SYMMETRIC FILTER PATTERNS FOR ENHANCED PERFORMANCE OF SINGLE AND CONCURRENT DRIVER ASSISTANCE APPLICATIONS
First Claim
1. A system mounted on a vehicle for performing vehicle control applications and driver assisting applications comprising a camera configured to acquire a plurality of images of the environment in front of the camera, the camera further comprises a filter wherein said filter is installed at the focal plane of said camera and wherein designated portions of said filter transmit predetermined light wavelength and wherein all of said filter portions transmitting a substantially different light wavelength have substantially symmetric in size, resolution and in spatial distribution, the system further comprising an image processor capable of analyzing in real time a plurality of image sequences acquired from at least one of said portions of said filter.
1 Assignment
0 Petitions

Accused Products

Abstract
A system mounted on a vehicle for performing vehicle control applications and driver warning applications, the system including a camera configured to acquire a plurality of images of the environment in front of the camera. The camera includes a filter wherein the filter is installed at the focal plane of the camera and wherein designated portions of the filter transmit selective light wavelength. The preferred filter has a checkerboard pattern. The system further including an image processor capable of analyzing in real time a plurality of respective image sequences acquired from at least one of the portions of the filter and is capable of detecting yellow lane markings on a concrete road surface.
139 Citations
CONTROL DEVICE FOR ELECTRICITY SUPPLY TO A HEADLAMP | ||
Patent #
US 20110050102A1
Filed 08/26/2010
|
Current Assignee
Valeo Vision
|
Original Assignee
Valeo Vision
|
METHOD AND SYSTEM FOR ASSISTING DRIVER | ||
Patent #
US 20110103650A1
Filed 06/24/2010
|
Current Assignee
Industrial Technology Research Institute
|
Original Assignee
Industrial Technology Research Institute
|
VIDEO BASED INTELLIGENT VEHICLE CONTROL SYSTEM | ||
Patent #
US 20110251768A1
Filed 04/12/2010
|
Current Assignee
Robert Bosch LLC, Robert Bosch GmbH
|
Original Assignee
Robert Bosch GmbH
|
DEVICE AND METHOD FOR HANDHELD DEVICE BASED VEHICLE MONITORING AND DRIVER ASSISTANCE | ||
Patent #
US 20100157061A1
Filed 12/24/2008
|
Current Assignee
Driveway Software Corporation
|
Original Assignee
Driveway Software Corporation
|
PATH GENERATION ALGORITHM FOR AUTOMATED LANE CENTERING AND LANE CHANGING CONTROL SYSTEM | ||
Patent #
US 20090319113A1
Filed 06/20/2008
|
Current Assignee
GM Global Technology Operations LLC
|
Original Assignee
GM Global Technology Operations Incorporated
|
DUAL-VISION DRIVING SAFETY WARNING DEVICE AND METHOD THEREOF | ||
Patent #
US 20110298602A1
Filed 09/03/2010
|
Current Assignee
Automotive Research Testing Center
|
Original Assignee
Automotive Research Testing Center
|
Path generation algorithm for automated lane centering and lane changing control system | ||
Patent #
US 8,170,739 B2
Filed 06/20/2008
|
Current Assignee
GM Global Technology Operations LLC
|
Original Assignee
GM Global Technology Operations LLC
|
Method and system for assisting driver | ||
Patent #
US 8,320,628 B2
Filed 06/24/2010
|
Current Assignee
Industrial Technology Research Institute
|
Original Assignee
Industrial Technology Research Institute
|
Control device for electricity supply to a headlamp | ||
Patent #
US 8,410,703 B2
Filed 08/26/2010
|
Current Assignee
Valeo Vision
|
Original Assignee
Valeo Vision
|
DRIVER ASSISTANCE SYSTEM FOR VEHICLE | ||
Patent #
US 20130158796A1
Filed 02/14/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Method of Processing Images and Apparatus | ||
Patent #
US 20130342698A1
Filed 01/24/2012
|
Current Assignee
TRW Limited
|
Original Assignee
TRW Limited
|
Dual-vision driving safety warning device and method thereof | ||
Patent #
US 8,723,660 B2
Filed 09/03/2010
|
Current Assignee
Automotive Research Testing Center
|
Original Assignee
Automotive Research Testing Center
|
METHOD AND CONTROL UNIT FOR TRANSMITTING DATA ON A CURRENT VEHICLE ENVIRONMENT TO AN HEADLIGHT CONTROL UNIT OF A VEHICLE | ||
Patent #
US 20140219506A1
Filed 03/22/2012
|
Current Assignee
Robert Bosch GmbH
|
Original Assignee
Johannes Foltin
|
Driver assistance system for vehicle | ||
Patent #
US 8,818,042 B2
Filed 11/18/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Method for estimating a roadway course and method for controlling a light emission of at least one headlight of a vehicle | ||
Patent #
US 20140249715A1
Filed 07/03/2012
|
Current Assignee
Robert Bosch GmbH
|
Original Assignee
Johannes Foltin, Petko Faber, Gregor Schwarzenberg
|
Automatic vehicle exterior light control | ||
Patent #
US 8,842,176 B2
Filed 01/15/2010
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Vehicular vision system | ||
Patent #
US 8,917,169 B2
Filed 12/02/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assistance system for vehicle | ||
Patent #
US 8,977,008 B2
Filed 07/08/2013
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Driver assistance system for a vehicle | ||
Patent #
US 8,993,951 B2
Filed 07/16/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision system for vehicle | ||
Patent #
US 9,008,369 B2
Filed 08/25/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assistance system for vehicle | ||
Patent #
US 9,014,904 B2
Filed 09/23/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Multi-camera vision system for a vehicle | ||
Patent #
US 9,131,120 B2
Filed 05/15/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Video based intelligent vehicle control system | ||
Patent #
US 9,165,468 B2
Filed 04/12/2010
|
Current Assignee
Robert Bosch LLC, Robert Bosch GmbH
|
Original Assignee
Robert Bosch GmbH
|
Vision system for vehicle | ||
Patent #
US 9,171,217 B2
Filed 03/03/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assistance system for vehicle | ||
Patent #
US 9,187,028 B2
Filed 02/14/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular vision system | ||
Patent #
US 9,191,574 B2
Filed 03/13/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision system for vehicle | ||
Patent #
US 9,191,634 B2
Filed 04/03/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assistance system for vehicle | ||
Patent #
US 9,193,303 B2
Filed 04/20/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system using kinematic model of vehicle motion | ||
Patent #
US 9,205,776 B2
Filed 05/20/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
VEHICLE VISION SYSTEM CAMERA WITH DUAL FILTER | ||
Patent #
US 20160119527A1
Filed 10/21/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Method and system for dynamically calibrating vehicular cameras | ||
Patent #
US 9,357,208 B2
Filed 01/20/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assist system for vehicle | ||
Patent #
US 9,376,060 B2
Filed 11/16/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Method for estimating a roadway course and method for controlling a light emission of at least one headlight of a vehicle | ||
Patent #
US 9,376,052 B2
Filed 07/03/2012
|
Current Assignee
Robert Bosch GmbH
|
Original Assignee
Robert Bosch GmbH
|
Method and control unit for transmitting data on a current vehicle environment to a headlight control unit of a vehicle | ||
Patent #
US 9,381,852 B2
Filed 03/22/2012
|
Current Assignee
Robert Bosch GmbH
|
Original Assignee
Robert Bosch GmbH
|
Vision system for vehicle | ||
Patent #
US 9,428,192 B2
Filed 11/16/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system | ||
Patent #
US 9,436,880 B2
Filed 01/13/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision system for vehicle | ||
Patent #
US 9,440,535 B2
Filed 01/27/2014
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle control system with adaptive wheel angle correction | ||
Patent #
US 9,487,235 B2
Filed 04/01/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle camera alignment system | ||
Patent #
US 9,491,450 B2
Filed 07/30/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Calibration system and method for vehicular surround vision system | ||
Patent #
US 9,491,451 B2
Filed 11/14/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular multi-camera vision system | ||
Patent #
US 9,508,014 B2
Filed 05/05/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Monitoring unit and assistance system for motor vehicles | ||
Patent #
US 9,524,439 B2
Filed 05/06/2005
|
Current Assignee
Continental Automotive GmbH
|
Original Assignee
Continental Automotive GmbH
|
Notification System For Providing Awareness Of An Interactive Surface | ||
Patent #
US 20160163173A1
Filed 02/10/2016
|
Current Assignee
ATT Intellectual Property I LP
|
Original Assignee
ATT Intellectual Property I LP
|
Notification system for providing awareness of an interactive surface | ||
Patent #
US 9,552,713 B2
Filed 02/10/2016
|
Current Assignee
ATT Intellectual Property I LP
|
Original Assignee
ATT Intellectual Property I LP
|
Driver assistance system for vehicle | ||
Patent #
US 9,555,803 B2
Filed 05/16/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with targetless camera calibration | ||
Patent #
US 9,563,951 B2
Filed 05/20/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision system for vehicle | ||
Patent #
US 9,609,289 B2
Filed 08/29/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision system for vehicle | ||
Patent #
US 9,643,605 B2
Filed 10/26/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assist system for vehicle | ||
Patent #
US 9,656,608 B2
Filed 06/13/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Calibration system and method for multi-camera vision system | ||
Patent #
US 9,688,200 B2
Filed 03/03/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system using kinematic model of vehicle motion | ||
Patent #
US 9,701,246 B2
Filed 12/07/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Imaging system for a motor vehicle, having partial color encoding | ||
Patent #
US 9,704,048 B2
Filed 03/03/2015
|
Current Assignee
Continental Automotive GmbH
|
Original Assignee
Continental Automotive GmbH
|
Multi-camera image stitching calibration system | ||
Patent #
US 9,723,272 B2
Filed 10/04/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision system for vehicle | ||
Patent #
US 9,736,435 B2
Filed 03/20/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with customized display | ||
Patent #
US 9,762,880 B2
Filed 12/07/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Method and device for grouping illumination units | ||
Patent #
US 9,764,681 B2
Filed 09/03/2012
|
Current Assignee
Robert Bosch GmbH
|
Original Assignee
Robert Bosch GmbH
|
Vehicular multi-camera vision system | ||
Patent #
US 9,769,381 B2
Filed 11/28/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driving assist system for vehicle | ||
Patent #
US 9,834,142 B2
Filed 05/19/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular control system using cameras and radar sensor | ||
Patent #
US 9,834,216 B2
Filed 01/24/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Method and system for dynamically calibrating vehicular cameras | ||
Patent #
US 9,834,153 B2
Filed 04/25/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
System and method of establishing a multi-camera image using pixel remapping | ||
Patent #
US 9,900,522 B2
Filed 12/01/2011
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
METHOD AND APPARATUS FOR CONTROLLING VISION SENSOR FOR AUTONOMOUS VEHICLE | ||
Patent #
US 20180060675A1
Filed 03/29/2017
|
Current Assignee
Samsung Electronics Co. Ltd.
|
Original Assignee
Samsung Electronics Co. Ltd.
|
Notification system for providing awareness of an interactive surface | ||
Patent #
US 9,911,298 B2
Filed 01/23/2017
|
Current Assignee
ATT Intellectual Property I LP
|
Original Assignee
ATT Intellectual Property I LP
|
Vehicle vision system with calibration algorithm | ||
Patent #
US 9,916,660 B2
Filed 01/15/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assistance system for vehicle | ||
Patent #
US 9,940,528 B2
Filed 11/20/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision system for vehicle | ||
Patent #
US 9,948,904 B2
Filed 08/14/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular imaging system comprising an imaging device with a single image sensor and image processor for determining a totally blocked state or partially blocked state of the single image sensor as well as an automatic correction for misalignment of the imaging device | ||
Patent #
US 9,972,100 B2
Filed 04/23/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with targetless camera calibration | ||
Patent #
US 9,979,957 B2
Filed 01/26/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assistance system for vehicle | ||
Patent #
US 10,005,394 B2
Filed 11/16/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular control system | ||
Patent #
US 10,015,452 B1
Filed 04/16/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Spectral filtering for vehicular driver assistance systems | ||
Patent #
US 10,027,930 B2
Filed 03/28/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with retroreflector pattern recognition | ||
Patent #
US 10,043,091 B2
Filed 12/03/2015
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Control system for vehicle | ||
Patent #
US 10,046,702 B2
Filed 12/04/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Monitoring unit for a motor vehicle, having partial color encoding | ||
Patent #
US 10,055,654 B2
Filed 03/03/2015
|
Current Assignee
Continental Automotive GmbH
|
Original Assignee
Continental Automotive GmbH
|
Vehicular multi-camera vision system | ||
Patent #
US 10,057,489 B2
Filed 09/18/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision system for vehicle | ||
Patent #
US 10,071,676 B2
Filed 09/12/2016
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision system for vehicle | ||
Patent #
US 10,071,687 B2
Filed 11/27/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision system for vehicle | ||
Patent #
US 10,099,614 B2
Filed 11/27/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular control system | ||
Patent #
US 10,110,860 B1
Filed 07/02/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular control system using cameras and radar sensor | ||
Patent #
US 10,118,618 B2
Filed 12/04/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with customized display | ||
Patent #
US 10,129,518 B2
Filed 09/11/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Multi-camera dynamic top view vision system | ||
Patent #
US 10,179,543 B2
Filed 02/27/2014
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Multi-camera vehicle vision system with image gap fill | ||
Patent #
US 10,187,590 B2
Filed 10/26/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular control system | ||
Patent #
US 10,187,615 B1
Filed 10/22/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle control system with adaptive wheel angle correction | ||
Patent #
US 10,202,147 B2
Filed 11/07/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Method for dynamically calibrating vehicular cameras | ||
Patent #
US 10,202,077 B2
Filed 05/23/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with calibration algorithm | ||
Patent #
US 10,235,775 B2
Filed 03/07/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Calibration system and method for vehicular surround vision system | ||
Patent #
US 10,264,249 B2
Filed 11/07/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system using kinematic model of vehicle motion | ||
Patent #
US 10,266,115 B2
Filed 07/10/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Multi-camera image stitching calibration system | ||
Patent #
US 10,284,818 B2
Filed 07/31/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular control system | ||
Patent #
US 10,306,190 B1
Filed 01/21/2019
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with detection enhancement using light control | ||
Patent #
US 10,331,956 B2
Filed 09/23/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular control system using cameras and radar sensor | ||
Patent #
US 10,351,135 B2
Filed 11/01/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Monitoring unit for a motor vehicle, having partial color encoding | ||
Patent #
US 10,387,735 B2
Filed 08/20/2018
|
Current Assignee
Continental Automotive GmbH
|
Original Assignee
Continental Automotive GmbH
|
Method of processing images and apparatus | ||
Patent #
US 10,410,078 B2
Filed 01/24/2012
|
Current Assignee
TRW Limited
|
Original Assignee
TRW Limited
|
Vehicle vision system using reflective vehicle tags | ||
Patent #
US 10,430,674 B2
Filed 12/13/2016
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with adjustable computation and data compression | ||
Patent #
US 10,452,076 B2
Filed 12/19/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with multi-paned view | ||
Patent #
US 10,457,209 B2
Filed 03/28/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular control system | ||
Patent #
US 10,462,426 B2
Filed 05/16/2019
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Multi-camera dynamic top view vision system | ||
Patent #
US 10,486,596 B2
Filed 01/14/2019
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Adaptive headlights for the trajectory of a vehicle | ||
Patent #
US 10,493,900 B2
Filed 05/04/2018
|
Current Assignee
University College Dublin
|
Original Assignee
International Business Machines Corporation
|
Vehicle camera system with image manipulation | ||
Patent #
US 10,493,916 B2
Filed 02/22/2013
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular vision system | ||
Patent #
US 10,509,972 B2
Filed 04/09/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle vision system with customized display | ||
Patent #
US 10,542,244 B2
Filed 11/12/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Targetless vehicular camera calibration method | ||
Patent #
US 10,567,748 B2
Filed 05/21/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Method for displaying video images for a vehicular vision system | ||
Patent #
US 10,574,885 B2
Filed 08/20/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Method for the open-loop control of the front light distribution of a vehicle | ||
Patent #
US 10,589,661 B2
Filed 11/02/2017
|
Current Assignee
Daimler AG
|
Original Assignee
Daimler AG
|
Video processor module for vehicle | ||
Patent #
US 10,611,306 B2
Filed 08/09/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Driver assistance system for vehicle | ||
Patent #
US 10,623,704 B2
Filed 03/09/2015
|
Current Assignee
Donnelly Corporation
|
Original Assignee
Donnelly Corporation
|
Method for dynamically calibrating vehicular cameras | ||
Patent #
US 10,640,041 B2
Filed 02/04/2019
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vision system for vehicle | ||
Patent #
US 10,640,040 B2
Filed 09/10/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Method and system for dynamically ascertaining alignment of vehicular cameras | ||
Patent #
US 10,654,423 B2
Filed 12/04/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Method and apparatus for controlling vision sensor for autonomous vehicle | ||
Patent #
US 10,657,387 B2
Filed 03/29/2017
|
Current Assignee
Samsung Electronics Co. Ltd.
|
Original Assignee
Samsung Electronics Co. Ltd.
|
Vehicular driving assist system using forward-viewing camera | ||
Patent #
US 10,683,008 B2
Filed 07/15/2019
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular imaging system with blockage determination and misalignment correction | ||
Patent #
US 10,726,578 B2
Filed 05/14/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular control system with traffic lane detection | ||
Patent #
US 10,735,695 B2
Filed 10/28/2019
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicular control system with temperature input | ||
Patent #
US 10,744,940 B2
Filed 06/25/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Vehicle camera LVDS repeater | ||
Patent #
US 10,750,119 B2
Filed 10/16/2017
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Method for stitching images captured by multiple vehicular cameras | ||
Patent #
US 10,780,827 B2
Filed 11/25/2019
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Method for determining misalignment of a vehicular camera | ||
Patent #
US 10,780,826 B2
Filed 04/22/2019
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Adaptive forward lighting system for vehicle comprising a control that adjusts the headlamp beam in response to processing of image data captured by a camera | ||
Patent #
US 10,787,116 B2
Filed 09/10/2018
|
Current Assignee
Magna Mirrors of America Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Imaging system for vehicle | ||
Patent #
US 10,793,067 B2
Filed 07/25/2012
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Method for determining alignment of vehicular cameras | ||
Patent #
US 10,868,974 B2
Filed 02/19/2018
|
Current Assignee
Magna Electronics Incorporated
|
Original Assignee
Magna Electronics Incorporated
|
Optical elements, related manufacturing methods and assemblies incorporating optical elements | ||
Patent #
US 20080128599A1
Filed 01/21/2008
|
Current Assignee
Gentex Corporation
|
Original Assignee
Joseph S. Stam, Jon H. Bechtel
|
Technique for enabling color blind persons to distinguish between various colors | ||
Patent #
US 20070091113A1
Filed 12/05/2006
|
Current Assignee
Tenebraex Corporation
|
Original Assignee
Tenebraex Corporation
|
Headlight, Taillight And Streetlight Detection | ||
Patent #
US 20070221822A1
Filed 03/22/2007
|
Current Assignee
MobilEye Vision Technologies Ltd.
|
Original Assignee
Mobileye Technologies Limited
|
System and method for generating a model of the path of a roadway from an image recorded by a camera | ||
Patent #
US 7,151,996 B2
Filed 04/14/2001
|
Current Assignee
MobilEye Vision Technologies Ltd.
|
Original Assignee
Mobileye Technologies Limited
|
System and method for detecting obstacles to vehicle motion and determining time to contact therewith using sequences of images | ||
Patent #
US 7,113,867 B1
Filed 11/26/2000
|
Current Assignee
MobilEye Vision Technologies Ltd.
|
Original Assignee
Mobileye Technologies Limited
|
Optical elements, related manufacturing methods and assemblies incorporating optical elements | ||
Patent #
US 20050041313A1
Filed 08/18/2004
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Light source detection and categorization system for automatic vehicle exterior light control and method of manufacturing | ||
Patent #
US 20040021853A1
Filed 07/30/2002
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Technique for enabling color blind persons to distinguish between various colors | ||
Patent #
US 20040085327A1
Filed 03/13/2003
|
Current Assignee
Perception Data Inc.
|
Original Assignee
Tenebraex Corporation
|
Image acquisition and processing methods for automatic vehicular exterior lighting control | ||
Patent #
US 20040143380A1
Filed 08/20/2003
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Light source detection and categorization system for automatic vehicle exterior light control and method of manufacturing | ||
Patent #
US 6,774,988 B2
Filed 07/30/2002
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Interleaved mosiac imaging rain sensor | ||
Patent #
US 20030001121A1
Filed 06/28/2001
|
Current Assignee
Valeo Electrical Systems Incorporated
|
Original Assignee
Valeo Electrical Systems Incorporated
|
Control circuit for image array sensors | ||
Patent #
US 20030058346A1
Filed 10/21/2002
|
Current Assignee
Gentex Corporation
|
Original Assignee
Joseph S. Stam, Jon H. Bechtel
|
Interleaved mosaic imaging rain sensor | ||
Patent #
US 6,573,490 B2
Filed 06/28/2001
|
Current Assignee
Valeo Electrical Systems Incorporated
|
Original Assignee
Valeo Electrical Systems Incorporated
|
System for controlling exterior vehicle lights | ||
Patent #
US 20030123706A1
Filed 12/11/2002
|
Current Assignee
Gentex Corporation
|
Original Assignee
John K. Roberts, William L. Tonar, Joseph S. Stam, Poe G. Bruce, Spencer D. Reese, Douglas J. Newhouse, Jon H. Bechtel
|
Image processing system to control vehicle headlamps or other vehicle equipment | ||
Patent #
US 20020156559A1
Filed 03/05/2001
|
Current Assignee
Gentex Corporation
|
Original Assignee
Gentex Corporation
|
Light filters for microelectronics | ||
Patent #
US 4,876,165 A
Filed 01/12/1987
|
Current Assignee
Brewer Science Inc.
|
Original Assignee
Brewer Science Inc.
|
16 Claims
- 1. A system mounted on a vehicle for performing vehicle control applications and driver assisting applications comprising a camera configured to acquire a plurality of images of the environment in front of the camera, the camera further comprises a filter wherein said filter is installed at the focal plane of said camera and wherein designated portions of said filter transmit predetermined light wavelength and wherein all of said filter portions transmitting a substantially different light wavelength have substantially symmetric in size, resolution and in spatial distribution, the system further comprising an image processor capable of analyzing in real time a plurality of image sequences acquired from at least one of said portions of said filter.
1 Specification
This application claims the benefit under 35 USC 119(e) from U.S. provisional application 60/836,670 filed Aug. 10, 2006, the disclosure of which is included herein by reference.
The present invention relates to driving assistant systems (DAS) in vehicles such as vehicle lane departure warning (LDW) systems and automatic headlight control (AHC) systems, and more specifically to the combination of multiple DAS systems being run in parallel including a camera with a filter with symmetric patterns, such as a checkerboard filter.
As cameras become smaller and technology becomes more advanced, more processing can be done to assist a driver of a vehicle. There are various driving assistant systems (DAS) which are known in the industry including, lane departure warning (LDW), to notify a driver when a lane divider is accidentally crossed; lane change assist (LCA) to monitor vehicles on the side of the vehicle and notify the driver when the path is clear to change lanes; Forward collision warning (FCW), to indicate when a pending rear end collision might occur; and automatic headlight control (AHC), to lower the drivers high beams when an oncoming vehicle is detected. A DAS can be either a passive system, informing the driver about a detected item or event of interest, or an active system, whereas the system intervenes in the driving, for example activating the brakes. The terms “DAS system”, DAS application” and “control system” are used herein interchangeably.
Some of the DAS applications maybe run in daytime or nighttime mode (LDW), whereas other applications are limited for nighttime applications (AHC). The camera requires different settings for daylight then it does for nightlight operation. Changing the camera settings between applications is not efficient—and both applications would suffer lose of imaging frames. To install multiple cameras in a vehicle is a costly and weighty solution.
Therefore there is a need to be able to simultaneously run multiple driving assistant systems which require different camera settings.
The system of the present invention performs in parallel a number of DAS applications. The system detects and classifies objects in real time, e.g. vehicles, pedestrians, oncoming vehicle headlights, leading vehicle taillights and streetlights, in a series of images obtained from a camera mounted on a vehicle. The images are used in parallel by a number of DAS applications including lane departure detection, forward collision control and headlight control systems. The classification of objects is preferably used by more than one of the vehicle DAS applications. In a headlight control system, the classification of objects is used to provide a signal for switching the headlights between high beams and low beams.
Reference is now made to
The terms “object” and “obstacle” are used herein interchangeably.
The terms “camera” and “image sensor” are used herein interchangeably.
Exemplary prior art vehicle control sub-systems are:
- Block 132—a collision warning sub-system. A Collision Warning system is disclosed in U.S. Pat. No. 7,113,867 given to Stein, and included herein by reference for all purposes as if entirely set forth herein. Time to collision is determined based on information from multiple images 120 captured in real time using camera 110 mounted inside vehicle 50.
- Block 134—a lane departure warning (LDW) sub-system. Camera based LDW systems perform tasks including detecting the road and lanes structure, as well as the lanes vanishing point. Such a system is described in U.S. Pat. No. 7,151,996 ('"'"'996) given to Stein et al, the disclosure of which is incorporated herein by reference for all purposes as if entirely set forth herein. If a moving vehicle has inadvertently moved out of its lane of travel based on image information from images 120 from forward looking camera 110, then system 100 signals the driver accordingly. Road geometry and triangulation computation of the road structure are described in patent '"'"'996. The use of road geometry works well for some applications, such as forward collision warning (FCW) systems based on scale change computations, and other applications such as headway monitoring, adaptive cruise control (ACC) which require knowing the actual distance to the vehicle ahead, and lane change assist (LCA), where a camera is attached to or integrated into the side mirror, facing backwards.
- Block 138—an automatic vehicle headlight control sub-system. Automatic vehicle headlight control for automatically controlling the status of the vehicle'"'"'s headlights. Automatic vehicle headlight control increases the safety as well as reduces the hazard caused by the occasional failure of the driver to deactivate the high beams which distract the other driver. U.S. application Ser. No. 11/689,523 ('"'"'523) filed on May 22, 2007, the disclosure of which is incorporated herein by reference for all purposes as if entirely set forth herein, describes a system and methods for detecting on coming vehicles, preceding vehicles and street lights, and providing a signal to the headlight control unit of the car to switch from high beams to low beams or vise versa. Application '"'"'523 includes using a red/clear checkerboard filter yielding a red image stream and a clear image stream for detecting the taillights and headlights of other vehicles.
Vehicle control systems, such as disclosed in U.S. application Ser. No. '"'"'523 which rely on changing exposure parameters (i.e., aperture, exposure, magnification, etc) of camera 110 in order to get optimal results for one application, e.g. detecting oncoming vehicles headlights, have a difficult time maintaining other control systems which rely on the same camera 110, e.g. lane departure warning, forward collision warning, etc. As a result of changing exposure parameters half or more of the (possibly critical) frames may not be available for the other control systems. This greatly affects performance of the other control systems.
It is advantageous to be able to use the same image sensor that is used for other applications such as LDW, FCW and headway monitoring. Bundling up multiple applications into the same hardware reduces cost but more importantly the space the hardware occupies is reduced. Since at least the camera unit of the systems is typically mounted on the windshield near the rear-view mirror, the camera unit must be small so as not to block the driver'"'"'s view of the road.
The lane detection algorithm (LDA), which is the core of the LDW system, can be performed on grayscale images in most cases. Black and white (B&W) cameras have the advantage of being more sensitive than color cameras and thus work better on unlit roads on dark nights. But B&W cameras also suffer from some deficiencies, including:
1. The brightness of a lane marking in the image is sometimes the same as the brightness of the road surface even though the hue (or color) is different. As a result the lane marking is very clear to the driver but invisible in the camera image. For example, yellow markings on a concrete road often appear in a B&W image with the same intensity, thus the lane marking is not distinguishable in the image and thus, cannot be distinguished from the road surface.
2. In order for the camera to perform well on unlit roads on dark nights, but on bright sunny days, the images acquired are often saturated and the camera must be set with a very low exposure (typically 25-100 μSec, at pixel readout rate of 25 MHz). A camera “quantization problem” is aroused by the fact that an exposure time can be set only by “chunks” defined by an image line length (in pixels) and the time required to acquire a single pixel. This quantization makes it difficult to control the set an optimal exposure: if an image line is read in 25 μSec, image lines are read in 25 μSec chunks. Thus, 25 μSec might be too short but 50 μSec might be too long, but cannot specify a 37 μSec exposure time, for example, which is not a multiple of a chunk of 25 μSec. In some cases even an exposure of 25 μSec in duration is too long and the intensity image of the road surface becomes saturated.
A color camera can be used to detect the color of various patches of the road and thus determine the lane markings in the color image. However conversion of the image to color space, and the handling the color image, requires significantly more memory and computation power which are always at a premium in embedded applications.
It would also be possible to solve the problem of detecting yellow lines on concrete by adding a colored filter in front of the camera. For example, a yellow filter will cut out the blue light reflected off the road surface and thus darken the road surface relative to the yellow lane marks. But adding a colored filter in front of the camera reduces the brightness of the image (by about 30%), which might enhance the problem of the camera performance on unlit roads on dark nights. A red filter could also be used with similar deficiencies.
Thus there is a need for and it would be advantageous to have a system performing multiple DAS applications such as LDW, Forward Collision Warning (FCW), headway monitoring and vehicle headlights control, using the same B&W camera and capable of detecting yellow lanes on a concrete road and resolve saturation in images on bright days.
The red/clear filter and the combination of obtained respective red image stream and the clear image stream can be used as input to two completely different DAS applications at the same time. Using the two image streams of the red/clear filter, multiple applications may be run on a color camera or a black and white camera.
The term “respective images” is used herein to refer to two or more images acquired concurrently by a camera. In a camera using a filter installed at a focal plane of the camera, for example a checkerboard filter, the dark squares of the checkerboard preferentially transmit a pre selected color light, such as red light, and the other squares are, for example, comparatively clear and transmit white light. One image is formed from the colored/red light transmitted by the dark squares of the checkerboard and a respective image is formed concurrently from the white light transmitted by the light/white squares of the checkerboard filter. The term “colored/red image portion” is used herein to refer to images obtained from the portion of the single image transmitted by the clear portion of a filter. The term “clear image portion” is used herein to refer to images obtained from the portion of the single image transmitted by the colored/red portion of a filter.
The term “symmetric images” is used herein to refer to two or more respective images having the generally same number of pixels (typically, ± one pixel) arranged in generally the same number of columns and rows and having substantially the same pixel size (typically, ± one column/row).
The term “primary image” is used herein to refer to images obtained from the filter which is selected to perform the vehicle control and/or driver warning applications.
The term “secondary image” is used herein to refer to images obtained from filters which are not currently selected to perform the vehicle control and/or driver warning applications and serve to support the respective symmetric primary image.
It is the intention of the present invention to provide a system and method of use, the system mounted on a vehicle for performing vehicle control applications and driver warning applications including a camera typically mounted inside the vehicle, the camera configured to acquire a plurality of images of the environment in front of the camera, the camera further includes a filter wherein the filter is installed at the focal plane of the camera and wherein designated portions of the filter transmit selective light wavelength. The system further including an image processor capable of analyzing in real time a plurality of respective image sequences acquired from at least one of the portions of the filter.
Preferably, the filter has a checkerboard pattern having two colors, thereby two images are acquired—one from each light color transmitted by each of the color squares of the checkerboard filter. Two respective images, acquired from each portion of the filter are substantially symmetric images, having substantially the same resolution and being distributed substantially symmetrically over the plane of the filter. The two colors of the checkerboard filter are preferably red and clear, whereas the red portion transmits red light and the clear portion transmits substantially all wave length of light (white light).
It should be noted that the average intensity of a red image is lower by 35-50% of the average intensity a respective clear image, and thereby if a pixel in said clear image is saturated, the corresponding pixel in the respective red image is not saturated. Hence, in the day time with very bright days, red images are used as the primary images to prevent the saturation of images as typically occur in clear images.
In embodiments of the present invention, the filter is a “stripe” filter wherein the colors of the stripes alternate cyclically. The structure of the filter is not limited to a checkerboard pattern or stripe pattern, and other shapes or geometric lattices may be similarly be used.
In methods of using the system of the present invention, automatically select which stream of color (red/clear) images is used, depending on existing environment conditions such as day/night.
In embodiments of the present invention the system uses both respective symmetrical images acquired from each of the portions of the filter, to detect objects in said images and an object is detected in both images or in the primary image only, the primary image stream is used by the system to further process the detected object.
In embodiments of the present invention the system uses both respective symmetrical images acquired from each of the portions of the filter, to detect objects in said images and an object is detected in secondary images only, the secondary image stream is used by the system to further process the detected object. The detected object can be a yellow lane marked on a concrete road surface.
In embodiments of the present invention the system uses concurrently performs two DAS different applications. For example: during night operation, the clear image stream is used as the primary image stream for an LDA application and the red image stream is used as the primary image stream an AHC application.
The present invention will become fully understood from the detailed description given herein below and the accompanying drawings, which are given by way of illustration and example only and thus not limitative of the present invention, and wherein:
The present invention is an improved system mounted on a vehicle for performing LDW and AHC applications and possibly for performing other vehicle control and driver warning applications. The system includes a camera mounted inside the cabin and configured to acquire images of the road in front of the camera. In a dark environment, upon detecting a leading vehicle or oncoming vehicles the system switches the headlights to low beam, otherwise the system switches the headlights to high beam. The camera of the present invention includes a filter preferably with a checkerboard pattern, the checkerboard pattern being a red and clear filter combination. The checkerboard filter yields a pair of symmetric respective images: a clear image and a red image, whereas both images have substantially identical resolutions. The system of the present invention can use either the clear image or the red image as the primary image, to perform the warning and control applications, whereas the other image is used to enhance the system performance capabilities.
Before explaining embodiments of the invention in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangement of the components set forth in the host description or illustrated in the drawings.
Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art of the invention belongs. The methods and examples provided herein are illustrative only and not intended to be limiting.
In an embodiment of the present invention there is provided an image sensor with a filter, which is placed in a focal plane of the camera or in contact with the light sensitive surface. The filter includes at least two groups of elements, each group of element allowing transmission of at least partially different frequencies, arranged, for example, in a checkerboard pattern.
Referring now to the drawings,
Reference is also made to
Red/clear filter 250 is installed at a focal plane 112 of image sensor 110 so that an imaged spot from an object, e.g. portions of a road surface, obstacles, headlights of an oncoming vehicle, streetlights, taillights of a leading vehicle, falls on multiple pixels both with and without red filtering of red/clear filter 250. The imaged spot is correlated with the [spatial transmittance] profile, e.g. checkerboard of red/clear filter 250. In day time, a spot, such as an image of a yellow lane marking on a cement road surface 20, will have a high correlation with the checkerboard red pixels profile and a comparatively poor correlation with the checkerboard clear pixels profile of filter 250. Thus, in daytime, the correlation with the red filter profile is preferably used to detect yellow lane marking on a cement road surface 20.
It should be noted that the red/clear filter is given here by way of example only and other colored filters combination can be used adaptive to the detecting application In certain scenes the image acquired from one color element is used as the primary image and in other scenes the image acquired from another color element is used as the primary image.
The choice of a “checkerboard” is given by way of example only and other shapes or geometric lattices may be similarly used, such as stripes of red and clear.
In one embodiment of the invention, a red/clear checkerboard filter 250 is used.
System 300 is improved over prior art system 100, having the choice of using two or more sets of symmetric image frames acquired from filters with different color elements, the filter is coupled with camera 110. The improved system performance enables improving blocks 132, 134, . . . , 138, respectively replacing blocks 332, 334, . . . , 338.
During night operation, clear images 322 are used as the primary images, as clear images 322 are more responsive to light. Red images 320 are used during daytime for lane detection since the red light enhances yellow lines 22 on concrete roads surface 20 thus solving the problems of B&W cameras not utilizing a filter 250 (which can be thought of as if using an array of only clear pixels), where yellow lines 22 and concrete roads surface 20 yield in the acquired images substantially the same intensity. During day light operation, red image stream 320 is used as the primary image stream. Red images 320 yield an average intensity which is lower by 35-50% relative to respective clear images 322. Thus, another problem of a B&W image sensor is solved: preventing the saturation of images in very bright days. In the day time, when entering dark situations such as tunnels, the system can switch to using the clear image 322 as the primary image stream.
Systems 200 or 300 switch between primary and secondary images can be triggered by the detected image brightness and camera 110 settings. For example, if system 200/300 uses the red images as the primary images and the automatic gain control (AGC) unit of camera 110 requests an exposure above a certain threshold, system 200/300 switches to using the clear image.
Furthermore, in consideration of the “quantization problem” and in order to improve the exposure used, in case where the red image is for example 65% as bright as the clear image, if the red image with one image line of exposure (for example 25 μSec) is too dark but the red image with two image lines of exposure is too bright, the AGC algorithm, can choose to use the clear image with one image line of exposure, which is in between.
At any time, if an object is not detected in the primary image but detected in the respective secondary image, system 300 will switch to use the secondary image. For example, if a lane markings 22 are not detected in the primary image, for example a clear image 322, system 300 can switch to using a respective image from the secondary image stream, for example red image stream 320, if the lane marking 22 is detected in the secondary image.
The invention being thus described in terms of embodiments and examples, it will be obvious that the same may be varied in many ways. Such variations are not to be regarded as a departure from the spirit and scope of the invention, and all such modifications as would be obvious to one skilled in the art are intended to be included within the scope of the following claims.