system performance. The measured signals referred to throughout this disclosure may be any combination of port parameter signals, as well as voltage signals, current signals, power signals, temperatures signals and the like. These parameters may be measured using analog or digital techniques, they may be sampled and processed, and they may be digitized or converted using a number of known analog and digital processing techniques. In embodiments, preset values of certain measured quantities are loaded in a system controller or memory location and used in various feedback and control loops. In embodiments, any combination of measured, monitored, and/or preset signals may be used in feedback circuits or systems to control the operation of the resonators and/or the system.
Adjustment algorithms may be used to adjust the frequency, Q, and/or impedance of the magnetic resonators. The algorithms may take as inputs reference signals related to the degree of deviation from a desired operating point for the system and may output correction or control signals related to that deviation that control variable or tunable elements of the system to bring the system back towards the desired operating point or points. The reference signals for the magnetic resonators may be acquired while the resonators are exchanging power in a wireless power transmission system, or they may be switched out of the circuit during system operation. Corrections to the system may be applied or performed continuously, periodically, upon a threshold crossing, digitally, using analog methods, and the like.
In embodiments, lossy extraneous materials and objects may introduce potential reductions in efficiencies by absorbing the magnetic and/or electric energy of the resonators of the wireless power transmission system. Those impacts may be mitigated in various embodiments by positioning resonators to minimize the effects of the lossy extraneous materials and objects and by placing structural field shaping elements (e.g., conductive structures, plates and sheets, magnetic material structures, plates and sheets, and combinations thereof) to minimize their effect.
One way to reduce the impact of lossy materials on a resonator is to use high-conductivity materials, magnetic materials, or combinations thereof to shape the resonator fields such that they avoid the lossy objects. In an exemplary embodiment, a layered structure of high-conductivity material and magnetic material may tailor, shape, direct, reorient, etc. the resonator'"'"'s electromagnetic fields so that they avoid lossy objects in their vicinity by deflecting the fields.
In environments and systems where the amount of power being transmitted could present a safety hazard to a person or animal that may intrude into the active field volume, safety measures may be included in the system. In embodiments where power levels require particularized safety measures, the packaging, structure, materials, and the like of the resonators may be designed to provide a spacing or “keep away” zone from the conducting loops in the magnetic resonator. To provide further protection, high-Q resonators and power and control circuitry may be located in enclosures that confine high voltages or currents to within the enclosure, that protect the resonators and electrical components from weather, moisture, sand, dust, and other external elements, as well as from impacts, vibrations, scrapes, explosions, and other types of mechanical shock. Such enclosures call for attention to various factors such as thermal dissipation to maintain an acceptable operating temperature range for the electrical components and the resonator. In embodiments, enclosure may be constructed of non-lossy materials such as composites, plastics, wood, concrete, and the like and may be used to provide a minimum distance from lossy objects to the resonator components. A minimum separation distance from lossy objects or environments which may include metal objects, salt water, oil and the like, may improve the efficiency of wireless energy transfer. In embodiments, a “keep away” zone may be used to increase the perturbed Q of a resonator or system of resonators. In embodiments a minimum separation distance may provide for a more reliable or more constant operating parameters of the resonators.
In embodiments, resonators and their respective sensor and control circuitry may have various levels of integration with other electronic and control systems and subsystems. In some embodiments the power and control circuitry and the device resonators are completely separate modules or enclosures with minimal integration to existing systems, providing a power output and a control and diagnostics interface. In some embodiments a device is configured to house a resonator and circuit assembly in a cavity inside the enclosure, or integrated into the housing or enclosure of the device.
Example Resonator Circuitry
The half bridge system topology depicted in
The system may comprise an optional source/device and/or source/other resonator communication controller 332 coupled to wireless communication circuitry 312. The optional source/device and/or source/other resonator communication controller 332 may be part of the same processing unit that executes the master control algorithm, it may a part or a circuit within a microcontroller 302, it may be external to the wireless power transmission modules, it may be substantially similar to communication controllers used in wire powered or battery powered applications but adapted to include some new or different functionality to enhance or support wireless power transmission.
The system may comprise a PWM generator 306 coupled to at least two transistor gate drivers 334 and may be controlled by the control algorithm. The two transistor gate drivers 334 may be coupled directly or via gate drive transformers to two power transistors 336 that drive the source resonator coil 344 through impedance matching network components 342. The power transistors 336 may be coupled and powered with an adjustable DC supply 304 and the adjustable DC supply 304 may be controlled by a variable bus voltage, Vbus. The Vbus controller may be controlled by the control algorithm 328 and may be part of, or integrated into, a microcontroller 302 or other integrated circuits. The Vbus controller 326 may control the voltage output of an adjustable DC supply 304 which may be used to control power output of the amplifier and power delivered to the resonator coil 344.
The system may comprise sensing and measurement circuitry including signal filtering and buffering circuits 318, 320 that may shape, modify, filter, process, buffer, and the like, signals prior to their input to processors and/or converters such as analog to digital converters (ADC) 314, 316, for example. The processors and converters such as ADCs 314, 316 may be integrated into a microcontroller 302 or may be separate circuits that may be coupled to a processing core 330. Based on measured signals, the control algorithm 328 may generate, limit, initiate, extinguish, control, adjust, or modify the operation of any of the PWM generator 306, the communication controller 332, the Vbus control 326, the source impedance matching controller 338, the filter/buffering elements, 318, 320, the converters, 314, 316, the resonator coil 344, and may be part of, or integrated into, a microcontroller 302 or a separate circuit. The impedance matching networks 342 and resonator coils 344 may include electrically controllable, variable, or tunable components such as capacitors, switches, inductors, and the like, as described herein, and these components may have their component values or operating points adjusted according to signals received from the source impedance matching controller 338. Components may be tuned to adjust the operation and characteristics of the resonator including the power delivered to and by the resonator, the resonant frequency of the resonator, the impedance of the resonator, the Q of the resonator, and any other coupled systems, and the like. The resonator may be any type or structure resonator described herein including a capacitively loaded loop resonator, a planer resonator comprising a magnetic material or any combination thereof.
The full bridge system topology depicted in
The system may comprise a PWM generator 410 with at least two outputs coupled to at least four transistor gate drivers 334 that may be controlled by signals generated in a master control algorithm. The four transistor gate drivers 334 may be coupled to four power transistors 336 directly or via gate drive transformers that may drive the source resonator coil 344 through impedance matching networks 342. The power transistors 336 may be coupled and powered with an adjustable DC supply 304 and the adjustable DC supply 304 may be controlled by a Vbus controller 326 which may be controlled by a master control algorithm. The Vbus controller 326 may control the voltage output of the adjustable DC supply 304 which may be used to control power output of the amplifier and power delivered to the resonator coil 344.
The system may comprise sensing and measurement circuitry including signal filtering and buffering circuits 318, 320 and differential/single ended conversion circuitry 402, 404 that may shape, modify, filter, process, buffer, and the like, signals prior to being input to processors and/or converters such as analog to digital converters (ADC) 314, 316. The processors and/or converters such as ADC 314, 316 may be integrated into a microcontroller 302 or may be separate circuits that may be coupled to a processing core 330. Based on measured signals, the master control algorithm may generate, limit, initiate, extinguish, control, adjust, or modify the operation of any of the PWM generator 410, the communication controller 332, the Vbus controller 326, the source impedance matching controller 338, the filter/buffering elements, 318, 320, differential/single ended conversion circuitry 402, 404, the converters, 314, 316, the resonator coil 344, and may be part of or integrated into a microcontroller 302 or a separate circuit.
Impedance matching networks 342 and resonator coils 344 may comprise electrically controllable, variable, or tunable components such as capacitors, switches, inductors, and the like, as described herein, and these components may have their component values or operating points adjusted according to signals received from the source impedance matching controller 338. Components may be tuned to enable tuning of the operation and characteristics of the resonator including the power delivered to and by the resonator, the resonant frequency of the resonator, the impedance of the resonator, the Q of the resonator, and any other coupled systems, and the like. The resonator may be any type or structure resonator described herein including a capacitively loaded loop resonator, a planar resonator comprising a magnetic material or any combination thereof.
Impedance matching networks may comprise fixed value components such as capacitors, inductors, and networks of components as described herein. Parts of the impedance matching networks, A, B and C, may comprise inductors, capacitors, transformers, and series and parallel combinations of such components, as described herein. In some embodiments, parts of the impedance matching networks A, B, and C, may be empty (short-circuited). In some embodiments, part B comprises a series combination of an inductor and a capacitor, and part C is empty.
The full bridge topology may allow operation at higher output power levels using the same DC bus voltage as an equivalent half bridge amplifier. The half bridge exemplary topology of
The exemplary systems depicted in
As described herein, sources in wireless power transfer systems may use a measurement of the input impedance of the impedance matching network 342 driving source resonator coil 344 as an error or control signal for a system control loop that may be part of the master control algorithm. In exemplary embodiments, variations in any combination of three parameters may be used to tune the wireless power source to compensate for changes in environmental conditions, for changes in coupling, for changes in device power demand, for changes in module, circuit, component or subsystem performance, for an increase or decrease in the number or sources, devices, or repeaters in the system, for user initiated changes, and the like. In exemplary embodiments, changes to the amplifier duty cycle, to the component values of the variable electrical components such as variable capacitors and inductors, and to the DC bus voltage may be used to change the operating point or operating range of the wireless source and improve some system operating value. The specifics of the control algorithms employed for different applications may vary depending on the desired system performance and behavior.
Impedance measurement circuitry such as described herein, and shown in
The impedance measurements described herein may use direct sampling methods which may be relatively simpler than some other known sampling methods. In embodiments, measured voltage and current signals may be conditioned, filtered and scaled by filtering/buffering circuitry before being input to ADCs. In embodiments, the filter/buffering circuitry may be adjustable to work at a variety of signal levels and frequencies, and circuit parameters such as filter shapes and widths may be adjusted manually, electronically, automatically, in response to a control signal, by the master control algorithm, and the like. Exemplary embodiments of filter/buffering circuits are shown in
In both the single ended and differential amplifier topologies, the input current to the impedance matching networks 342 driving the resonator coils 344 may be obtained by measuring the voltage across a capacitor 324, or via a current sensor of some type. For the exemplary single-ended amplifier topology in
In both topologies, after single ended signals representing the input voltage and current to the source resonator and impedance matching network are obtained, the signals may be filtered 502 to obtain the desired portions of the signal waveforms. In embodiments, the signals may be filtered to obtain the fundamental component of the signals. In embodiments, the type of filtering performed, such as low pass, bandpass, notch, and the like, as well as the filter topology used, such as elliptical, Chebyshev, Butterworth, and the like, may depend on the specific requirements of the system. In some embodiments, no filtering will be required.
The voltage and current signals may be amplified by an optional amplifier 504. The gain of the optional amplifier 504 may be fixed or variable. The gain of the amplifier may be controlled manually, electronically, automatically, in response to a control signal, and the like. The gain of the amplifier may be adjusted in a feedback loop, in response to a control algorithm, by the master control algorithm, and the like. In embodiments, required performance specifications for the amplifier may depend on signal strength and desired measurement accuracy, and may be different for different application scenarios and control algorithms.
The measured analog signals may have a DC offset added to them, 506, which may be required to bring the signals into the input voltage range of the ADC which for some systems may be 0 to 3.3V. In some systems this stage may not be required, depending on the specifications of the particular ADC used.
As described above, the efficiency of power transmission between a power generator and a power load may be impacted by how closely matched the output impedance of the generator is to the input impedance of the load. In an exemplary system as shown in
Efficiency of Switching Amplifiers
Switching amplifiers, such as class D, E, F amplifiers, and the like or any combinations thereof, deliver power to a load at a maximum efficiency when almost no power is dissipated on the switching elements of the amplifier. This operating condition may be accomplished by designing the system so that the switching operations which are most critical (namely those that are most likely to lead to switching losses) are done when either or both of the voltage across the switching element and the current through the switching element are nearly zero. These conditions may be referred to as Zero Voltage Switching (ZVS) and Zero Current Switching (ZCS) conditions respectively. When an amplifier operates at ZVS and/or ZCS either the voltage across the switching element or the current through the switching element is zero and thus no power can be dissipated in the switch. Since a switching amplifier may convert DC (or very low frequency AC) power to AC power at a specific frequency or range of frequencies, a filter may be introduced before the load to prevent unwanted harmonics that may be generated by the switching process from reaching the load and being dissipated there. In embodiments, a switching amplifier may be designed to operate at maximum efficiency of power conversion, when connected to a resonant load, with a quality factor (say Q>5), and of a specific impedance Zo*=Ro+jXo, which leads to simultaneous ZVS and ZCS. We define Zo=Ro−jXo as the characteristic impedance of the amplifier, so that achieving maximum power transmission efficiency is equivalent to impedance matching the resonant load to the characteristic impedance of the amplifier.
In a switching amplifier, the switching frequency of the switching elements, fswitch, wherein fswitch=ω/2π and the duty cycle, dc, of the ON switch-state duration of the switching elements may be the same for all switching elements of the amplifier. In this specification, we will use the term “class D” to denote both class D and class DE amplifiers, that is, switching amplifiers with dc<=50%.
The value of the characteristic impedance of the amplifier may depend on the operating frequency, the amplifier topology, and the switching sequence of the switching elements. In some embodiments, the switching amplifier may be a half-bridge topology and, in some embodiments, a full-bridge topology. In some embodiments, the switching amplifier may be class D and, in some embodiments, class E. In any of the above embodiments, assuming the elements of the bridge are symmetric, the characteristic impedance of the switching amplifier has the form
Ro=FR(dc)/ωCa,Xo=FX(dc)/ωCa, (1)
where dc is the duty cycle of ON switch-state of the switching elements, the functions FR (dc) and FX(dc) are plotted in
FR(dc)=sin2u/π,FX(dc)=(u−sin u*cos u)/π, (2)
where u=π(1−2*dc), indicating that the characteristic impedance level of a class D amplifier decreases as the duty cycle, dc, increases towards 50%. For a class D amplifier operation with dc=50%, achieving ZVS and ZCS is possible only when the switching elements have practically no output capacitance (Ca=0) and the load is exactly on resonance (Xo=0), while Ro can be arbitrary.
Impedance Matching Networks
In applications, the driven load may have impedance that is very different from the characteristic impedance of the external driving circuit, to which it is connected. Furthermore, the driven load may not be a resonant network. An Impedance Matching Network (IMN) is a circuit network that may be connected before a load as in
For an arrangement shown in
Methods for Tunable Impedance Matching of a Variable Load
In embodiments where the load may be variable, impedance matching between the load and the external driving circuit, such as a linear or switching power amplifier, may be achieved by using adjustable/tunable components in the IMN circuit that may be adjusted to match the varying load to the fixed characteristic impedance Zo of the external circuit (
In embodiments, the load may be inductive (such as a resonator coil) with impedance R+jωL, so the two tunable elements in the IMN circuit may be two tunable capacitance networks or one tunable capacitance network and one tunable inductance network or one tunable capacitance network and one tunable mutual inductance network.
In embodiments where the load may be variable, the impedance matching between the load and the driving circuit, such as a linear or switching power amplifier, may be achieved by using adjustable/tunable components or parameters in the amplifier circuit that may be adjusted to match the characteristic impedance Zo of the amplifier to the varying (due to load variations) input impedance of the network consisting of the IMN circuit and the load (IMN+load), where the IMN circuit may also be tunable (
In embodiments, the tunable elements or parameters in the power amplifier may be the frequency, amplitude, phase, waveform, duty cycle and the like of the drive signals applied to transistors, switches, diodes and the like.
In embodiments, the power amplifier with tunable characteristic impedance may be a tunable switching amplifier of class D, E, F or any combinations thereof. Combining Equations (1) and (2), the impedance matching conditions for this network are
R1(ω)=FR(dc)/ωCa,Xl(ω)=FX(dc)/ωCc, (3).
In some examples of a tunable switching amplifier, one tunable element may be the capacitance Ca, which may be tuned by tuning the external capacitors placed in parallel with the switching elements.
In some examples of a tunable switching amplifier, one tunable element may be the duty cycle dc of the ON switch-state of the switching elements of the amplifier. Adjusting the duty cycle, dc, via Pulse Width Modulation (PWM) has been used in switching amplifiers to achieve output power control. In this specification, we disclose that PWM may also be used to achieve impedance matching, namely to satisfy Eqs. (3), and thus maximize the amplifier efficiency.
In some examples of a tunable switching amplifier one tunable element may be the switching frequency, which is also the driving frequency of the IMN+load network and may be designed to be substantially close to the resonant frequency of the IMN+load network. Tuning the switching frequency may change the characteristic impedance of the amplifier and the impedance of the IMN+load network. The switching frequency of the amplifier may be tuned appropriately together with one more tunable parameters, so that Eqs. (3) are satisfied.
A benefit of tuning the duty cycle and/or the driving frequency of the amplifier for dynamic impedance matching is that these parameters can be tuned electronically, quickly, and over a broad range. In contrast, for example, a tunable capacitor that can sustain a large voltage and has a large enough tunable range and quality factor may be expensive, slow or unavailable for with the necessary component specifications
Examples of Methods for Tunable Impedance Matching of a Variable Load
A simplified circuit diagram showing the circuit level structure of a class D power amplifier 802, impedance matching network 804 and an inductive load 806 is shown in
An exemplary embodiment of this inventive tuning scheme comprises a half-bridge class-D amplifier operating at switching frequency f and driving a low-loss inductive element R+jωL via an IMN, as shown in
In some embodiments L′ may be tunable. L′ may be tuned by a variable tapping point on the inductor or by connecting a tunable capacitor in series or in parallel to the inductor. In some embodiments Ca may be tunable. For the half bridge topology, Ca may be tuned by varying either one or both capacitors Cswitc┘, as only the parallel sum of these capacitors matters for the amplifier operation. For the full bridge topology, Ca may be tuned by varying either one, two, three or all capacitors Cswitc┘, as only their combination (series sum of the two parallel sums associated with the two halves of the bridge) matters for the amplifier operation.
In some embodiments of tunable impedance matching, two of the components of the IMN may be tunable. In some embodiments, L′ and C2 may be tuned. Then,
In some embodiments of tunable impedance matching, elements in the switching amplifier may also be tunable. In some embodiments the capacitance Ca along with the IMN capacitor C2 may be tuned. Then,
In some embodiments of tunable impedance matching, the duty cycle dc along with the IMN capacitor C2 may be tuned. Then,
In some embodiments of tunable impedance matching, the capacitance Ca along with the IMN inductor L′ may be tuned. Then,
In some embodiments of tunable impedance matching, the duty cycle dc along with the IMN inductor L′ may be tuned. Then,
In some embodiments of tunable impedance matching, only elements in the switching amplifier may be tunable with no tunable elements in the IMN. In some embodiments the duty cycle dc along with the capacitance Ca may be tuned. Then,
In some embodiments, dynamic impedance matching with fixed elements inside the IMN, also when L is varying greatly as explained earlier, may be achieved by varying the driving frequency of the external frequency f (e.g. the switching frequency of a switching amplifier) so that it follows the varying resonant frequency of the resonator. Using the switching frequency f and the switch duty cycle dc as the two variable parameters, full impedance matching can be achieved as R and L are varying without the need of any variable components. Then,
Tunable Impedance Matching for Systems of Wireless Power Transmission
In applications of wireless power transfer the low-loss inductive element may be the coil of a source resonator coupled to one or more device resonators or other resonators, such as repeater resonators, for example. The impedance of the inductive element R+jωL may include the reflected impedances of the other resonators on the coil of the source resonator. Variations of R and L of the inductive element may occur due to external perturbations in the vicinity of the source resonator and/or the other resonators or thermal drift of components. Variations of R and L of the inductive element may also occur during normal use of the wireless power transmission system due to relative motion of the devices and other resonators with respect to the source. The relative motion of these devices and other resonators with respect to the source, or relative motion or position of other sources, may lead to varying coupling (and thus varying reflected impedances) of the devices to the source. Furthermore, variations of R and L of the inductive element may also occur during normal use of the wireless power transmission system due to changes within the other coupled resonators, such as changes in the power draw of their loads. All the methods and embodiments disclosed so far apply also to this case in order to achieve dynamic impedance matching of this inductive element to the external circuit driving it.
To demonstrate the presently disclosed dynamic impedance matching methods for a wireless power transmission system, consider a source resonator including a low-loss source coil, which is inductively coupled to the device coil of a device resonator driving a resistive load.
In some embodiments, dynamic impedance matching may be achieved at the source circuit. In some embodiments, dynamic impedance matching may also be achieved at the device circuit. When full impedance matching is obtained (both at the source and the device), the effective resistance of the source inductive element (namely the resistance of the source coil Rs plus the reflected impedance from the device) is R=Rs√{square root over (1+Usd2)}. (Similarly the effective resistance of the device inductive element is R=Rd√{square root over (1+Usd2)}, where Rd is the resistance of the device coil.) Dynamic variation of the mutual inductance between the coils due to motion results in a dynamic variation of Usd=ωMsd/√{square root over (RsRd)}. Therefore, when both source and device are dynamically tuned, the variation of mutual inductance is seen from the source circuit side as a variation in the source inductive element resistance R. Note that in this type of variation, the resonant frequencies of the resonators may not change substantially, since L may not be changing. Therefore, all the methods and examples presented for dynamic impedance matching may be used for the source circuit of the wireless power transmission system.
Note that, since the resistance R represents both the source coil and the reflected impedances of the device coils to the source coil, in
In the examples of
In some embodiments, dynamic impedance matching may be achieved at the source circuit, but impedance matching may not be achieved or may only partially be achieved at the device circuit. As the mutual inductance between the source and device coils varies, the varying reflected impedance of the device to the source may result in a variation of both the effective resistance R and the effective inductance L of the source inductive element. The methods presented so far for dynamic impedance matching are applicable and can be used for the tunable source circuit of the wireless power transmission system.
As an example, consider the circuit of
In some embodiments, tuning the driving frequency f of the source driving circuit may still be used to achieve dynamic impedance matching at the source for a system of wireless power transmission between the source and one or more devices. As explained earlier, this method enables full dynamic impedance matching of the source, even when there are variations in the source inductance Ls and thus the source resonant frequency. For efficient power transmission from the source to the devices, the device resonant frequencies must be tuned to follow the variations of the matched driving and source-resonant frequencies. Tuning a device capacitance (for example, in the embodiment of
Resonator Thermal Management
In wireless energy transfer systems, some portion of the energy lost during the wireless transfer process is dissipated as heat. Energy may be dissipated in the resonator components themselves. For example, even high-Q conductors and components have some loss or resistance, and these conductors and components may heat up when electric currents and/or electromagnetic fields flow through them. Energy may be dissipated in materials and objects around a resonator. For example, eddy currents dissipated in imperfect conductors or dielectrics surrounding or near-by the resonator may heat up those objects. In addition to affecting the material properties of those objects, this heat may be transferred through conductive, radiative, or convective processes to the resonator components. Any of these heating effects may affect the resonator Q, impedance, frequency, etc., and therefore the performance of the wireless energy transfer system.
In a resonator comprising a block or core of magnetic material, heat may be generated in the magnetic material due to hysteresis losses and to resistive losses resulting from induced eddy currents. Both effects depend on the magnetic flux density in the material, and both can create significant amounts of heat, especially in regions where the flux density or eddy currents may be concentrated or localized. In addition to the flux density, the frequency of the oscillating magnetic field, the magnetic material composition and losses, and the ambient or operating temperature of the magnetic material may all impact how hysteresis and resistive losses heat the material.
In embodiments, the properties of the magnetic material such as the type of material, the dimensions of the block, and the like, and the magnetic field parameters may be chosen for specific operating power levels and environments to minimize heating of the magnetic material. In some embodiments, changes, cracks, or imperfections in a block of magnetic material may increase the losses and heating of the magnetic material in wireless power transmission applications.
For magnetic blocks with imperfections, or that are comprised of smaller size tiles or pieces of magnetic material arranged into a larger unit, the losses in the block may be uneven and may be concentrated in regions where there are inhomogeneities or relatively narrow gaps between adjacent tiles or pieces of magnetic material. For example, if an irregular gap exists in a magnetic block of material, then the effective reluctance of various magnetic flux paths through the material may be substantially irregular and the magnetic field may be more concentrated in portions of the block where the magnetic reluctance is lowest. In some cases, the effective reluctance may be lowest where the gap between tiles or pieces is narrowest or where the density of imperfections is lowest. Because the magnetic material guides the magnetic field, the magnetic flux density may not be substantially uniform across the block, but may be concentrated in regions offering relatively lower reluctance. Irregular concentrations of the magnetic field within a block of magnetic material may not be desirable because they may result in uneven losses and heat dissipation in the material.
For example, consider a magnetic resonator comprising a conductor 1506 wrapped around a block of magnetic material composed of two individual tiles 1502, 1504 of magnetic material joined such that they form a seam 1508 that is perpendicular to the axis of the conductor 1506 loops as depicted in
In many magnetic materials of interest, more inhomogeneous flux density distributions lead to higher overall losses. Moreover, the more inhomogeneous flux distribution may result in material saturation and cause localized heating of the area in which the magnetic flux is concentrated. The localized heating may alter the properties of the magnetic material, in some cases exacerbating the losses. For example, in the relevant regimes of operation of some materials, hysteresis and resistive losses increase with temperature. If heating the material increases material losses, resulting in more heating, the temperature of the material may continue to increase and even runaway if no corrective action is taken. In some instances, the temperature may reach 100 C or more and may degrade the properties of the magnetic material and the performance of wireless power transfer. In some instances, the magnetic materials may be damaged, or the surrounding electronic components, packaging and/or enclosures may be damaged by the excessive heat.
In embodiments, variations or irregularities between tiles or pieces of the block of magnetic material may be minimized by machining, polishing, grinding, and the like, the edges of the tiles or pieces to ensure a tight fit between tiles of magnetic materials providing a substantially more uniform reluctance through the whole cross section of the block of magnetic material. In embodiments, a block of magnetic material may require a means for providing a compression force between the tiles to ensure the tiles are pressed tight together without gaps. In embodiments, an adhesive may be used between the tiles to ensure they remain in tight contact.
In embodiments the irregular spacing of adjacent tiles of magnetic material may be reduced by adding a deliberate gap between adjacent tiles of magnetic material. In embodiments a deliberate gap may be used as a spacer to ensure even or regular separations between magnetic material tiles or pieces. Deliberate gaps of flexible materials may also reduce irregularities in the spacings due to tile movement or vibrations. In embodiments, the edges of adjacent tiles of magnetic material may be taped, dipped, coated, and the like with an electrical insulator, to prevent eddy currents from flowing through reduced cross-sectional areas of the block, thus lowering the eddy current losses in the material. In embodiments a separator may be integrated into the resonator packaging. The spacer may provide a spacing of 1 mm or less.
In embodiments, the mechanical properties of the spacer between tiles may be chosen so as to improve the tolerance of the overall structure to mechanical effects such as changes in the dimensions and/or shape of the tiles due to intrinsic effects (e.g., magnetostriction, thermal expansion, and the like) as well as external shocks and vibrations. For example, the spacer may have a desired amount of mechanical give to accommodate the expansion and/or contraction of individual tiles, and may help reduce the stress on the tiles when they are subjected to mechanical vibrations, thus helping to reduce the appearance of cracks and other defects in the magnetic material.
In embodiments, it may be preferable to arrange the individual tiles that comprise the block of magnetic material to minimize the number of seams or gaps between tiles that are perpendicular to the dipole moment of the resonator. In embodiments it may be preferable to arrange and orient the tiles of magnetic material to minimize the gaps between tiles that are perpendicular to the axis formed by the loops of a conductor comprising the resonator.
For example, consider the resonator structure depicted in
In embodiments, irregularities in spacing may be tolerated with adequate cooling of the critical seam areas to prevent the localized degradation of material properties when the magnetic material heats up. Maintaining the temperature of the magnetic material below a critical temperature may prevent a runaway effect caused by a sufficiently high temperature. With proper cooling of the critical seam area, the wireless energy transfer performance may be satisfactory despite the additional loss and heating effects due to irregular spacing, cracks, or gaps between tiles.
Effective heatsinking of the resonator structure to prevent excessive localized heating of the magnetic material poses several challenges. Metallic materials that are typically used for heatsinks and thermal conduction can interact with the magnetic fields used for wireless energy transfer by the resonators and affect the performance of the system. Their location, size, orientation, and use should be designed so as to not excessively lower t